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d’une fagon immédiate, e.-a-d. sans faire usage de ’équation du type:
” a i
%E—w(t) =4 (m(t),ﬁzm(ft))

(ce quon fait d’habitude), et qui peut &re dépourvue de sens dans le
cas des espaces plus généraux.
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On topological, Lipschitz, and uniform
‘ classification of L¥'-spaces

by
P. MANKIEWICZ (Warszawa)

Abstract. It is proved that all essentially infinite-dimensional LF-spaces (i.e.
L¥-spaces which are not isomorphic to the strict inductive-limit of finite-dimensional
spaces) are topologically equivalent. The problem of Lipschitz and uniform classifi-
cation is also studied. Some partial results are obtained.

Introduction. The problem of the topological classification of Fréchet
spaces was investigated by several authors (see for ex. [1], [2], [3], [8]).
There exists a conjecture that all infinite-dimensional Fréchet spaces
with the same density character are homeomorphic to each other. In
1966, Kadec verified this conjecture for separable Banach spaces, and
then Anderson extended this result to the class of separable Fréchet
Spaces.

In Section .2 of this paper we establish a theorem of the Kadec—
Anderson type for separable LF-spaces. It should be mnoted that the
methods presented in that section enable us to solve completely the
problem of topological classification of LF-spaces with the density character
less than N, under the hypothesis that the Kadec—Anderson theorem
extends to Fréchet spaces with density character N, for all X' < ¥.

The problem of the uniform classification of Fréchet spaces has not
been solved yet (even in the separable case). Lindenstrauss [11] has
proved that there exists a continuum of Banach spaces which are different
with respect to uniform homeomorphisms. There is a conjecture that in
the class of separable Fréchet spaces the following fact holds:

(C) A space X is uniformly homeomorphic with a space Y if and only
if X is isomorphic to Y. ‘

The validity of this conjecture in the case where X is a Hilbert space
has been established by Enflo [6]. Similar results for X = s (the space
of all scalar sequences) and for X = H x s have been obtained by the
author [12], [16]. Paper [12] contains also some invariants of uniform
homeomorphisms in the class of Fréchet spaces.
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In Section 4 we study the problem of uniform classification of LF-
spaces. We show that in the clags of separable LF-spaces the conjecture (C)
is true under the assumption that X is isomorphic to a subspace of a space
of the form 3 H,xs;. Also, we prove that the linear dimension is an in-
variant of uniform homeomorphisms in the class of real Montel LF-spaces.

Tn Section 3 we study Lipschitz mappings in LF-spaces. The results
obtained in this section are used in the proofs of theorems in Section 4.

Remark. In this paper we study spaces over the field of reals only;
however, the majority of the results of the paper extend trivially to the
complex case.

I am very much indebted to Dr H. Toruhezyk, who pointed to me
an unpublished regult of his (Lemma 2.9) which plays an important role
in the proof of the main result of Section 2, and who made essential sim-
plifications of the proofs in this paper.

1. Preliminaries. A locally honvex vector spaoe (X, 7) is said to be
an LF-space iff there exists a sequence.{(X, : ne N} of Fréchet spaces
such that the following conditions are fulfﬂled
< U X =X,

i=1

2. for every ne N the topology 7 ,,, restricted to X, coinc'des with
the topology 7,

3. the topology 4 is the locally convex inductive limit topology
on X generated by the identical embeddings of (X,, 7 ,) into X for ne N.

If this is the case then we write
(1) X = indlim X,.

Obviously, if (X, ) is an LF-spa.ce then the representa.tmn of X
in the form (1) is not unique.

Let X be an LF-space, X = indlimX,. It can be proved that

a conven subset U of X is open in X if and only if UNX, s an open
subset of (X,, 7,) for every ne N, a subset B of X is bounded in X if and
only if there ezmsts an ng such that B < X,, ond B is bounded in (X,, y T ng)-

For any two topological spaces (4, g,) and (B, gy} we shall denote
by A x B the Cartesian product of A and B endowed with the product
topology. The Cartesian product of a family {4,, 0s: ¥¢ @} of topological
spaces will also be denoted by []J4,.

L)

Let X, be a Fréchet space for n =1, 2, .

1. X, S X, 5 X, S ...

.. By Y X, or briefly } X,
€N

we shall denote the LF-space of all eventually zero sequences (@, @, ...),
z;e X for ¢ =1,2,..., endowed with the topology of the locally convex
induetive limit generated by the canonical embeddings (@y, #g, ..., &y)—>
—> (%1, Bay -iey By, 0,0,...) of finite products.
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In the sequel we shall need the following fact:

PrOPOSITION L.1. Let X = ' X; be an LF-space. Then the sets of the
Sform .
(2) {(ml, La, ...)GZX,-“: we U; for ie N},
where U; is an arbitrary conves neighbourhood of the origin in (X; 75)
for ie N, constitute a base of neighbourhoods of the origin in X.

Proof. It follows from the definition of the topology of > X, that

ie N

the sets (2) are convex neighbourhoods of the origin in X, Conversely,
we shall prove that every convex neighbourhood of the origin in X con-
tains & set of the form (2). To this end let U be a convex neighbourhood
of the origin in X. Put

V,-= Un({0} x {0} X...x {0} x X; x {0} x {0} x...)
= {0} x {0} x...x {0} x V; x {0} x...
for ¢¢ N and define

W, = {(ml,mz, ...)eZXi: 227V, for i =1,2,...,7

ien
and »; = 0 for i>n}

for me N. Then for every ne N we have

Uo gz—*‘U: é{’z*‘ﬁpwﬂ.

Put
W=UW,.
n=1

We have W < U. It is easy to see that the set W is of the form (2) (with

U; =27'V,). m

Let X = indlim X; be an arbitrary LF-space. One can also consider
on X the topology 7 of the inductive limit taken in the category of
topological spaces. In the sequel, the space (X, ") will be denoted by
Lim X, , and will be called a tLF-space. The tLF-spaces possess some nice
ﬂ;operties which the LF-spaces need not have. It easily follows from
the definition of the inductive limit topology in the category of topo-
logical spaces that

(*) if X =1limX,, then the following conditions arve equivalent:

i) a mappi_fr:g f defined on a subset A of X is continuous,

(i) flinx, @8 continuous for every ne N,

(iil) f 4s sequentially continuous.
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On the other hand, one can prove

TrEoREM 1.2, Let X = indlim X,. Then- corndmom (i), (ii) and (iii)
are equivalent if and only if all X,'s are finite-dimensional.

Thus the topologies of indlim X, agnd_llviixu‘(fﬂ are, in general, different,

It follows from Theorem 1.2 that these topologies coincide if and only
it X, is finite-dimensional for each n. ..

Now, let (X,.7) be a locally convex topologlca.l vector space. A set
{P,: 9@} of continuous pseudonorms on X i§ said to be a system of
pseudonorms inducing the topology on X iff the family of sets {w X : Py (») < a}
for 9@ and a > 0 forms a bage of neighbourhoods: of the origin for the
topology 7. :

By dens X we denote the density character of the space (X, ),
i.e. the smallest cardinal number N for thh there exists a dense subset A
of X with 4 =N.

Let (X, 7)) and (¥, 7)) be locally convex topologlcal vector spaces
A one-to-one mapping f from X onto ¥ is said to be a homeomorphism
between (X, ) and (¥, ) iff both f and f " are continuous. If in addition f
i linear, then f is said to be an isomorphism. A homeomorphism f is said
to be a uniform homeomorphism iff both f and f~* are uniformly ¢ontin-
uous. A one-to-one mapping f from a subset A of X into Y is said to
be a homeomorphic embedding of a subset 4 of X into ¥ iff both f and f*
are continuous. In the same way we define an isomorphic embedding of
a linear subspace X, of X into ¥ or a wniform embedding of a subset 4
of X into Y.

In the sequel we shall identify isomorphie spaces. Thus, for example,
the notation X = ¥ means that X is isomorphic to Y.

" We shall consider only vector spaces over the field R of reals.

2. TOPOIOgICa] classification. Let R; be a copy of the rem] line for
4t =1,2,... We have .

T]:EDOREM 2.1. An LF-space X is homeomorphic with the space 3 R;
if and’ only if 4t is isomorphic with 3 R,.

Proof. Indeed, let X = indlim X, be an LF-gpace and let dim X,
= oo for some 4g¢ N It can easily be proved that then there exists a com-
pact convex infinite-dimensional subset € contained in Xy, = X. On the
- other hand, every compact subset contained in 3 R, is Imme dimensional.
Hence if X is homeomorphic with }' R, then dimX; < oo for every ie N,
which means that the space X is the inductive limit of finite- dlmcn%ona,]
" spaces. But this implies that X is isomorphic with M R,. m

In the sequel, by an essentially infinite-dimensional LIF-space we
shall mean any LF-space which is not isomorphic to 3 R;. This termino-
logy is justified by Theorem 2.1.
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Let H be the infinite-dimensional separable Hilbert space. The: space
Hx Y R; is an LF-space: H x 3 R; =indlimH x [] R;.

The folléwing theorem holds: i<n

TEEOREM 2.2. Let X = indlim X; be an essentially infinite- -dimensional
separable LiF-space. Then X is homeomorphic with H XZR,, provided
that dm X, ,/X; < co for all but finitely many i< N. .

Proof. Let n, be such that dim X, /X; < oo for all ¢ > n,. Observe
that then X, is an infinite-dimensional Fréchet space. Indeed, if this
is not the case, then X = indlim X; = indlim X, ., is an inductive limit
of finite-dimensional Fréchet spaces and hence X is not an essentially
infinite-dimensional LF-space, which contradicts the assumption of the
theorem.

