On the existence of a convex solution of the functional equation $\varphi(x) = h(x, \varphi[f(x)])$

by Z. Kominek and J. Matkowski (Katowice)

Abstract. In this paper we consider the functional equation $\varphi(x) = h(x, \varphi[f(x)])$. Under some conditions on given functions f and h we obtain the existence of a convex solution $\varphi: \langle 0, a \rangle \to \mathbb{R}$ such that $\varphi(0) = 0$. It is assumed that f(0) = 0.

In the present paper we consider the problem of the existence of a convex solution of the functional equation

$$\varphi(x) = h(x, \varphi[f(x)]),$$

where f and h are given and φ is an unknown function.

A real function ψ defined in a convex set $D \subset \mathbb{R}^n$ (1) is convex iff for all $x, y \in D$ and $\lambda \in (0, 1)$

$$\psi(\lambda x + (1-\lambda)y) \leq \lambda \psi(x) + (1-\lambda)\psi(y)$$
.

We assume that

(i) f is increasing, convex in an interval $I = \langle 0, a \rangle$ and

$$f(0) = 0$$
, $f(x) < x$ for $0 < x < a$,

(ii) $\Omega \subset \mathbb{R}^2$ is a convex set such that $(0,0) \in \Omega$; h is increasing with respect to each variable and convex in Ω , and h(0,0) = 0,

(iii) for every $x \in I$, $h(f(x), \Omega_{f(x)}) \subset \Omega_x$, where $\Omega_x = \{y : (x, y) \in \Omega\}$.

Remark 1. The convexity of Ω implies that the function $a(x) = \inf \Omega_x$ is convex in I and $\beta(x) = \sup \Omega_x$ is concave in I. Moreover, if for a certain $x_0 \in I$ we have $a(x_0) = -\infty$, then $a(x) = -\infty$ for every $x \in I$. Similarly, if for a $x_0 \in I$ we have $\beta(x_0) = +\infty$, then $\beta = +\infty$ in I.

Thus we may confine our considerations to the following two cases: $\beta < +\infty$ and $\beta = +\infty$.

⁽¹⁾ Here R^n is a linear metric space with the operations and the metric ϱ defined as follows. Let $x=(x_1,\ldots,x_n), y=(y_1,\ldots,y_n)\in R^n$, and let $\lambda\in R$. Then $x+y=(x_1+y_1,\ldots,x_n+y_n), \lambda x=(\lambda x_1,\ldots,\lambda x_n)$ and $\varrho(x,y)=[(x_1-y_1)^2+\ldots+(x_n-y_n)^2]^{1/2}$.

1. In this section we consider the simpler case: $\beta < +\infty$. We shall prove the following

THEOREM 1. Suppose that Ω is closed and let conditions (i)-(iii) be fulfilled. If for a certain $x_0 \in I$ we have $\sup \Omega_{x_0} < +\infty$, then there exists at least one increasing and convex function $\varphi: I \to R$ such that $\varphi(0) = 0$, fulfilling equation (1) in I.

Proof. 1º Suppose that there exists a positive number $c \le a$ such that

(2)
$$a(x) = \inf \Omega_x \leqslant 0, \quad x \in \langle 0, c \rangle,$$

and let us put

$$\varphi_0(x) = 0, \quad x \in \langle 0, c \rangle.$$

Next, we define the sequence φ_n by the recurrent relation

(4)
$$\varphi_n(x) = h(x, \varphi_{n-1}[f(x)]), \quad n = 1, 2, ...$$

It follows from (ii) and (iii) that $\beta(x) \ge 0$ for $x \in I$. Thus we have $\alpha(x) \le \varphi_0(x) \le \beta(x)$ for $x \in (0, c)$. This together with f(x) < x yields $\varphi_0[f(x)] \in \Omega_x$ for $x \in (0, c)$. Suppose that for a certain $n \ge 1$ and for all $x \in (0, c)$ we have $\varphi_{n-1}[f(x)] \in \Omega_x$. In view of (4) this means that φ_n is well defined in (0, c). Then $\varphi_{n-1}[f^2(x)] \in \Omega_{f(x)}$ and according to (4) and (iii) we get

$$\varphi_n[f(x)] = h(f(x), \varphi_{n-1}[f^2(x)]) \epsilon h(f(x), \Omega_{f(x)}) \subset \Omega_x.$$

