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Let &/ be a class of universal algebras of the same type (i.e., each
algebra of this class has the same set of operations). We denote by E(.«)
the class of all algebras A with the property that each epimorphic image
of A belongs to /. The natural question arises to characterize the class
E () for a given . Let & be the class of all archimedean lattice ordered
groups; l-groups GeE(s«) (called hyper-archimedean or epi-archimedean)
were investigated in [1], [2], [4] and [6]. Birkhoff (see [3], Problem 32)
proposed the following problem: describe the class FE(%), where % is
the class of all complete lattices.

In this note we shall characterize the class E(¥), where ¥ is the
class of all complete lattice ordered groups. We show that an I-group
belongs to E (%) if and only if it is a restricted direct product of linearly
ordered groups G, such that each G; is isomorphic either to the additive
group of all reals or to the additive group of all integers. Each closed
l-subgroup H of an l-group GeE(%) belongs to E(¥). On the other hand,
we show that each complete lattice L can be embedded into a lattice
L, belonging to E (%) and such that L is a closed sublattice of L,. From
this it follows that the class E (%) cannot be characterized by identities
involving a finite or an infinite number of variables.

1. Complete lattice ordered groups. For the terminology and notations
concerning lattices and lattice ordered groups, cf. Birkhoff [3] and
Fuchs [7]. A lattice ordered group G is called complete if each bounded
non-empty subset of G has the supremum.

Let @, and @G, be lattice ordered groups. Assume that there exists
a homomorphism ¢ of @, onto G, (i.e., @G, is an epimorphic image of @,).
The homomorphism ¢ is called complete if it satisfies the following con-
dition: if {#,} < @G, and \/; exists in @,, then \/gp(x;) exists in @G; and
<P(V-’L'1') = Veo(;).

A system @ # X < @, is said to be disjoint if z,A z, = 0 for any
pair of distinet elements of the set X and x > 0 for each xeX.
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Let G be a complete lattice ordered group. Assume that X = {z;}
(t¢el) is a disjoint subset of G such that each element of X is strictly pos-
itive, card X > N,, and the set X is bounded in G. Let M be the set of
all elements yeG* such that

y =V x; for some I, < I;
tely
if I, =0, we put y = 0.

LeMMA 1. The set M i3 a closed sublattice of G and M is an atomic
Boolean algebra.

Proof. Let

y=Vu, 2=V IL,L<lI
fGIl j!Iz
Then

yve= V a,

A ieI VI,
and, since the set X is disjoint,
yrz =V V(orzg) = V .

‘!Il j(Iz ‘iEIlﬁlz

Thus M is a sublattice of G. Write

z =\
tel

Elements ¢ and 0 are the greatest and the least elements of M,
respectively. The lattice M is distributive, because @ is distributive. Put

y*= V a.
feINI;

Then we have y vy* =« and yAy* = 0, and so y* is the comple-
ment of y in M. Therefore, M is a Boolean algebra. Obviously, X is the
set of all atoms of M, and so M is atomic. It remains to verify that M
is a closed sublattice of G. "

Let
{yk}kex < 'M7 Ye = \I/ Xy Ik < I.
1€ k
Then
Viye= V a.
keK ievly,
Put
Yo= V Z;.
ienIk

Clearly, y, < y, for each keK. Let z¢ G*, and 2<y, for each keK.
Since zAy; = 0 for each keK, we obtain

zA(V ) = 0.

ke K
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We have
.'/1=V?/;=V V z; = V &= V .

keK keK  ieINIy, ieUINIR) ieINnIy
Thus y, = ;. Since
2=2Ax =2A(YoV Y1) = (2AYo) V(2A Y1) = 2AY,,

we obtain 2 < y,. From this it follows that y, is the least upper bound
of the set {y;}r.x In G. Therefore, M is a closed sublattice of G.

Under the same notation as above let A be the l-ideal of the I-group
G generated by the set X and let B be the ideal of the Boolean algebra
M generated by the set X. To the l-ideal A (or ideal B) there corresponds
a partition g(A) (or ¢(B)) of G (or M). We write x=1y(4) if the elements
x, Y « G belong to the same class of g(4); the notation x = y(B) for x, ye M
has an analogous meaning.

LEMMA 2. Let A, be the set of all elements se G such that there erist
elements x,, ..., x,e X and positive tntegers n,, ..., n; satisfying

— (M @y F .o+ 2) < SN B .. M.
Then A, = A.