Denote by Y, the space X,,,/X; for every i> n,. Then we have

X = indlim X; = indlim X,, ,; = indlim X, X Ty 41 X... X Lo
=X, % Z Y.,
i>ng

since, owing to the way we have chosen n,, we have dim Y, < ¢ for
1> n,. Thus the space > ¥, is isomorphic to the space > R;. Hence

i>ng

X =X, x ) B,

By the Kadec—Anderson theorem ([8]) we infer that the space X, is
homeomorphic with H, but this implies that the space X = X, x ' R;
is homeomorphic with the space H x Y B, m

THEOREM 2.3. Let X = indlim X; be an essentially infinite-dimensional
L¥-space, where for every ie N the space X; is a reflexive Banach space.
Then the space X is homeomorphic with the space H,x > R;, where H,
denotes the infinite-dimensional Hilbert space with the same density character
as X, provided that dim X, ,/X; < oo for all but finitely many i's.

Proof. The proof is similar to the proof of Theorem 2.2. The only
difference is that we use the Bessaga theorem [3] on the topological
equivalence -of all infinite-dimensional reflexive Banach spaces with the
same density character, instead of the Kadec—Anderson theorem. m

Now, let X be a Fréchet space and let ¥ be, a fixed closed subspace
of X. For every zeX denote

“

(3) z" = {peX: p—we¥} o X

In the sequel we shall identify the sets of the form (3) with the ele-
ments of the quotient space X/Y.. B
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In the sequel we shall need several lemmas.

Lzama 2.4, Let X be a Fréchet space and let Y be its closed linear sub-

space. Then there ewists a continuous selection f of the set-valued mapping
. I: X|Ys2" »a < X,
where I denotes the inverse mapping to the quotient mapping
Q: Xsosa <X|Y.
This means that there exisis a conlinuous mapping
f: X[¥Y-X

such that flz™)]= pea” for every »” < X[Y.

Proof. The lemma is an easy consequence of the Michael theorem
on selection [17). = :

LeMMA 2.5, Let X = indlimX,, be an LF-spaces. Then X is homeo-
‘morphic with the space ¥ = ) ¥;, where ¥, =X, and Y, = X;/X, ,
for i > 2.

Proof. Let I,,: X,,/X,_,—~X, be the inverse mapping of the quotient
. mapping Q,: X,-X,/X,_, for ne N (we put additionally X, = {0}) and
let

fm: Y, = Xn/xn—laxn

be a continuous selection for I, (Lemma: 2.4), Without loss of generality
we may assume that f,(07) = 0 for ne N.
Define a mapping k from } ¥, into indlim X; by the formula

) hY1y Yoy o) = D2 fi@) 0 (Y19, e D) Vs
ieN

Observe that

(5) MY X ¥yXooox ¥ x {0} x {0} x...) = X,, for neN.

Indeed, equality (B) is satisfied for # == 1. Assume that we have proved
equality (5) for £ =1,2,...,n—1. By (4),

MY X ¥yxooo X X, x {0} x {0} x...) = X,,.
On the other hand, assume that z,¢X,,. Then we have
Ly = (wn _.ann('”n)) 'I‘ann(wﬂ)!

where @, —f,@n(®,) e X,_, and Q,(2,)e¥,. According to our assumption
there exists , '

(W1 Yay ooy Ynegy 0,0, .0 ey X ¥y Xeo X Tl % {0} X {0} X...
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such that

B(Y1y Yay ooy Yn-15 0,0, ...) = 2, —F5Q (@)
Hence |

h{(Y1s Yoy ooy Yn—as Qn(mn)7 0,0,...) =,

which completes the proof of equality (5).
Moreover,

hIleYgx ..‘xYﬂx{u}x(o}x...“

is a one-to-one mapping for every ne N. We, shall prove it by induction.
For n = 1 it is obvious. Assume that we have proved it for » =1, 2, ...
<.y n—1 and let

(yl’y27 ""7?/7!7 07 07 "")1 (gliy27 AR yn? 07 0} "')
e ¥y x ¥y%x...x ¥, x {0} x {0} x...
be such that
n n
W1 Yoy oees Yus 0, 05 0) = D Filw) = D) ful@)
q=1 =1

=h(F1y Por -1 Tnr 0,0,...).

Then s
(6) (D 1:0) = 9 = 50 = Qu (X 5:30)-
Hence

-1
Zfi(f‘/i) =h(Y1s Y2y vy Yn1,0,0,...)
=1

n--1
= k(Y1) Uo» '-4';711.—17 0,0,...)= th(yz)
4=1

According to our assumption we have y; =7%; for i =1,2,...,n—1.
This and (6) imply that (y1, Yo, o) Yns 050y o) = (F1y F2y -+ Fuy 0, 0, ..0)y
which concludes the proof of the fact that  is a one-to-one mapping.

Now, it remaing only to prove that A is & continuous and open map-
ping. Let (7, Fs, .-.) e ¥ = 3 T, and let h(y, Ty ---) =0 = 3 fi(Fi)  X.
Let V be an arbitrary convex neighbourhood of the origin in X. Put
V,=VnX, for i =1,2,... The continuity of the selection f; at the
point 7; for 7« N implies that there exist convex neighbourhoods U;= X,/ X;_,;
of the points 7; for 4¢ N such that f;(U;) = 27°V,+f;(3;) for ie N. Let U
be a neighbourhood of the point (7, 7, ...) in ¥ of the form

U = {(¥1, Y2y ---) e ¥: y;e U; for ie N}
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(Prop. 1.1). Then k(U) = V-a. Indeed, let (¥1,¥sy...)e U. Then it
follows from the definition of the neighbourhoods U, that

Ry Yoy +-) = D felwae D) (27 Vit fil@)

TeN ieN
= @)+ D 2 Ve bF,y Ty - )+ Y
TeN ieN

which concludes the proof of the continuity of .

Now we shall show that the mapping % is open at the origin. Observe
that h(0) = 0. Let U be an arbitrary neighbourhood of the orlgm in ¥
of the form

U = {(Y1, Y2y --)e X: y;e U; for ie N},

where each U, is an arbitrary convex neighbourhood of the origin in
Yi = .X,;/-X'_lc .

Fix a sequence {¢,: ne N} of positive numbers such that 1 > ¢, >
€,"Cy ...+ 6, > % for every ne N. For every ne N we shall construct a convex
neighbourhood V, of the origin in X, such that the conditions

D)y H(T) 2 V,y,

(i), VanX, 126,V
will be satisfied for ne N

Then

1
V=U—-——m—7"
Hv 20,°Cyt ety
will be a convex nelghbourhood of the origin in X (1t sufflces to observe
that by (ii),

1
—_— V. nX,  — ¥
26165...0 " " 20165050 ™0

for ne N) such that
: : Ve UV, ch(U).
nelN
‘We shall construet the sequence {V,: ne ¥} by induction. Flrsb we
put ¥V, = Uy and suppose that we have defined the sets V,, V,, ... y Vet
satisfying conditions (i), and (ii), for k =1,2/...,n—1, Let W, be a
convex neighbourhood of the origin in X, such that

u(®,) = @ '—ann (wp) € (1 —6y) Vn—l

for 4,¢ W, (the exigtence of such a neighbourhood of the origin follows
from the fact that the correspondence

U By,
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is & continuous mapping from X, onto X, ; with %(0) = 0). Then the
set W =¢,V,_;+(1—e¢,) W, satisties the conditions

(M) ‘ X, AW 20,V
and
(8) ‘ T _f'n.Qn (mn) € Vn—l fOI‘ T € w.

Indeed, to prove (8) it suffices to observe that every z,e¢ W admits
a representation at the form x, = ¢,#,_;+#,, where @, ¢V, , = X,_
and z,¢ W,. Hence, according to the fact that Qﬂ(c Bp1+2,) = @nl ,.),
we obtain

mn_'anﬂ(wn) = CpnTp_y +zm.—ann(zn)E ey Vi1 +(1—¢,) Vn_—l < Ve

Put V, = Wn{z,eX,: Q,(w,)¢ U,}. Then V, is a convex neighbourhood
of the origin and it follows from (7) that V, satisfies condition (ii),. In
order to prove that V,, satisfies condition (i), we fix an arbitrary z,¢X,
and represent x, at the form

Ly = (.’,t}',,,’ _ann (wn)) _'ann (mn) .
It follows from the definition of the set V, that
By —Frn@n (@) € Vg = B(U)NX, ;.

Henee by (5)and (i),_, we infer that there exist y;e U; for ¢ =1, 2,...,n—1
such that :

n—1 .

Z f;(%) = @y _ann(m )

i1

Putting 9, = @, («,) we obtain x, — Z’f, (y;), where y;e U, fori. =1, 2,

_ Hence z,¢ f(U), which completes the proof of the fact that f is an open

mapping at the origin. A similar argument shows that f i is open at every
point ye 'YV, ®
LeEMMA 2.6, Let ¥ = Y ¥;, where ¥, is an mfzmte -dimensional separ-
able Fréchet space for ic N. Then ¥ is homeomorphic with the space D H;,
where H,; denotes an infinite-dimensional separable Hilbert space for ieN.
Proof. It is enough to observe that by Propmmon 1.1 the mapping f
given by the formula

w

S W1y Yoy o) = (f1(?!1)9fz(?/2): )
for (¥y, ¥s...)e Y, where f; is a Kadec—Anderson homeomorphism, f;:
Yo H:, such that f;(0) = 0 for ¢e N, is the desired homeomorphism

between spaces ¥ and > H;. m
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LzvmA 2.7. Let X = indlim X, be an essentially infinite-dimensional
separable LE-space. Then X is homeomorphic with one of the following
two spaces:

with the space H x Y R;, where H is an infinite- -dimensional separable
Hilbert space,

with the space > H;, where H; is am infinit&dimmso’onal separable
Hilbert space for ie N.