Hence $\varphi_n[f(x)] \in \Omega_x$ for $x \in \langle 0, c \rangle$. We prove by induction that $\varphi_n[f(x)] \in \Omega_x$ for each n, and from (4) it follows that φ_n is well defined in $\langle 0, c \rangle$ for each n. It follows from (i) and (ii) (induction) that φ_n is an increasing sequence of increasing and convex functions in $\langle 0, c \rangle$. Since $\beta < +\infty$ (cf. Remark 1), $\varphi_n(x)$ is bounded for exery $x \in \langle 0, c \rangle$. Thus there exists a $\varphi(x) = \lim_{n \to \infty} \varphi_n(x)$ for $x \in \langle 0, c \rangle$ and, evidently, φ is increasing and convex in $\langle 0, c \rangle$. Taking into account (3), (4) and (ii), we obtain $\varphi(0) = 0$. Letting $n \to \infty$ in (4), we see that φ satisfies equation (1) in $\langle 0, c \rangle$. Using (i), (iii) and equation (1), we can extend this solution onto the whole interval I (compare M. Kuczma (2), the proof of a theorem of Kordylewski). For simplicity we denote this extension by φ . We shall prove that φ is increasing and convex in I. Let u be the supremum of all t such that φ is increasing in $\langle 0, t \rangle$. For the indirect proof suppose that u < a. Since f(u) < u, it follows from the continuity of f that there exists a $u_1 > u$ such that f(x) < u for $x \in \langle 0, u_1 \rangle$. Thus, in view of (i) and (ii), we have for $0 \leq x_1 < x_2 < u_1$

$$\varphi(x_1) = h(x_1, \varphi[f(x_1)]) \leqslant h(x_2, \varphi[f(x_1)]) \leqslant h(x_2, \varphi[f(x_2)]) = \varphi(x_2),$$

⁽²⁾ M. Kuczma, Functional equations in a single variable, Monografie Matematyczne 46, PWN, Warszawa 1968, p. 70.

i.e., φ is increasing in $\langle 0, u_1 \rangle$. This contradiction completes the proof of the monotonicity of φ in I.

Now we denote by u the supremum of all t such that φ is convex in (0, t) and suppose that u < a. Since f(u) < u, it follows from the continuity of f that there exists a $u_1 > u$ such that f(x) < u for $x \in (0, u_1)$. Now from the monotonicity of φ and from conditions (i), (ii) we have for $0 \le x_k < u_1, \lambda_k > 0, \lambda_1 + \lambda_2 = 1, k = 1, 2$

$$egin{aligned} arphi(\lambda_1x_1+\lambda_2x_2) &= hig(\lambda_1x_1+\lambda_2x_2,\,arphi\left[f(\lambda_1x_1+\lambda_2x_2)
ight]ig) \ &\leqslant hig(\lambda_1x_1+\lambda_2x_2,\,arphi\left[\lambda_1f(x_1)+\lambda_2f(x_2)
ight]ig) \ &\leqslant hig(\lambda_1x_1+\lambda_2x_2,\,\lambda_1arphi\left[f(x_1)
ight]+\lambda_2arphi\left[f(x_2)
ight]ig) \ &\leqslant \lambda_1hig(x_1,\,arphi\left[f(x_1)
ight]ig)+\lambda_2hig(x_2,\,arphi\left[f(x_2)
ight]ig) \ &= \lambda_1arphi(x_1)+\lambda_2arphi(x_2). \end{aligned}$$

Thus φ is convex in $\langle 0, u_1 \rangle$. This contradiction proves that we must have u = a, or that φ is convex in I.