Proof. It is easy to verify that A, is a convex l-subgroup of G gen-
erated by the set X. Since @ is complete, it is commutative, and so A,
is an l-ideal of G. Therefore, 4, = A.

LEMMA 3. Let B, be a complete atomic Boolean algebra, card B, > N,,
and let B be the ideal of B, generated by the set of all atoms of B. Then the
Boolean algebra B,[B i3 not complete.

This is an easy consequence of Theorem 21.4 of [10].

LEMMA 4. Let G, M, A and B be given as above, and let p, ge M. Then
p = q(B) if and only if p = q(4A).

Proof. Let p = q(B). Since the partition p(B) corresponds to the
ideal B of M, there exist elements b,, b,eB such that

(1) pvb, =qvb,.

Obviously, b,, byeA. Since ¢(A) is a congruence with respect to
the operations A, v and +, it follows from (1) that the elements p and ¢
belong to the same class of the partition o(4).

Assume that p = q(4), p #¢. Write pag =p, and pvq = ¢y,
and let s be the relative complement of p, in the interval [0, ¢,]. Then
8e M. Since p(A) is a congruence with respect to the lattice operations,
we obtain p, = ¢,(4), and since the intervals [p,, ¢,] and [0, 8] are trans-
posed to each other, we have 0 = s(4). According to Lemma 2, there
are elements x,,...,7,¢eX and positive integers n,,...,n, such that

0< s M@y + ...+ 100,
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From this it follows that sAx; =0 for each xz;eX\{x,, ..., z;}.
Since se M, the element s is the join of some elements of X. Therefore,

8 =V &y {8, < {®1y ...y Ty}

Hence the set I, is finite and this implies se B. Thus 0 = s(B) and
from this it follows that p = ¢(B). \

Let G be an l-group, @ # Z < G. We write
= {geG: |g|A |2z| =0 for each zeZ}.

The set Z° is a closed convex l-subgroup of @ (Sik [11]). If G is
a complete l-group, then Z° is a direct factor of @ (see [3], Chapter XIV).
For Z = {x}, we write Z° = [z]. The component of an element ¢ of a com-
plete l-group @ in the direct factor [x] will be denoted by ¢[x]. For 0 <te @
and 0 <z, we have

t[x] = sup{ze[x]: 2 < t}.

If t =2,vz,, 2,¢[x] and 2z, Az = 0, then t[x] = 2,.

We use the same notation as above. For ye G and ze M we denote
by y and z the classes of the partitions g(A4) and ¢(B) containing the
elements y and 2z, respectively. If

21y 29¢ M, z, = V 2 = V I,,I,<1,
tely telgy

then z, < z, if and only if the set I, = I,\I, is finite. Put
2= V& 2n= V .
‘6'613 ‘I:GI\Is

Assume that z, < z,. Then 2,,¢ B < A, and since Q(A) is a congruence
relation with respect to the operation v, we obtain 2z, < < Z,. From this
and from Lemma 4 we infer that z, < z, implies 2, < z,.

LEMMA 5. Let G be a complete lattice ordered group containing an in-
finite disjoint subset X. Let A be the l-ideal of G generated by the set X.
Then the factor l-group G|A i3 mot complete.

Proof. For any ye[0, 2], we have
Yy =yAz = yA(}/Iwi) = Vyra),
and since the set X = {x,};.; is disjoint, y[x;] = yA =z, for each iel.
If ye M, i.e., if
y= Vo for some I, < I,
“(11
then y[z;] = x; for tel,, and y[x;] =0 for 1eI\I,. Let y,2¢[0, z].
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From y < z it follows that y[x;] <z[z;] for each ieI. Conversely, if
y[x;] < 2[x;] for each i¢el, then
y=VHrz)< V(axy) =2,

whence y < z. fel fel

From Lemmas 1 and 3 it follows that there exists a subset @ # Y
= {§i}rexw © M such that the set ¥ = {#,};.x has no least upper bound
in M /B. Let us consider the set Y = {Wilvex and let ve@, v < @, ¥, < v for
each keK. For iel, we put z; = «; if v[z;] = «;, and 2; = 0 otherwise.
Write 2 = \/2; (ieI). Then 2 < v and 2z¢e M. Let keK be fixed, and