Proof. If dimX, /X, < oo for all but finitely many 4’s, then by
Theorem 2.2 the space X is homeomorphic with H x 3 R;. Otherwise
we may assume without logs of generality that there is a ke N such that
the spaces ¥, =X, and Y, = X, ,/X;.n-, are infinite-dimensional.
Then; by -Lemma 2.5, X = indlimX,,, is homeomorphic with > Y,
and the latter space is, by Lemma 2.6, homeomorphic with 3 H,. m

LevmA 2.8. Let X = indlimX; be an LF-space such that each X;
s a reflewive Banach space and dim X, = oco. Then the space X is homeo-
" morphic with the space X H;, where H, is am infinite-dimensional Hilbert

space with the same density character as X, and H; is for i > 2 either an
n-dimensional Hilbert space if AimX,/X, , = n or an infinite-dimensional
Hilbert space with the same density character as X,/ X, , if AimX;/X; , = oo,

Proof. The proof of the lemma is analogous to the proof of Lemma 2.7.
It is enough to observe that a quotient space of a reflexive Banach space
is reflexive and to apply the theorem [3] on the topological equivalence of
reflexive Banach spaces with the same density charactet instead of the
Kadec—Anderson theorem. m

Observe that by Lemma 2.7 in order to prove that all essentially
infinite-dimensional separable LF-spaces are homeomorphic it suffices
to show that the spaces which appear in this lemma (namely, H x > E;
~and » H;) are homeomorphic. To prove this fact we shall need the fol-
lowing lemma of Toruhezyk.

Lemma 2.9. Let a: [0, c0)->[0, 00) be a continuous function with
a™}(0) = {0} and let H be an infinite-dimensional Hilbert space. Then
there ewists a_homeomorphism

u: H X H——Hx[0, co)

onto

= HxR*
satisfying the conditions
(1) w(ps, Po) = (i(D1, Do), Ipall) for every (py, pa)e H x H,

(i) 1% (D1, Do) — 220l < a(llpall) for every (py, po)e H x H.

Proof (Toruriezyk, unpublished). In order to prove the theorem
we shall need the following two facts:

(4) There exists a homeomorphism ¢: S-—>H, where H is an infinite-

onto

dimensional Hilbert space and § is its unit sphere (Klee [9]).
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(B) For every continuous function a: (0, co)5;z>(0, o) there exists
& homeomorphism v: H x H X (0, co)gz>H X (0, o0) sueh that v (x,, ©,, 1)
= (;{7(9717 @y, 1), t) and |[0 (&, £a, 1) — o1l < a(3) for (i, @y, 1) e H x H X (0, o)
(Torutezyk [20], § 5).

Now we put for (z,,s,)e H <X H

(21, 0) if

(v(w1,¢(”” =) ), nwag otherwise,

where ¢ is the homeomorphism of (A), and ¥ is the function of (B) for
the given function a. It is obvious that % gy@. gy i & homeomorphism
and it follows from the conditions on v that » is a homeomorphism from
HxH onto HxR*. m

Let us introduce the following notation. Let Y R} denote the set
of (fy,%s,...)¢ > B; such that ;>0 for ieN. In the sequel we shall -
consider the set > R as the subset. of the LF-space Y R;. Put

RP™ = {(ty, t,, ...)eZ Rf: t, =0 for i >mn}

for ne N. Let H;, for ¢ N, be a copy of the infinite-dimensional separable
Hilbert space. Put

b ={(p171’2; ‘-')GZ-H{: p; = 0 for 'b>7’l:}

for ne N. Up to the end of this section we shall identify the sets H™ and
R*t™ with the sets H, X Hy X... X H,, and [0, co)" for neN.

Levmma 2.10. The space > H, is homeomorphic with H, x 3 Rf <
H, x> R;.

Proof. Leb u(py, ps) = (%(p1, Pa), IIDsl) e 2 homeomorphism between
H, x H, and H, x R satisfying the condition

@, =0,

U(&y, Bs) = |

9 : 6 (P15 P2) —Pall < IIpall-

The existence of such homeomorphism follows from the previous lemma
with a(f) =t for t¢ B*. Next, for every n > 2, we let

Ty (D1y Do) = U (p1, L(py))  for  (py, p,)e HyX Hy,

where I, denotes an arbitrary isometric isomorphism of H, onto. H,
for n > 2. For every n =2 define

(10) fe(p) = (itn{iins (i fia(ps, 2, ), ---),

, Pa). Observe that

s 1l 12l s )

for pe H"; p = (p1, Doy -+

Joryan =fo  for a=2.


GUEST


120 P. Mankiewicz

(hete and below we identify H™ with H" X {0} x {0} x...). Indeed, let

= (D1 Paj vy Pny 0) e H"H', where p;e H; for 1< i<{n. Then by (10)
fn'+1(1’) = (("Zﬂ-kl ('E‘n((";fz (D15 Do)y Ps)s ---):Pn): 0): I2lly 125]l5 -y li0alls 0)-
By (9 u(p, 0) = p for every pe H,. Hence according to the defi-

nition of #, we have

far(2) = (dn (/ﬁ‘n—l("' ("22(1’17 Pa)s 103)7 . --)7 .p'n)7 lpalls lpslly - e

= fn (7, 0),
where 5 = (Py, Pay ---3 Pn) € H*. An easy consequence of the fact that u
is & homeomorphism of H,x Hy onto H x R* and of the definition of
the functions f, for # > 2 is that f, is a homeomorphism of H” onto H, x

Izl )

XBT*xR"x...x Rt = HxR"" ! for every n >2.
‘—_—7»:1 es8 -

Since, for every n =2, f,,, is an extension of the homeomorphism
fui H'gmmH; x BH™™ to the homeomorphism acting from H"*' onto
H,xR*™ and since .

' NE, =UH and Hyx Y B =UHxE"
e N ieN
we infer that the mapping f defined by the formula
f(0) =falp) for pe D H; peH"

is a well-defined one-to-one mapping from ) H; onto H x > R,.
Tt can easily be verified (by using (9) and (10) resp.) that the function f
satisfies the conditions:

(i) ¥ & = (@1, 82y ... e 2 Hyy f(#) = (¥, |@all, llwsll, ...), then |y —ay]
<§2||ﬂ?i||7 »
(i) if & = (m,_,xz, e D Hy @ = (@, @y ey Byy 0,0, ...)e 3 H, for

some neN, f(»
y— ’lJll<ZI[m¢II

The easy proof by induction with respect to n =
is left to the reader.

We shall prove that f is continuous. Let T = (El, Ty, ...ye >, H; and
let U be a neighbourhood of the point f(&) = (7, |l (El, ...) e Hy ><2 Rf.
-We.shall find a neighbourhood V of the pomt Zin Y H;such tha.t f(V) = U.

By Proposition 1.1 there exists a sequence {a;: i¢ N} of posmve
numbers such that

U> {(y, ay, as, ...

= (¥, lwall, lwally ...),  F(&) = (¥ ll@all, lmslly ...), then

inf{je N: we H}

JeHyx D' Be: Iy~ < ay and
| — il < o for i > 2} = T,.
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Fix ne N such that e H". It follows from the continuity of the funetion

Jign that there exists an &> 0 such that for every @ = (,, @y, ..., %y, 0,

y o) e H" with f(#) = (y, |z, lsll, ...) we have
(11) ly =gl <27 a;
provided that [lo,—%;) <& for i =1,2,...,n.

Put .
7; = min{e, a;, 27" ay}
for 4eN and '
V = {(@1, 25, e D H: oy~ <, for ieN}.

Thenf(V) < U, = U. Indeed,letw = (1, @y, ...)e V and let f(x) = (y, |zal,

lzs]ly ...). We have .
el — I | <7 <

for ¢ =2, 3,... Hence it remains only to prove that

ly— 7l < a4

but the last inequality follows immediately from (ii) and (11), which
concludes the proof of the continuity of f.

Now we shall prove that f is an open mapping. Let U be an arbltfa;ry
open subset of ¥ H; and let & = (Z,, &, ...)c U. We shall show that flo
is a neighbourhood of the point f(%) = (7, |, @, ...) in H,x 3 R+
Fix me N such that Ze< H" and take an open convex nelghbourhood 14
of the point # in H" and positive numbers §; for i > # such that

Uo> {(wl, DBy oee ZH,;: (1) Bay +on

and |l < p; for i > fn}. ‘

» By Bpyyy -o)€ y Bp)eV

Since fiz» is & homeomorphism of H™ onto H, x R*"~!, we infer that
there exists an » > 0 such that the set

W = {(f’/y gy gy . ..)

|a;— gl < 7 for i =2, 3, ..

eHlsz;": lly—7ll <7 and
1 and a; =0 for i>'n}
is contained in f(V). Put

yi = minf;, 271}
for ¢ > n and

W = {(y: Gy O3, .e)

y Oy 0,0, .)€

e Hyx D) Rf:
(y, as, ag, ... 3 (W-£(%) and a; <y, for i > n}

3 — Studia Mathematica LII.2
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Then W is & neighbourhood of the point f(z) in Hy X 2 R and it remains
only to prove that

Z Hyz (@, @, -

FHW) e T, By 0,0,..)eT
and o)l < y; for i> n}.

Agsume the contrary. Then there exists an # = (1, gy ...)e fTHW) with
24 U,. Hence either ;| > y;for some ¢ > n or & = (%1, Bay ..., By, 0,0, ...

)¢V and |zl <y, for every i > n. Pub f(z) = (y, g, dg, ...). IL Jly || 2
for some i, > n, then by (i) we have a; >y, which contradicts the
definition of the set . On the other hand, in the case where &¢ V', since

W < f(V) and f is & one-to-one mapping, we infer that
(12) f('%)=(g;ﬂaa gy eovy Oy 0,0,...0¢ W,
It follows from condition (ii) that
ly—all < > ] < 37
i>n
This and (12) imply (y, Goy @gy ...y @y, 0,0,...) ¢ 27 (W +f(%)). By the
definition of the set W we have (¥, gy Ggy ...y Gy, 0, 0,...) e 27 (W -+ f(&)).

‘We get a contradiction which proves the fact that f is an open mapping. =
Lumma 2.11. The space >, R; is homeomorphic with ) Ri.

Proof. The space Y R; coincides with the space limR”. Hence by '

=
property (#) of Section 1 we coneclude that the mapping f defined on a sub-
set 4 of X = D R; is contlnuous 1f and only if f,,.ze is continuous for
every ne N.
Put for t,,1,¢ R *
hy(t, ) = Re[(6--i6)'] =6 —1#
and
hy(tyy 1) = Im [ (8, +4ty)"] = 281,
and define for every ne¢ N the mapping ¢,: 3 Ri»}jlﬁi by the equality
9n(D) = gulay; 4, ...)
= (“15 oy evey Qs By(@ny Gupr)y Ty Oy Gt} y Gyny G gy )

for p = (ay, Gy, ...)¢ ) B;.
Observe that the mapping ¢, maps Y R onto R, x }‘ Rf = 3 By
It is easy to see that g; is a homeomorphism of ) R} 011t.0 R, x 2/ Rf.

