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SIDON SETS IN DUAL OBJECTS OF COMPACT GROUPS

BY

M. BOZEJKO (WROCLAW)

Let G be a compact group, and X the dual object of G, i.e., the set
of equivalence classes of all continuous irreducible unitary representations
of G. For each ce X, select a fixed member U of ¢ with a representation
space H, of dimension d,. Let #(H,) denote the linear space of all bounded
operators on H,.

The *-algebra P #(H,) will be denoted by !(ZX); scalar multiplication,

ceX '
addition, multiplication and the adjoint of an element are defined coordi-

natewise. A

For an operator X on H,, let (v, @,,...,#,) be the sequence of
eigenvalues of positive-definite operator |X| written in any order.
Let

dﬂ'
1p
1X Ny, = @p(@1, By vy 75)) = (D) 2il?)
t=1

and
I1Xly,, = sup{IXfll: IfIl =1, fe H,}.

Let £ = (E,) be an element of I(2). For pe[1, o), we define
1Bl, = (D dIB,5,)" and 1B, =sup{|B.l,,: oc Z}.

ceX

For pe[1, oo], IP(2) is defined as the set of all Eel(ZX) for which
1B, < oo.
Let {&?,..., €9} be an orthonormal basis for H,. We define the
conjugation on H, and D, by
dg dg

D,(Y &) = dag) and U =D,UD,.

Jj=1 j=1
Let & denote the equivalence class in 2 that contains the represen-
tation U®). For ue M(G), let u(c) be the operator on H, defined by

(o) &, my = [<UDE, nddu(w).
G
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u is called Fourier-Stieltjes transform of u. We have |l < ||ul and
M@ < I=(2)

Definition. Let P be a subset of 2. We call P a Sidon set if, for a given
Ee1°(P), there is a ue M (@) such that u(¢) = E, for oe P.

‘This implies that there is a constant » > 0 such that, for every E e I®(P)
and a suitable ue M (@), we have u(c) = E, and

Il < %71 Blle,p = sup{lIE,l, : oeP}.

We then say that P is a Sidon set of order m.
Drury proved (see [1]) that, for a compact abelian group @, the

union of any two Sidon sets in the dual group @ is a Sidon set. The aim
of this note is to extend this result to arbitrary compact groups by proving
the following

THEOREM. If E, and E, are Sidon sets in X and sup{d,: ce E,} = N
18 finite, then the union E,VE, is a Sidon set.

Using Drury’s ideas, we first prove the following crucial lemma:

LEMMA. If X is a finite Sidon set of order x, then, for each ee€ (0, 1],
there exists a function fe L'(@) such that

(a) f(o) = I, for seX,

(b) If(@) < e for oe I\ X,

() IIflly < 4x~*e” N

Proof. Without loss of generality, we may replace the group G by
G xT, X by 2’ = X ® Z which is the dual object of @ xT, and the set X
by X' = X x{1}uX x{—1}. Then X = X', where, for any set X c X,
the set X is defined by (ceX) = (v X).

We put

Z,=2) ={1, -1} and Q=]]2zp.
=1

For each we 2, there is a v, e M (@) such that
(1) vl < %2 N?,
(11) ’;w(ak) = dczrkwklo‘k (k = 17 2’ ey n)’
(iii) sup|fly9 < » 2 N?, where f,(w) = v,(0),
ceX

ol = Wflla= [ 1f.(0)ldx

A

Q

fa(x) =f(x, o)f,(w)do  for ye Q.
2

and

In fact, from the definition of a Sidon set, it follows that there exists
a measure pu,e M(G) such that u,(oy) = d, 0,l, for oeX’, and
ol < %7 'N.
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We define the measure », by

bal0) = [g,(0d Vg, ()2, where g,(A) = @s(0), Ae 2, o Z.
2

So », has properties (i) and (ii).
To prove (iii) note that

fllae) = f 1o ()l dy < f If, (@)l deo < 272 N™.

Now, let y,(g) = tr(U') be the character of the representation U,
We define the function R, on G by

. o
Rw(g) = ”(1+ d 'pak(g))
k=1 .
where wak(g) = —2‘(7(%(9)'*‘%%(9)), 0<9d <1.
Clearly, R, is a real-valued, non-negative function. Now consider

= f(Rw*vw)(g)dw‘
Q2

Next we show that |R|, < » 2N® Applying Fubini’s theorem and
(iii), we find that

IBL< [ ] f Ro(tlg ™Y dlv, ()l dodg = [ [( [ R.(g)dg)dlr,(t)de
G G 2 @

x 2 N? f f.Rw(g)dgdw = x"2N?,
@ 9

since
[ [R.(9)dwdg =1.
G 2

Now we evaluate R(o;) for o,eX’. If o,eX’, then g, # o,, and so
we have

1 .
I, and j;(0) = 0.
3

iak ( o'k) =

Hence we obtain

Bo) = [Ru(@dyodo = &, [ o J TSR (a) )0

f U“’k’( f n [1+ 7 «pa,<g)]dw)dy

-3 0 0
=&, [ U v 0dg = 1,
G [
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Property (iii) asserts that
sup [|foll ga) < N?%72

ceX
Hence

IR ()] ﬁm Nz |[[ (2 @) Ba(o) o
x"2_N2Hf (%, w)Rw(a)de.

But the character y can be written as

(g, w) = ”w;", where &€ {0, 1}.

Hence
é
0 [akew = [0P[] [|oct = ro|os:
Q2 G ep=1 Qp

Assuming oce Z'\ X', we have ¢ # o, for each k. So, if [{k: ¢, = 1}| < 1
then the last expression in (*) is equal to 0. If [{k: ¢ = 1}| > 2, then

(1) IR (o) < » 2 N2 8%

Conditions (a)-(c) of the Lemma will be satisfied with ¢ = 2x~2 N?3
if f is defined by its transform on X' as follows:

(2) f(r) = 26™'R(0) for ¢ = (v,1), 1¢Z.

If a Sidon set P is infinite, then there exists a measure ue M (G)
satisfying the conditions of the Lemma.

To prove it consider the family & of all finite subsets of P. So &#
is a directed set under inclusion. For X e #, let fx be a function defined
by (2). Then {fx}x.# is a net in M (@) and it is a *-weakly compact set
in M(@), since |fxl, <4x *N®e"!. Thus the net {fx} admits a subnet
{u.} which converges in the x-weak topology of M (@) to a measure ue M (G@).
Clearly,

lull < 4%~ *N*e', (o) =limu,(s) for all oe X,

and this implies that
(a') p(c) =1I, for oe P,
(b’) sup lu(a)li<e

oeZ\P
Now we can obtain the Theorem very easily.
From [2], p. 416, we have the following characterization of Sidon
sets:
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(*»;a) E is a Sidon set if and only if, for each We P U (H,) (where U(H,)

ocE
denotes the group of unitary operators on the Hilbert space H,), there is

a measure ueM(G) such that
sup{|W,— u(o)ll: ce B} < 1.

Suppose that E, and E, are Sidon sets, and let ¥ = E,UE,. We
may suppose that E, and FE, are disjoint. By the Lemma, there are meas-
ures u, and u, such that p,(o) = W, for oe¢ E,, u,(6) = W,— fiy(0) for
oec B, and ||u,(0)|| < ¢ for ce I\ E,.

To get the assertion one has only to observe that the measure
v = W, + pu, satisfies (xx). '
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