Y = V @y
iely
Write (y,—v)v 0 =t. From §,<#% we obtain { = 0, whence teA.
There exist distinct elements z,, ..., z,,¢ X and positive integers n,, ..., n,,

such that
o<t ey +...+n,2,.
Let z;eX\{z,,...,2,} = X,. We have i[x;] = 0; thus

(Y[l —0[2]) vO =0,

and 80 y,[#;] < v[x;]). From » < # we infer that v[x;] < x;. If y,[2;] = 0,
then y,[z;] < z[#;]. If ¥, [%;] < x;, then v[z;] = x;, whence z[z;] = vy, [z;].
Therefore, y,[z;] < 2[x;] for each z;eX\{z,,...,x,}. Write

yi = V?/k[“f'{]_(wifxl)’ Y = V¥la] (r;e XN X,).

Then yieB, yye M and y, = ¥ v yi, v < 2. Hence y, <z for each
keK. At the same time we have #, < z for each ke¢K. Since Y, has no
supremum in M, there exists a ue M such that y, < u for each keK
and % < %Z. From this it follows that ¥, < 4% for each ke¢K and 4 < z < v.
This proves that the set Y has no supremum in G/A.

We denote by Z* (R*) the additive I-group of all integers (all reals)
with the natural linear order.

LEMMA 6. Let G be a complete lattice ordered group such that each bounded
disjoint subset of G is finite. Then each epimorphic image of G is complete.

Proof. From Theorem 6.1 of [5] and from the fact that G is com-
plete it follows that G is a restricted direct product of linearly ordered
groups A; (ieI). Since each A, is complete, it is isomorphic either to R*
or to Z*. Let H be an l-ideal of @ and let I, = {iel: A; < H}. Then G/H
is isomorphic to the restricted direct product of I-groups A, (ieI\I,).
Therefore, G/H is a complete l-group.

COoROLLARY. If H is a closed l-subgroup of an l-group G belonging to
E(%), then H belongs to E(%).
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In fact, H is a complete l-group and each bounded disjoint subset
of H is finite; hence H ¢E(%).

LEMMA 7. Let ¢ be a homomorphism of a complete l-group G onlo an
lI-group H. Then ¢ is complete if and only if ¢~'(0) is a closed l-sub-
group of G.

Proof. Assume that ¢ is complete, {g;} < ¢~ '(0) (ieI), and \g; = g.
Then ¢(Vg;) = Ve(g;) = 0, whence ge¢~'(0). Conversely, assume that
@ 1(0) is a closed l-subgroup of G and let g,¢@, \/g; =g. Obviously,
o(9;) < ¢(g9) for each ieI. Suppose that there is a ze¢ @ such that ¢(g;)
< @(2) < ¢p(g) for each iel. Put 2’ = 2Ag. We have ¢(g;) < ¢(2') < p(g9).
Write 2; = g;A 2’. We obtain ¢(2;) = ¢(g:)A ¢(2") = @(g;), whence ¢(g; —2)
= 0 for each ¢el. Further, 0 < g;—2; < g; < g; thus there exists a 2z, =
= V(g9;:—#;) > 0. Since g; — 2;¢ ¢"!(0), by the assumption we have z,e ¢=1(0).
Then z; <2’ and

Zo+2 = \V(g—2)+7 = V(gi—4+2) > Vg =g.

From this we obtain ¢(z,)+¢(2') > ¢(g). Since ¢(z,) > 0, we have
@(2') > ¢(g), and hence ¢(2') = ¢(g). Therefore, we have ¢(2) = ¢(g9) and
Ve(g:) = o(9)-

LEMMA 8. Let G be given as in Lemma 6 and let ¢ be a homomorphism
of G onto an l-group G,. Then the homomorphism ¢ s complete.

Proof. Let A = ¢~!(0) and let I, be given as in the proof of Lemma 6.
Then A is the restricted subdirect product of l-ideals A; (i¢I,), and so
A is a direct factor of G. Thus A is a closed l-ideal of @G. From this and
from Lemma 7 it follows that ¢ is a complete homomorphism.

If G is a complete I-group and if ¢ is a complete homomorphism of
G onto an l-group @,, then, clearly, G, is complete. Thus from Lem-
mas 5-8 we obtain

THEOREM 1. Let G be an l-group. Then the following conditions are
equivalent:

(i) Each epimorphic image of G is complete.