Also one can prove that for every ne N the mapping f, defined by the
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equalities: f; = g;5 fr = g0fy for £ =2,3, ...
2 R onto Ry xRy X...x R, x S RBf « J R,.
Put i>n

f(p) =limf,(p) for
s @3 0,0, ...) e X' R, we have f(p)e By X R, X

and g,(p) =p for n>k, we infer that the
exists -for every pe 3 Rf.

is a homeomorphism of

' et
peZR,- .

Since for p = (ay, a,, ...
Xooo X By {0} x {0} x...
Limit f,(»)

Observe that fipn = f, for every ne N. This implies that f is contin-
uous. Since f, carries 3 R onto By X By X... x R, x 3 RS, we conclude
that f is a one-to-one mapping and i>n

f sz ontc?ZR

A similar argument as before shows that the mapping f~': 3 Ry S Rf
is continuous. Hence f is a homeomorphism between 3 R} and D EB.m

Now we can prove the main result of this section.

THEOREM 2.12. Hvery two essentially infinite-dimensional separable
LF-spaces are homeomorphic.

Proof. It suffices to show that every essentially infinite-dimensional
separable LF-space is homeomorphic with the space H X 3 R;.

Let X Dbe an arbitrary separable essentially infinite-dimensional
LF-space. It follows from Lemma 2.7 that either X is homeomorphic
with the space H x> R; or X is homeomorphic with > H,. Hence it
is enough to prove that the spaces H x ' R; and > H, are homeomorphic.
Indeed, by Lemma 2.10, the space 3 H, is homeomorphic with H x 3 R} .
On the other hand, according to the previous lemma, 3} Ri is homeo-
morphiec with 3 R;. Hence the spaces H x Y R; and Y H, are homeo-
morphic. B

THEOREM 2.13. Leét X = indlim X, where X, is a reflevive Banach
space for ne N, be an essentially infinite-dimensiona! LF-space. Then X
is homeomorphic with the space H, xX R;, where H, is an infinite-dimen-
sional Hilbert space with densH, = dens X, provided that there ewists an
ye N such that dens X, = dens X. If it is not the case, then there exists an
inereasing sequence {N;: ie N} of cordinals with 8&; < dens X and lim ¥;
= dens X, and the space X is homeomorphic with the space > H(X;) where
H(N;) denotes the Hilbert space with the density character N; for ie N.

Proof. The proof of the theorem is, by Lemma 2.8, similar to the
proof of Theorem 2.12, so we omit it. m

Remark. A Fréchet space X is said to be topologically infinitely
divisible iff the space X X X x X x... is homeomorphic with X. Recently,
Torudezyk has proved [21] that every topologically infinitely divisible


GUEST


124 P. Mankiewicz

Fréchet space is homeomorphic with a Hilbert space with a suitable
density character. This shows that the analogue of Theorem 2.13 is valid
for LF-spaces of the form Y X,, where X, is a topologically infinitely
divisible Fréchet space for ie N.

Remark. The following shows that non-separable LIF-spaces with
the same density character need not be homeomorphic. Let {8¥;: ¢¢ N}
be an increasing sequence of infinite cardinals and let lim N; = N. Then
(with the notation introduced above) the spaces > H(N;) and H(R) x 3 B,
are not homeomorphic; nevertheless they have the same density characters.

Note that the method presented in this section enables us to solve
completely the problem of topological classification of LF-spaces, pro-
vided that the Kadec—Anderson theorem. extends to IFréchet spaces with
an arbitrary density character. More precisely, we have

THEOREM 2.14. Assume that every two infinite-dimensional IFréchet
spaces with the density character N less than a fized cardinal % are homeo-
morphic. Then every LF-space X = indlimX, with densX =N'"<¥ s
homeomorplic with the space H(R') x > R;, provided that there emists an
nye N such that dens X, = dens.X. If this is not the case, then X is homeo-
morphic with the space 3 H(N;), where {Ni: ic N} is an arbitrary strictly
increasing sequence of cardinals with lim N; = dens X.

Proof. The first part of the theorem can be shown in the same manner
as in the proof of Theorem 2.13. In order to prove the second part, note
that, by the same argument as in the proof of Theorem. 2.13, X is homeo-
morphic with the space 3 H(X,), where N, = dens X,,,, N; <Ny, for
some increasing subsequence of positive integers n,, ny, ... To complete
the proof, it is sufficient to observe that the space Y H(X;) is isomorphic
with every space of the form 3 H(X;), provided that N; <N;,, and
lim &) = lim N; = densX. ®

The following theorem is an easy consequence of Theorem 1.2.

TuporEM 2.15. An LF-space X is homeomorphic with o tLE-space ¥ if and only
if X= Y} R; and ¥ = lim R. If this is the case, then X is isomorphic with Y.

Nevertheless, we have
TaeoreM 2.16. Huvery two essentially infinite-dimensional separable tLF-spaces
are homeomorphic. '
~ The proof of this theorem is similar to the proof of Theorem 2.12. Obgerve that,
owing to the property (x) of Section 1, the proofs of some of the lemmas can be es-
sentially simplified.
Also, one can prove analogues of Theorem 2.13 and Theorem 2.14.

.3. Lipschitz classification. In this section we shall consider the problem
of Lipschitz classification of LF-spaces. First of all, we shall recall some
definitions (cf. [12] and [2]).
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DerFiNITION 3.1. A mapping F from a subset A of a locally convex
vector space X into a locally convex vector space Y is said to satisfy
the first order Lipschitz condition if and only if for every continuous pseudo-
norm P on Y there exist a continuous pseudonorm @ on X and a constant
K > 0 such that

for every z, zed.

In the sequel, the mappings satisfying the first order Lipschitz con-
dition will also be called Lipschitz mappings.

DEFINITION 3.2. A one-to-one mapping F from a subset A of a locally
convex vector space X into a locally convex vector space Y is said to be
a Lipschite embedding of A into. Y if and only if both F and F™* satisfy
the first order Lipschitz condition. If, moreover, ¥ maps X onto Y then
we say that F is a Lipschilz homeomorphism.

Let X and Y be locally convex vector spaces and let {Q,: ¢ 0}
and {P,: pe @} be arbitrary systems of continuous pseudonorms inducing
the topologies on X and Y, respectively, 'where @ and @ are arbitrary
sets of indices. Then a Lipschitz mapping F from a subset 4 of X into ¥
is said to satisfy the Lipschitz condition with the same set of constants as
another Lipschitz mapping F from A into Y with respect to the fized systems
of pseudonorms {@,: 9e O} and {P,: pe @} if and only if for every g,¢ P,
Pye 0, K > 0 the inequality

P, (F(2)— F(2)) < EQy (w—2)
holds for every =z, zed, provided that the inequality
P, (F(z)—F(2) < KQy (w—2)

holds for all @, ze4.

In a similar manner one can define F as a Lipschitz embedding (homeo-
morphism) with the same set of constants as a Lipschitz embedding (homeo-
morphism) B with respect to the fiwed sysiems of pseudonorms {Qz: ¢ O}
and {P,: pe D},

In the sequel we shall often omit the phrase ‘“with respect to the
fixed systems of pseudonorms {@Q,: P ¢ @} and {P,: pe @} provided that
it does mnot lead to a misunderstanding.

In this section we shall need an infinite-dimensional version of the
Rademacher Theorem [22] on differentiability of Lipschitz mappings.
In order to formulate it we shall need the notion of a set of measure zero
in a separable Fréchet space. Sudakov has proved in [19] that i X is
an infinite-dimensional locally convex space then there is no Borel ¢-finite
measure on X satisfying the natural conditions: (a) u(U) > 0 for every
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open subset U of X and (b) for every meagurable subset 4 of X, u(4) =0
if and only if u(4 +2) = 0 for every x¢X. Nevertheless, if X is a separable
Fréchet space then one can define a c-ideal of sets in X which behave
like sets of Lebesgue measure zero in Euclidean spaces.

DeriniTioN 3.3 (Christensen [5]). A subset A of a separable Fréchet
space X is said to be a subset of measure zero in X if and only if there
exist a probability Borel measure u on X and a Borel subset 4 = X such
that 4 = 4 and.

uld+z) =0
for every zeX.

Christensen has proved in [5] that the union of countably many
sets of measure zero is also a set of measure zero. On the other hand,
it is easy to see that if U is an open subset of X then U is not a subset
of measure zero in X.

Let 7' be a mapping from a subset 4 of a linear locally convex space X
into a linear locally convex space Y.

By the derivative of F' at the point aed in the direction xeX we
mean

Fla+ iz) —F(a)

Fo(a) = lim ———2 =
20 A

provided that ¢+ Azed for all scalars 4 in a neighbourhood of zero, and
that the limit above exists.

Now let U be an open subset in X. We shall say that ' is differentiable
at & point ae U iff

1. Fy(a) exists for every meX, *

2. the mapping (DF), () = F,(a) is a linear mapping from X into ¥.

. If this is the case then the mapping (DF),: XY is said to be the

differential of F at the point a. It can easily be seen that if T is a Lipschitz

mapping from & subset 4 in X into ¥ and if ¥ is differentiable at a point '

acd, then the differential (DF), is continuous. Moreover, (DI, satisties
the Lipschitz condition with the same set of constants as I (with respect
to.a,rbitra;rily chosen systems of continuous pseudonorms inducing topol-
ogles on X and Y). Similaxly if 7 is a Lipschitz embedding of A into ¥
then the differential (DF), is a Lipschitz embedding of X into ¥ with
the same set of constants as F (with respect to arbitrarily chosen systems
of continuous psendonorms inducing topologies on X and Y).