 2° Now, suppose that there is no a c > 0 such that (2) holds. Then according to the convexity of Ω , the function $a(x) = \inf \Omega_x$ has the following properties (cf. Remark 1):

(5)
$$a(0) = 0$$
, a is increasing and convex in I .

We define

(6)
$$\varphi_0(x) = a(x), \quad x \in I.$$

Using (i)-(iii), it is easy to verify (induction) that the sequence (4) with φ_0 defined above is well defined for $x \in I$ and forms an increasing sequence of increasing and convex functions in I and such that $\varphi_n(0) = 0$. Moreover, $\varphi_n(x) \leq \beta [f^{-1}(x)] < \infty$ for $x \in I$. Thus, the function $\varphi(x) = \lim_{n \to \infty} \varphi_n(x)$ for $x \in I$ is increasing, convex, fulfils equation (1) in I and condition $\varphi(0) = 0$. This completes the proof.

- 2. In this section we assume that
- (iv) for every $x \in I$, $\sup \Omega_x = +\infty$ and there exists a $\delta > 0$ such that $\inf \Omega_x \leq 0$ for $x \in (0, \delta)$.

It-follows from (ii) and (iv) that there exist partial derivatives:

$$h'_x(0+,0) = \lim_{x\to 0+} \frac{h(x,0)}{x}, \quad h'_y(0,0+) = \lim_{y\to 0+} \frac{h(0,y)}{y}.$$

By (i) we have

$$f'(0+) = \lim_{x\to 0+} \frac{f(x)}{x}.$$

We shall prove the following result.

THEOREM 2. Let conditions (i)-(iv) be fulfilled. If

(7)
$$f'(0+)h'_{\nu}(0,0+)<1,$$

then there exists an increasing and convex function $\varphi: I \rightarrow R$, fulfilling equation (1) in I and condition $\varphi(0) = 0$.

Proof. For an $\varepsilon > 0$ we denote

$$k = h'_x(0+,0) + \varepsilon, \quad l = h'_y(0,0+) + \varepsilon, \quad s = f'(0+) + \varepsilon.$$

In view of (7) we can choose the $\varepsilon > 0$ so small that

$$(8) sl < 1.$$

It follows from (i) and (ii) that there exists a b, $0 < b < \delta$, such that

(9)
$$h(x, y) \leqslant kx + ly, \quad x, y \in \langle 0, b \rangle$$

and

$$(10) f(x) \leqslant sx, x \in \langle 0, b \rangle.$$

Let us put

(11)
$$\dot{m} = k(1-sl)^{-1},$$

$$(12) c = \min(b, bm^{-1})$$

and denote by D the set

$$D = \{(x, y) : 0 \leqslant x \leqslant c, \ 0 \leqslant y \leqslant mx\}.$$

It follows from (12) that $D \subset \Omega$. Let $D_x = \{y : (x, y) \in D\}$. Evidently, $D_x = \langle 0, mx \rangle$. We shall show that

(13)
$$h(f(x), D_{f(x)}) \subset D_x, \quad x \in \langle 0, c \rangle.$$

Take $y \in D_{f(x)} = \langle 0, mf(x) \rangle$. Then by (ii), (9), (i), (10) and (11) we obtain

$$0 \leqslant h(f(x), y) \leqslant kf(x) + ly \leqslant kx + lmf(x) \leqslant (k + slm)x = mx$$

and (13) has been proved. Evidently, D is closed and convex. If we put $\Omega = D$, then all the assumptions of Theorem 1 will be fulfilled. Thus there exists an increasing and convex function $\varphi: \langle 0, c \rangle \to R$, fulfilling equation (1) in $\langle 0, c \rangle$ and condition $\varphi(0) = 0$. This solution has a unique extension onto the whole interval I, which may easily be obtained by using (iii) and equation (1) (compare M. Kuczma (3)). A similar argument as in Theorem 1 proves that this extension is increasing and convex in I. This completes the proof.

Reçu par la Rédaction le 29, 7, 1970

⁽⁸⁾ M. Kuczma, cf. (2), p. 70, Theorem 3.2.