(ii) @ 18 a restricted direct product of linearly ordered groups A; (iel)
such that, for each i<, A; is isomorphic to R* or Z™.

(iii) G 8 complete and each homomorphism on G is complete.

COROLLARY. Let G be a lattice ordered group such that each epimorphic
image of G is complete. Then G 18 hyper-archimedean.

This follows from Theorem 1 by the use of condition (v) from [4],
p. 363.

2. Complete lattices. Let L be a complete lattice such that card L > 1.
For each pair z, yeL with # < y, we construct four new elements u,(x, ¥),
us(z, ¥), v,(x,y) and v,(x, y), and the set of these elements we denote
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by A(x,y). Let L, = Lu(|UA (=, y)) with #,yeL and # < y. We denote
by 0 and 1 the least and the greatest element of L, respectively. Consider
the following partial order in L,:

(i) For z,yeL, we put # < y in L, if and only if z < y in L.

(ii) For z,yeL, v < y, zeL, we put u;(z, y) >z if and only if > 2,
and u;(z,y) <<z if and only if 2 =1 (s =1, 2).

(iii) For z,yeL, x < y, 2zeL, we put v;(x, y) < 2 if and only if y < 2,
and v;(x,y) >z if and only if 2 =0 (¢ =1, 2).

(iv) For 2,, zeL,\L, we put 2, < 2, if either 2, = z, or there is an
wzeL such that z, < x < 2,.

LEMMA 9. The set L, with the relation < is a complete lattice.

Proof. Let us write U = {u,(x, y), us(x, v)} (,yeL,x < y), and
V = {v,(2,y), v2(®,y)} (,yel, z<y). Let O + M < L,. Let Y be the
set of all ye<L such that v,(z, y)eV n M for some z¢L and some i¢{l, 2}.
We distinguish two cases.

(i) MNU #9, uleMNnUT.

For each ue U and each zeL,, we have either 2 < u or sup{u, 2z} = 1.

Hence either sup M = u! or sup M = 1. Iy
L L,

(ii) Mn U =9.
If v;(x,,y,) and v (2, y.) (¢,j5€{1,2}) are distinct elements of V,
zeL, then

sgp{vi(wl, Y1)y 0;(Tgy Y2)} = Y1V Yo, sLup{vs(wl, Y1)y %} =Y V2.
1 1

From this it follows. that

sup M =supY  whenever card M > 1.
L, L

For the infimum we can apply a dual method. Thus L, is complete
and L is a closed sublattice of L,.

Let o be a congruence relation on a lattice L, x,yeL, and = < y.
We say that the interval [z, y] is anulled in ¢ if z = y (o).

LEMMA 10. The lattice L, is simple (t.e., it has no non-trivial congruence
relation).

Proof. Let ¢ be a congruence relation on L, and assume that p = ¢ (p)
for some p, geL,, p # q. Then pA q¢ = p v q (¢). Each non-trivial interval
of L, contains one of the subintervals

(2) [wi(z,y),1], [=,u(z,9)], [»,y], [vi(z,9),9], [0,v,(x,9)],

where ie{l, 2}, v,yeL, ¢ #y. Any two of intervals (2) are projective,
and hence if any of them is anulled in g, then all are anulled in p;
therefore, 0 =1 (p).
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From Lemma 10 it follows that if L’ is a homomorphic image of
L,, then either L, is isomorphic to L’ or card L’ = 1. Hence L,eE(Z).
Thus we have

THEOREM 2. Each complete lattice L is a closed sublattice of a lattice
L, belonging to E(Z).

If a complete lattice fulfils some identity (with a finite or an infinite
number of variables), then each of its closed sublattices fulfils this identity.
Let us consider sentences containing symbols =, <, A, V and variables
whose range is the set of elements of a lattice, together with the logical
symbols for conjunction, disjunction and quantification. Such sentences
will be called positive. Positive sentences for abstract algebraic systems
were considered by Marczewski [9] and Lyndon [8]. A positive sentence
that does not contain the symbol for existential quantification will be
called strictly positive. If a strictly positive sentence is valid for a lattice
L, then it is valid for each sublattice of L. (Let us remark that the analo-
gous assertion does not hold for positive sentences.) Therefore, from
Theorem 2 we obtain

COROLLARY. The class E(Z) cannot be defined by strictly positive prop-
erties. The class E(¥F) cannot be defined by identities involving a finite or
an infinite number of variables.
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