. Now we shall define a class of spaces with “nice” differential prop-
erties (see [147). . ‘

DrrINITION 8.4. A Fréchet space X is said to De a GI'-space if and

only if it satisfies the condition:
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(@) for every Lipschitz mapping T from interval [0,1] into X the
Lebesgue measure of the set of te [0, 1] such that Fy (1) ewists is equal to 1.
(Here we consider the interval [0, 1] as a subset of the one-dimensional
Banach space (R, | [).)

The class of GF-spaces is quite rich. Namely, the following theorem
([14]) holds.

THEOREM 3.5.

(i) Bwvery reflexive Banach space is a GF-space,

(i) every Montel-Fréchet space is. a GEF-space,

(iil) the Cartesian product of a countable family of GF-spaces is a
GF-space, '

(iv) any closed subspace of a GF-.gpace 18 a GEF-space.

The Infinite-Dimensional Rademacher Theorem, which we have
mentioned before, reads as follows:

THEOREM 3.6. Let B be a Lipschitz mapping from an open subset U
of & separable Fréchet space X into a GF-space Y. Then the set of x in U
such that F is not differentiable at the point x is of measure zero in X.

The proof of the theorem is exactly the same as the proof of Theorem
4.5 of [14]. . :

Theorem 3.6 cannot be generalized to the Lipschitz mappings in
LEF-spaces.

ExaMPLE 3.7. The space Y R; satisfies condition (G) of Definition 3.4.
Nevertheless the mapping F: 3 R~ R, defined by

F(p) = (lail, las], -..) for p :(auazy--')GZRi

satisfies the first order Lipschitez condition but is not differentiable at any
point me ) R;. ‘

Proof. Obviously, F is a Lipschitz mapping. Let # be an arbitrary
fixed point in ' R;. Then there exists a ke N such that # = (a,, @, ...
eny Gy 0,0, ...). Let e, =(0,0,...,0,1,0,0,...)¢ > R; (the %-+1-st
coordinate is equal to 1). Then

F(@+26,) — F()

lim —- =
Aiﬂ“{) 7 €11
while
Fle+ i) —F(x .
lim 2 ")”) @ — -
A——0 d

Hence the mapping F is not differentiable at the point a.
Moreover, it can be proved that for every LF-space X there exists
a Lipschitz mapping #: XX which is not differentiable at any point ¢ X.
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Now we shall prove

THEOREM 3.8. Let X = indlim X, be an LF-space, where X, is a re-
flexive Banach space for ne N and let on LF-space ¥ be Lipschite embed-
dable in X. Then Y = indlimY,, where Y, is a reflewive Banach space
for neN. .

Proof. Let F be a Lipschitz embedding of LF-space ¥ into the
LF-space X and let ¥ = indlimY,. Fix n,e N. We shall show that X,
is a reflexive Banach space. Let | :

A, = Yo "I (X,)
for ne . Since the sets 4, are closed in X,, for ne ¥ and
U4, =1,

’
neN 0

then by the standard Baire category ayrgumeut;ﬁwe infer that there exigsts
an n, such that 4, contains an open subset of Y, . Let U be an open

subset contained in A, . It is easy to see that F = F, is a Lipschitz
embedding of U into X,

Observe that Y,, is a Banach space, because of the fact that F-!
maps bounded subsets onto bounded subsets and hence Y., possesses
a bounded open subset. The reflexivity in the category of Banach spaces
is @ separable property (i.e. a Banach space X is reflexive iff every separ-
able closed subspace of X is reflexive). Therefore it suffices to prove
that every separable closed subspace ‘of Y,,O is a reflexive Banach space.
To this end, let Z be an arbitvary closed seperable subspace of Y,
Fix peU and put

Fly)=F(y+p) tor

It can easily be seen that F is a Lipschitz embedding of the set U=2n
N(U—p) contained in Y,, into X,,. Obviously, Zn(U—p) is an open
non-empty subset of Z. Hence, by the Infinite-Dimensional Rademsacher
Theorem, there exists a z,¢ Z such that (DF),, exists. Since F iy a Lip-
schitz embedding of an open subset U of Z into X, we conclude that
(DF)E0 is a linear Lipschitz embedding of Z into le. Hence the space
Z is isomorphic with a closed subspace of the reflexive space X, . This
implies that Z is reflexive. Thus Y, is a reflexive space. m '

In asimilar manner one can prove the following

TuEOREM 3.9. Let X = indlimX, be an LF-space, where X, is a

ng*

yeZ and p+yeU.

" GF-space, for ne N, and lot an LE-space Y be Lipschitz embeddable in X.

Then Y = indlim Y, where ¥, is a GI-space for every ne N.
. Proof. By Theorem 2.8 of [14] the property of “being a GF-space”
1s & separable property and every Fréchet space which is isomorphically
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embeddable in a GF-space is a GF-space. Hence to prove the theorem
it suffices to repeat the same argument as in the ‘proof of the previous
theorem. = '

THEOREM 3.10. Let X = indlimX, be a Montel LF-space and let
Y = indlimY, be an LF-space Lipschitz embeddable in X. Then Y is
isomorphically embeddable in X.

Proof. Let I be a Lipschitz embedding of the space Y into X. As
in the proof of Theorem 3.8, one can show that for every ne N there exists
an open subset U, in ¥, such that F(U,) = Xy, for some k(n)eN.
On the other hand, it is easy to see that if X = indlimX, is a Montel
LF-space then each space X, is a Montel-Fréchet space. Hence Y is sep-
arable. Therefore Y, are separable for every ne N.

By the Infinite-Dimensional Rademacher Theorem, for every ne N
there exists & y,e U, such that the mapping ¥y, is differentiable at the
point y,. Put )

- F, =(DFqg,)y,

for ne N. Obviously, for every ke N the mapping F, is a linear Lipschitz
embedding of ¥, into X, and, moreover, F, regarded as a Lipschitz
embedding of the subset ¥, of ¥ into X satisfies the Lipschitz condition
with the same set of constants as F (with respect to arbitrary fixed sys-
tems of pseudonorms inducing the topologies on X and ¥, respectively).

Let {2: ke N }’be a sequence of points in ¥ satisfying the conditions:

(i) for every ne N the set {#,: z,e ¥,} is dense in ¥Y,,

(ii) #,¢Y, for every neN,

(iii) 2, =0,

(iv) the set {z;: ke N} is a linear space over the field Q of rational numbers.

Put @, = F,(2,) for ne N and k < n. Observe that for every ke N
the set {w,: n >k} is bounded in X. Indeed, since the mapping F, is
linear for every ne N, we have I, (2;) = F,(0) = 0 for ne N. This means
that #,, = 0 for ne N. Let P be an arbitrary continuous pseudonorm
on X. By the definition of a Lipschitz mapping, there exist a continuous
pseudonorm @ on Y and a constant K > 0 such that

P(F(y)~F(2)) < EQ(y—2)
for y, 2¢¥. Since for every ne N the mapping F, satisfies the Lipschitz
condition. with the same set of constants as F, we have
-P(mlc,n) =P (Fn(zlc) "‘Fn(zl)) < KQ (zk)

for every ke N. But this means that the set {m;,: n > k} is bounded for
every ke N. It is well known that a subset 4 is bounded in an LF-space
X = indlim X, if and only if there exists an me NV such that 4 is contained
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and bounded in the space X,,. Hence, for every ke N there exists an
m(k)e N such that the set {#,n: > k} is contained and bounded in the
space X,up-

Now put #, = 0. Since the set {x,,: > 2} is contained and bounded
in the Montel-Fréchet space X, there exists a subsequence of positive
integers {m,;: i N} such that the sequence {wz,nz,i’ ie N} is convergent.
Put )

@, = lim B,y 4+
=00

Next, by the same argument we choose @ subsequence {ng,: 5« N} of the
sequence {n,;: 4« N} such that the sequence {,, gt be N } is convergent,
and we put
¥y = lim By, g ;0
oo -
In a similar manner, for every ke N we define a subsequence - {n, ;: i< N}
of positive integers such that the following conditions are fulfilled.
V) {Mp11,5t te N} < {ng: 1 N} for every ke N,
(vi) for every ke N the sequence {w, ie N} s convergent in X.
Finally, we put

BO/X

ke N.

oy, = lim Btz 5 for

Now we put n; = n;; for every ie . Observe that for every ke N

B (2) = Bppg T 88 100,

Define the mapping @ of the subset {2,: ke N} of the space ¥ into the
space X by the formula

G(z,) =2, for Fkel. .

Since for every ne N the mapping F, considered as a Lipschitz embedding
of the subset {2,: k< n} of the space Y into the space X satisfies the
Lipschitz condition with the same set of constants as F, it can easily
be proved that @ is a Lipschitz embedding of the subset {2,: ke N} of
the space Y into the space X with the same set of constants ag #. Tence
G can be umquely extended to a Lipschitz unbeﬂdmg of {N,f ke N } =¥
into X. Let @ be this extension. Obviously, G is a Lipschitz embedding
of the space Y into the space X with the same set of constants g 7.

Now we shall show that the mapping @ is linear. Tt follows immedi-
ately from (iv) and from the fact that F, is a linear mapping for ne N
that the mapping @ is linear over the ileld @ of rationals. But this ]In'[)ll%
that G is also linear.
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In order to complete the proof of the theorem it is enough to observe
that the mapping @ is a linear Lipschitz embedding of the space Y into
the space X (and hence G is an isomorphic embedding of Y into X). m

CorOLLARY 3.11. If an LF-space Y is Lipschilz homeomorphic with
a Montel LE-space X, then X and Y have the same linear dimension (i.e.
Y is isomorphic with a subspace of X and, conversely, X is isomorphic
with a subspace of ¥).

Note that in [14], Theorem 5.5 it is proved that a Fréchet space
which is Lipschitz homeomorphic with a Montel-Fréchet space Y is iso-
morphic with Y. :

COROLLARY .3.12. Let X and Y be LF-spaces such that Y is Lipschitz
embeddable in X. Then

(i) of X is o Montel space, then Y is a Montel space,
. (il) if X s a Schwariz space, then Y is a Schwartz space,

iii) 4f X s a nuclear space, then Y is nuclear.

Observe that the statement (i) also follows trivially from the fact
that it F is a Lipschitz mapping then F(B) is bounded for every bounded
subset B.

TEROREM 3.13. Let H;, for 1 =0,1,2,..., be infinite-dimensional
separable Hilbert spaces and let s;, for i = 0,1, 2, ..., be copies of the Fréchet
space s of all real sequences. If X is one of the following spaces:

Z‘S«:y Zﬂm SoXZRm HOXZRu ZHiXSi’

1eN ieN €N ie N ieN

H, X 85 X ZR“ H, x Esi, 8y X ZH“

ieN €N ieN

and ¥ = indlim ¥, i an LF-space which is Lipschitz embeddable n X,
then Y is womorphwall y embeddable in X.

Proof. Since s is a Montel space, then the spaces > 's; and s X 3 R;
are Montel. Hence in the case where either X = ¥'s; or X = s,X Y R;
the theorem is a particular case of Theorem 3.10.

Now we shall prove the theorem in the case where X = 2 H,; % s;.
The other cases can easily be proved in the same manner.

In the sequel, instead of the space > H; X ¢; we shall deal with the
space (> H;)x(>'s;), which is isomorphic to it. In order to simplify
the notation we introduce the following convention: the points of the
space > H; will be denoted by bold face @, b, ... and, for example,
@ = (y, Gy, -..), Where a;e H; for ie N, and similarly the points of the
space 's; will be denoted by bold face a,y,... and, for example,
& = (&1, Dy, ...), Where x;es; for ic N.


GUEST


132 P. Mankiewicz
Fix an arbitrary system of continuous pseudonorms {@,:
inducing the topology on Y.

Let 9 be a set of all sequences of positive integers. For every pair
FueM, = {&;: ie N}, n = {n;: e N}, we define a continuous pseudonorm
P, on the space X by the formula

Dma(lbdi+lgdes)  for (O, gy JH) x (D)

zeN

pe O}

(13) Prib,y) =

where || [; denotes the Hilbert norm on the space H; for i« N and | ||,
denotes the pseudonorm on s; given by the equality

lylls = W,cl for Y = (ry,7s,..0)e8
k=1

for every 4, je N. It is obvious that the system of pseudonorms {P.}:

1, £« N} induces the topology on X.

In the same manner as in the proof of the previous theorem one can
show that, for every ne N, there exist a positive integer m(n), a point
¢y Y, and a neighbourhood U, of the point ¢, in ¥, such that

(i) Fy, is differentiable at the point g,

(i) F(U,) = Xy, where Xj = (Hy x Hy X... x Hy x {0} x {0} x...) x

X (8 X8y .. X 8 x {0} X {0} %...) for every keN.
Let F, = (DFp,), for ne N. It is easy to see that the differential
(DF\y7,)y, is & LlpSGhILZ embedding of the space ¥, into X, for every

nelN. Moreover, I, regarded as a mapping from the subset ¥, of the
space Y into the space X is a Lipschitz embedding of ¥, into X with the
same set of constants as 7 (with respect to the systems of pseudonorms
{Qp: @ @} and {P,,:m, e N}).
Now, let {p;: ke N} be a sequence of points in the space Y satistying
. the conditions
(iii) p,e X, for ne N, )
{iv) py =0, '
(v) for every me N the set {p,: preX,} is dense in Y,,.
(vi) the set {py: ke N} is a linear space over the field ¢ of rational
_numbers.
Put F,(pr) = (G, 3,,) for we N and & < n. In the sequel we shall
identify the space X, with the space X,x X, where X, = H,x H,x
<X H, and X, =8, X8 X...X8,, for ne N, In the same manner as
in the proof of the previous theorem one can show that for every ke N
there exists an n (k) such that the set {(a,, ,, Tyq): =k} iy contained and
bounded in X, . But this implies that for every ke N the set {@,: n > k}
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is bounded in X, and the set {#, ,: > k} is bounded in in(,c). According
to our convention, let @, = (@ gz G pns---)s Where a;; , e H; for i, k, ne N°
and a;;, = 0 for 4 > n(k). Since for every ke ¥ the set {ay,: n>k} is
bounded in X4, we have

1y, = sup{lla; s ulli: ¢, ne N} < o0

for every ke N.

For every i< N, let {¢;;: je N} be an arbitrary fixed orthonormal
basis in H; and let B! denote the finite-dimensional subspace of H; spanned
by the vectors {e;;, € sy ---y &}

For 4, ne N, let IM be a linear isometry of the space H; onto itself
such that

Lt )eBi  for k=1,2,...,n.
Next put &@; 5, = I; (4,2 for every 4, ne N and &k <
Gy gy ---) Tor ne N and k< n

Observe that for every ke N the set {d;,: n >k} is precompact.

Indeed, it follows from the definition of the points &, that

<n and 8, = (G p,

(Gyn: n> K} c X, for every ke N
and
W pne Ky for i,keN and n>F,
where ‘
K= {a‘s B lagll; < ty 0B,

and K, ; is compact for every i, ke N. By (13) and by the definition
of the points {@y,: m, ke N}, for every pseudonorm Pe{P,;: 1, fe %},
we have

'(14) P((akl,fn wkl,n) f‘(akz,ni mkz,ﬂ)) = 'P((d}cl,an mkl,n) - (ékz,ny wkz,n))’

for every ne N and kl, ky<n
For every ne N, let F, be the restriction of the mapping F, to the
set {py, Pay .-, Pn and let @, be the mapping defined by the equality

Gu(p2)

Formula (14) implies that for every ne N the mapping &, is a Lip-
schitz embedding of the subset {p;, Psy ..., P,} of Y into X with the
same set of constants as ¥, (with respect to the systems of pseudonorms
{@,: pe B} and {P, y: 1, Te N}). Hence, for every ne N the mapping G,
iy a Lipschitz embedding of {py, ps, ..., pn; into X <with the same set
of constants as 7.

= (B Tg,)  Tor k=1,2,...,n
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On the other hand, for every ke N, the set {G, ,: n = k} is precompact.
Similarly, for every ke N, the seti {®,,: # > k} is bounded in the Montel
space ).%n(k) and hence is precompact. But this implies that, for every
ke N, the set {G,(p;): n> k} is precompact in X. ;

Now, in the same manner as in the proof of Theorem 3.10 one can
prove that there exists a subsequence {n;: je N} of positive integers guch
that, for every fixed ke N, the sequence {G”j(pk): je N} is convergent
in X. Put .

G(pp) = }l_m an (Px)

for k =1, 2,... As before, it can easily be proved that the mapping @
is a Lipschitz embedding of the subset {p,: ke N} of ¥ into X with the
same set of constants as F. Since the closure of the set {p,: ke N} is equal
to ¥, we infer that the mapping G can be uniquely extended to a Lipschitz
embedding & of ¥ into X. Obviously, Gis a Lipschitz embedding with
the same set of constants as F. ‘

It remains only to prove that the mapping ¢ is linear. To this end
it suffices to observe that, for every ne N, the mapping é‘,, is a restriction
of a linear mapping @, from ¥, into X and to apply the same argument
as at the end of the proof of Theorem 3.10. ' ,

In fact, for ne N, the mapping @, can be explicitly written by the
formula

Gn = In OF”7

‘where
Io(ay®) = ((I,,(a1); Iy n(as), ...), ®)

for (@, ®)e (3 H) X (Y 8,); a = (ay, ag,...), 0;¢ H;. m

For every pair of LF-spaces X and Y, let the symbol Xi>Y mean
that the following statements hold: :

(i) X is isomorphically embeddable in ¥,

(ii) X is pot isomorphic to ¥,

(i) if Z is an LF-space such that Z is isomorphically embeddable
in ¥ and X is isomorphically embeddable in %, then Z iy isomorphie
either with X or with Y. '

By Theorem 3.13, i X is one of the LI-spaces listed in the assumption
of this theorem, the problem of finding the LF-gpaces Lipschitz embed-
- dable in X reduces to the problem of finding those isomorphically embed-

dable in X. The latter is completely answered by the following theorem.
(see [15]):
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THROREM 3.14. Wil the notation of Theorem 3.13 the diagram below
contains all, wp to isomorphism, LF-subspaces of the space 3 H, X s; arranged
according to the relation — ”

S HoX YR l/\‘ s xS H, I\

L oA
L.1ﬁ5|< » Hxax SRY

R 8 ‘K,_-\‘J-R't ‘Q A H, XZS.; |/
ZS,; |/

D H; X8

By a space of Hs type we shall mean an LF-space which is isomorphic
to 3 X;, where for each ie N, X, is either a Hilbert space (finite-dimen-
siohal, infinite-dimensional, or even non-separable) or the space s.

Using the argument of [15] one can show

TuroreM 3.15. Let X = Y X, be a space of Hs type. An LF-space ¥
is isomorphically embeddable in X if and only if, for every ie N, there ewists
a closed subspace Y, of X, such that ¥ = 3 ¥,. If this is the case, then ¥
is also of Hs type.

Combining the .argument of the proof of Theorem 3.13 with the
argument of [16], one can prove

TuroruM 3.16. If ¥ 48 an LE-space Lipschitz-embeddab'le in an LEF-
space of Hs type, then Y is also of Hs type.

Remark. Note that two LiF-spaces of Hs type have the same linear
dimension if and only if they are isomorphic.

4. Uniform classification. In this section we shall study the following
problem: Let A" and ¥ be LIF-spaces which are uniformly homeomorphic.
Are the spaces X and Y then isomorphic? We shall solve this problem
affirmatively (Theorem 4.8) for separable spaces of Hs type and we shall
give some partial results concerning Montel spaces (Theorem 4.5). The
idea which will be used in order to prove these facts is based on Enflo’s
proof [6] that a Banach space uniformly homeomorphic with a Hilbert
gpace is isomorphic with it (cf. also Mankiewicz [12] and [14]). Roughly
speaking, the method consists of two steps. First we prove that if an
L-gpace X ig uniformly homeomorphic with an LI-space ¥ then, under
some additional agsumption on the space Y, the space X is Lipschitz
embeddable in Y, and next we apply the theorems on Lipschitz classifi-
cation of LK-spaces from the previous section.

In the sequal we shall need the notion of “Lipschitz mapping for
large distance” (see [2] and [12]).
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DurINITION 4.1. Let X and ¥ be locally convex linear spaces. We
say that a mapping F from a subset 4 of X into Y satisfies the Lipschitz
condition for large distance if and only if for every convex neighbourhood U
of the origin in X and for every continuous pseudonorm P on Y there

exist a continuous pseudonorm @ on X and a positive constant K such

that
P(F(a)—T(2) < EQ(w—2)

for every w, e A with 2 —2¢ U. (In other words, F satisfies the Lipschitz
condition for large distance iff, for every convex neighbourhood U of
the origin, F satisfies the Lipschitz condition for z—z2¢ U.)

Similarly, if F' is a one-to-one mapping from A into ¥ then we say

that P is a Lipschitz embedding of A into Y for large distance iff both I -

and F! satisfy the Lipschitz condition for large distance.

The following lemma shows the connections between uniform homnieo-
morphisms of locally convex linear spaces and homeomorphism satis-
fying the Lipschitz condition for large distance.

LevvA 4.2. Let F be o uniform homeomorphism of a locally conves
vector space X onto a locally convex vector space ¥. Then F is an embedding
of X into Y satisfying the Lipschite condition for large distance.

Proof. The proof of the lemma is in fact the same as the proof of
Lemma 5 in [12], 80 we omit it, m

Let X and Y be locally convex vector spaces. Fix arbitrary systems
of pseudonorms {Q,: e ¥} and {P,: ¥¢ @} inducing the topologies on X
and ¥ respectively, and consider arbitrary functions f,: ©—0, f,: @,
g2 P>RY, g,: OR*,

DEFRINITION 4.3. A subset 4 of the space X is said to be Lipschite
embeddable in Y with the set of constants {fi, fa, g1, g2} with respect to
the fimed systems of pseudonorms {Q,: ge @} and {P,: 9O} if and only
if there exists a one-to-one mapping ¥ from .4 into ¥ such that for every
#e O and pe & the following inequalities hold:

PO(F(‘”)_F(z)) < gz(ﬁ)sz(a)(m“‘z)
and

Qp#—2) < g1(9) Py (7 () — F (2))

for every @, z<A. If this is the case then we say that the mapping ' ig
a Lipschite embedding of A into Y with the set of constanis {fy, fa, g1, 9o}

Now let X = indlimX, be a separable LF-space and let ¥ he a
Montel LF-space. Fix arbitrary systems of continuous pseudonorms
{@,: < P} and {P,: H O} inducing the topologies on X and ¥, respectively.
In the sequel we shall need the following lemma.
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LmmwA 4.4, The space X is Lipschite embeddable in the space ¥ with
the set of constamis {f,, fa, g1, gs}, where fi: -0, fy: OB, g;: G—+ERT,
a3 O—R" if and only if there emists o sequence {z,: ne N } of poimis in X
satisfying the conditions

(i) #,eX, for every ne N,

(i) for every ne N the set {2: 2,¢X,} is dense in X,,

(iil) 2, =0,

(iv) for every ke N the set {2, 2y, ..., 2} is Lipschite embeddable in ¥
with the set of constamts {fy, fa, ¢4, ga}-

Proof. (=) is trivial.

(<=). Let {z,: ne N} be a sequence of points in X satistying conditions
(1)~(iv) of the lemma and for every ne N let F, be a Lipschitz embedding

of the seb {2y, 2, ..., %} into ¥ with the set of constants {fy, fo, g1, go}.-

Without any loss of generality we may assume that F,(2,) = 0 for ne N.
Put

Ynp = Fn (zk)
for ne ¥ and k < n. It can be proved that, for every ke N, the set {y,,,:
n >k} is bounded, Indeed, for every 9y¢ @, we have
Py Wn,k) = Poy(Un,s—Yn,1) < 92 (o) Qpy00) (71 —21)

= gn(ﬂo)sz(oo) (%)

for every ne N and & < .
Hence, as in the proof of Theorem. 3.10, it can be proved that there

exists a subsequence {n,: me N} of positive integers such that, for every

ke N, the sequence {y, : me N} is convergent in Y. Put
G(zy) = lim gy, = lim F, (%)
M0 M--+00

for every ke XN.

It can eagily be proved that the mapping ¢ is a Lipschitz embedding
of the subset .4 == {#,: ke N} of X into ¥ with the set of constants
{f1sfas 01y g2} Hence @ can be uniquely extended to & Lipschitz embedding
@ of the closure of 4 into ¥ with the set of constants { iy fays 91, g} Since,
according to (ii), 4 iy dense in X, we conclude that & is the required
Lipschitz embedding of the space X into ¥ with the set of constants

{f1r fas Gy 9o} m ) .
Lemma 4.4 enables us to prove the following theorem, which corre-

gponds to Theorem 7 of [12] concerning Fréchet spaces:
Terorum 4.5. Let an LEF-space X = indlim X, be wniformly homeo-
morphic with o Montel LB-space Y. Then the spaces X and Y have the same

4 — Studia Mathematica LIL2
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linear dimension (i.e. X is isomorphically embeddable in ¥ and X is iso-
morphically embeddable in X).

Proof. Let F be a uniform homeomorphism between the spaces X
and Y. Fix arbitrary systems of pseudonorms {@,: pe ¥} and {P,: de 6}
inducing the topologies on X and Y, respectively, and fix an arbitrary
convex closed symmefric neighbourhood U of the origin in X satisfying
the condition UNX, # X;. It follows from Lemma 4.2 that there exigt
functions f,: &0, fp: 00, g,: D—+R*, g,: @->R* yuch that the mapping I
restricted to a subset 4 of X is a Lipschitz embedding of 4 into Y with
the set of constants {fy,f, ¢1, ¢»} provided that the set A satisfies the
condition: x, zed with # 542 implies 2 —=z¢ U.

Let @ be the gauge functional of the set U. Obviously, @ is a con-
tinuous pseudonorm on X. Hence the set

= {@eX: Qo) = 0}

is a closed linear subspace of X. Put L, = X,nL for ne N. Obviously,
Ly is @ closed linear subspace of X, for every ne N. Since X,NnU # X,,
we have L, # X,. Hence L, # X, for every neN. This implies that,
for every n e N, the subspace L, is of the first Baire category in X,,. Hence,
owing to the separability of the space X and thus also of X, for every
nel, there exists a sequence {2, : ke N} of points in X, satisfying the
conditions

(a) {221 ke N} is dense in X,

() 2521 ¢ Ly, for every &, k' e N, k s£ &',

Hence we infer that there exists a sequence {z,: ne N} of points
in X satisfying the conditions

(i) 2, X, for every ne N,

(i) for every me N the set {z,: 2,¢X,} is dense in X,,

- (iii) 2, =0,

(iv) &, —2,¢ L for every n, IasN n k.

Observe that condition (iv) is equivalent to the condition

(v) @(2,—2,) > 0 for every n, ke N, # 5 k.
We shall show that (v) implies the condition

(vi) for every ke N the set {#,#,...,2,) is Lipschitz embeddable
in ¥ with the set of constants {fy, /s, g1, o)

Indeed, fix ke N and put

p =270 inf{Q(~2): 4, j<
It follows from (v) that 4, > 0. Define
Ty (z) = 2.7 (257 '%)

% and i s §}.
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for ¢ =1,2,..., k Then, by the definition of the functions f,, ¢,, for
every #e¢ O we have

Py (Fi(2;) — Ty (z)) = M Po(F (A7 2,) — (% '2))

< M ga (9) Qpyoy (A 21— 25 25) = g2(D) Qo (% —2
k. In the same manner one can prove that, for every ge @,
Qu (2~ 2) < g1(9) Prag (Frs(2:) — F (27) -

for every 4, j<ik. Hence F, is a Lipschitz embedding of the subset
{15 %2, +.., #;} into the space ¥ with the set of constants {fy, fa, g1, ga}

Thus we have proved that the sequence {#,: me N} satisfies the
assumptions of the previous lemma. Hence the space X is Lipschitz
embeddable in the space Y. Now, by Theorem 3.10, we infer that the
space X is isomorphically embeddable in the Montel space Y. This implies
that X is a Montel space. Knowing that X is a Montel space, we use the
symmetrical arguments to prove that the space Y ig isomorphically
embeddable in X. m

The following corollary corresponds to Theorem 5.6 in [13] concerning
Fréchet spaces.

COROLLARY 4.6. Let an LF-space X be uniformly homeomorphic with
an LE-space Y. Then

(i) if Y is a Montel space then X is a Montel space,

(i) if Y 98 a Schwartz space then X is a Schwartz space,

(iii) 4f Y is a nuclear space then X is nuclear.

In the sequel, up to the end of this section, we shall assume that ¥
is one of the following spaces: H,x D' Ry, 8o X 3 Ry, HyX 8y Y By,
Hyx 38y 80 x> Hyy 3 Hyy 3 8;, 3 H; X85, where, for ¢ =10,1,2,..., H
is a separable infinite-dimensional Hilbert space and s; is a copy of the
Fréchet space of all real sequences. By I, we shall denote the canonical
embedding of ¥ into > H; x s; described in the diagram of Theorem 3.14.
Let

for every ¢, j <

Po(y) = Poollp(y) for yeX,

where {Py,: I, ne R} is the system of pseudonorms on 3, H;x s, defined
by formula (13) on p. 132,

A system. {Py: D¢ O} of pseudonorms on ¥ con; smtmg of all the pseudo-
norms 1’, « will be called a canonical system of pseudonorms on Y. It is
easy to see that the canonical system of pseudonorms induces the topology
on Y.

LEmmA 4.7. Let X = indlim X, be o separable LF-space. Let {Q,: (pe di}
be an arbitrary system of pseudonorms inducing the topology on X and let
{Pgs: DeO) be the canonical system of pseudonorms on Y. Let f,: -0,
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fo: OB, gy: PR, g0 O—RT. Then the space X is Lipschitz embeddable
in Y with the set of constanis {fi,fs, g1, 92} with respect to the system of
pseudonorms {Q,: e D} and {Py: G O} if and only if there emists o sequence
{2,: ne N} of points in X satisfying the conditions:

(i) #,¢X, for every me N,

(ii) for every me N the set {#: 2 eX,} is dense in X,

(iii) 2, = 0,

(iv) for every ke N the set {21, %5, +.., 2} 18 Lipschite embeddable in ¥
with the set of constamts {fy, fzy g1, 9o}

Proof. (=) is trivial.

(=) We shall prove the lemma only in the case where Y is isomorphic
to the space > H, X s; = (3 H;) X (Y s;). (The other cages can be proved
in the same manner.) It follows from the definition of the system of pseudo-
norms {P,: 9 @} that, without loss of generality, we may assume that
Y =(3H)x(Ys) and the family of pseudonorms {P,: d¢ 8} coin-
cides with the system of pseudonorms {P, y: 11, fe N}.

Let {2,: ne N} be a sequence in X satisfying conditions (i)—(iv) of
the lemma and let, for every ne N, the mapping I, be a Lipschitz embed-
ding of the subset {2, 2, ...,2,} into (3 H,)x (Js;) with the set of
constants {fy, fa, ¢1, g2} Without loss of generality we may assume that
F,(2) =0 for ne N. Put

(a‘k,n’ mk,n)3= Fn(zk)
for ne N and % < n. Then (in the notation of the proof of Theorem 3.13)
in the same way as in the proof of that theorem it can be shown that,
for every ke N, there exists an (k) such that the set {ay,: n=1k} is
contained and bounded in _—fn(,‘,) and the set {®,,: n >k} is contained
and bounded in in(k). Next, in the same way as in the proof of that

theorem one can construct a sequence {F,: ne N} of mappings:

Bt {21y 20, oo} H) x (3 8)

for ne N such that for every ne N the mapping 17’,z is & Lipschitz erubedding
of the set {#1, #a,...,2,} into (3 H,) x( 2 8;) with the set of constants
{1125 91y 92} and for every ke N the set {ft’,,(zk): 2z b} is precompact
in (3 H)x(3 s,).

Thus, using the “diagonal procedure”, one can show that there
exists a subsequence {fb’": me N} of positive integers such that, for every
ke W, the sequence {F,,m(z,c): me N} is convergent. Put

F(z) = lim 7, («)
M—>00
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for k = 1,2, ... It is easy to see that the mapping F is a Lipschitz embed-
ding of the set {2,: ke N} into (3 H,)x (5 s;) with the set of constants
{f1, far g1, 92} Hence, applying the same argument as before, according
to (if), we infer that X is Lipschitz embeddable in the space ¥ = (3} H,) x
X (3 8) with the set of constants {fi, f,; g1, go}. ®

In the sequel we.shall need the following lemma:

Lovma 4.8. If an LF-space X is uniformly homeomorphic with the
space X, then the space X is Lipschitz embeddable in Y.

Proof. The proof of this lemma is based on the construction of
a sequence {#,: ne N} of points in X satisfying the conditions (i)-(iv)
of the previous Jlemma and is, in fact, a “word for word” repetition of
the fivst part of the proof of Theorem 4.3, and so we omit it. &

Now we are ready to prove

TrROREM 4.9. Let an LF-space X be uniformly homeomorphic with
the space Y, where Y is a space isomorphic to one of the spaces: Hyx Y R;,
soX 3 Ry HoX 8% Ryy Hox 3 sy 80X 3 Hyy SHy, sy, 3 Hyxs;.
Then the space X is isomorphic with Y.

Proof. It follows from the previous lemma that the space X is
Lipschitz-embeddable in ¥. Hence by Theorem 3.13 the space X is iso-
morphically embeddable in Y. Hence by Theorem 3.14, X is isomorphic
to one of the spaces: HoX Y Ry, 3 Hyy 8ox 3 Ry D&y, Hyxsy O R,
Hyx D' 8y, sox ) Hyy 3 Hyxs. Now, in the same manner as before,
we deduce that ¥ is isomorphically embeddable in X. In other words,
we have proved that the spaces X and Y have the same linear dimen-
sion. To complete the proof it is enough to observe that, owing to The-
orem 3.14, thiy implies that X is isomorphic to Y. m

Note that, combining the argument of the proof of the previous
theorem with the method used in [16], one can also obtain

TuroreM 4.10. If an LF-space X is uniformly homeomorphic with
an LF-space of Hs type then X is also of that type.

References

[17 R. D, Anderson, Hilberl space is homeomorplic to the countable product of
lines, Bull. Amer. Math. Soc. 72 (1966), pp. 515-519.

[2]1 C. Bessaga, On topological classification of complete linear metric spaces, Fund.
Math. 56 (1965) pp. 251-288,

[8] ~ Topological equivalence of mom-separable Banach spaces, Symp. on Infinite
Dimensional Topology, Ann. of Math. Studies 69 (1972), pp. 8-14.

[4] C.Bessaga, and A, Pelezyiiski, A topological proof that every separable Banach
space is homeomorphic to a countable product of lines, Bull. Acad. Polon. Sei.,
ger. sci, math. astr. et phys. 17 (1969), pp. 487-493.

[8] J.P. R. Christensen, On sels of Haar measure sero in abelian Polish groups,
Isracl J. Math. 13 (1972), pp. 255-260.


GUEST


142 P. Mankiewicz
E]

[6] P. Enflo, Uniform structures and square roots in ltopological groups II, Israecl
J. Math. 8 (1970), pp. 253-277.

{71 I. M. Gelfand, Abstrakte Funktionem und linearen Operatoren, Math. Sbor. 4
(1938), pp. 235-286. :

[8] M. X Kadeec, 4 proof of topological equivalence of all separable Banach spaces,
Funkcional. Anal. i Prilezen. 1 (1867), pp. 53-62.

[9] V.L. Klee, Conves bodies and periodic homeomorphism in Hilbert space, Trans.
Amer. Math. Soe. 74 (1953), pp. 10-43.

{10] G. Ko6the, Topological vector spaces I, Springer-Verlag, Berlin 1969.

[11] J. Lindenstrauss, On mon-linear projections in Banach spaces, Michigan
Math. J. 11 (1964), pp. 263-287.

[12] P.Mankiewicz, On Lipschils mappings between Fréchet spaces, Studia Math. 41
(1972), pp. 2256241

[18] — On the emtension of sequentially continuous functionals it LF-gpaces, Bull.
Acad, Polon. Sci., Ser. sci. math, astr. et phys. 20 (1972), pp. 920-933.

[14] — On differentiability of Lipschite mappings in Fréchet spaces, Studia Math, 46
(1973), pp- 15-29. : .

[18] — On subspaces of Y'H;x s;, Bull. Acad. Polon. Sci., Sér. sci. math., astr. et
phys. to appear.

{161 — On spaces uniformly homeomorphic. to the space H x s, ibidem 22 (1974),
pp. 521-527. .

{177 E. Michael, Conves structures and continuous selections, Canad. J. Math, 11
(1959), pp. 556-575.

[18] 'W.Blowikowski, Fonctionelles lindaires dans des réunions dénomerables &’ espaces
de Bamach reflewifs, C. R. Acad. Sci. Paris 262 A (1066), pp 870-872.

[19] V. N. Sudakov, Linear sets with quasi-invariant measure, Dokl, Akad. Nauk
SSSR 127 (1959), pp. 524-525 (Russian).

[20] H.Torufczyk, (G, K)-absorbing and skelefonized sels in metric spaces, Dissorta-

) tiones Math. (Rozprawy Mat.)

[21] — Oariesian fastors and topological classification of linear meiric spaces, to
appear,

[22] H. Rademacher, Uber particlle und totale Differenziebarkait von Funltionen
mehrerer Variabeln wnd diber die Tranmsformation der Doppelintegrale, Math.
Ann. 79 (1919), pp. 340-359.

INSTYTUT MATEMATYCZNY POLSKIES AKADEMIL NAUK
INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES .
WARSZAWA

Received May 25, 1973 (683)

icm°®

STUDIA MATHEMATICA, T. LI (1974)

On linear properties of separable conjugate
spaces of (*-algebras

by
P, WOJTABZCZYK (Warszawa)

Abstract, It is proved that the conjugate space of a separable (*-algebra in

L=}
which any hermitian element has a countable spectrum. is isometrie to ( Y N (Ha))1
n=l
where N (Hp) are nuclear operators on separable Hilbert spaces H,. This implies
that a C*-algebra with a separable conjugate space has a Schauder basis.

The present paper is a study of some linear properties of a class of
O*-algebras which can be considered as a generalization of spaces of
continuous functions om countable compact spaces. We prove an iso-
metric representation of a conjugate space of such an algebra. This result
can be considered ag a generalization to the C*-algebra setting of a theorem
of Rudin [b]. The method of the proof was influenced by [7]. From our
representation theorem we deduce some corollaries on the linear structure
of such algebras.

Our terminology on C*-algebras agrees with that of [6] and our

- terminology on Banach spaces is that usually adopted in' Banach space

theory (cf. [3]). i

DrrINITION. A (*-algebra is called countably scatiered if it is separabl
and each abelian *-subalgebra has a scattered spectrum.

LummA 1. The class of countably scattered C*-algebras is closed wnder
taking x-subalgebras, x-homomorphic images and.sums in the sense of ¢,.

Proof. Obvious from the definition and the following

SunrnmmA. A O*-algebra X is countably scattered iff X s separable
and every hermitian element in X has o countable spectrum.

Recall that a W*-algebra is a (*-algebra X isometric to & conjugate
space of some Banach gpace X,. This space X, is unique (cf. [6], 1.13.3).

LammA 2. Let (2, u) be a measure space which is a disjoint sum of
sets of finite measure (call such a space a localizable measure space) and
let W be a factor, i.e., & W*-algebra such that an element commuting with
any other is a multiple of identity. If every central projection in L (2, W)
contains a minimal projection, then (£, u) is purely atomic.
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