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On the existence of a convex solution
of the functional equation ¢(z) = h(z, ¢[ f(#)])

by Z. KomINEK and J. MATKOWSKI (Katowice)

Abstract. In this paper we consider the functional equation ¢ (z) = h (=, @[f(z)]).
Under some conditions on given functions f and k we obtain the existence of a convex
solution ¢ :<0, a)—=FR such that ¢(0) = 0. It is assumed that f(0) = 0.

In the present paper we consider the problem of the existence of
a convex Bgolution of the functional equation

1) o(2) = h(z, ¢[f(@)]),

where f and % are given and ¢ is an unknown function.
A real function y defined in a convex set D < R" (') is convex iff
for all ,ye D and Ae(0,1)

p(Az 4 (1 — A)y) < p(@) + (1 — ) p(y).

We assume that
(i) f is increasing, convex in an interval I = {0, a) and

fl0) =0, fley<ax for0<z<a,

(ii) 2 = R? is a convex set such that (0, 0)e £2; kb is increasing with
respect to each variable and convex in £, and (0, 0) = 0, .

(iii) for every zelI, h(f(®), 2y) < 2, Where 2, = {y: (v, y)e Q}.

Remark 1. The convexity of 2 implies that the function a(#) = inf Q,
is convex in I and f(x) = sup £, is concave in I. Moreover, if for a certain
xye I we have a(z,) = —oo, then a(z) = — oo for every xe I. Similarly,
if for a xye I we have f(x,) = + o0, then § = + o0 in 1.

Thus we may confine our considerations to the following two cases:
f < +o0and f = 4 oo.

(1) Here R™is a linear metric space with the operations and the metric p defined
a8 follows. Let & = (%, ..., %), ¥ = (¥, ..., Yn)e B®, and let Ae¢R. Then xz+y
= (31+?/1’ ey $n+yn)s Ar = (lxlv ...,an) and 9(‘0, y) = [(:vl_yl)3 +...+ (wn—yn)zlllz'
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1. In this section we consider the simpler case: § < -+ oo. We shall
prove the following

THEOREM 1. Suppose that 2 is closed and let conditions (i)-(iii) be
fulfilled. If for a certain e I we have sup 2, < + oo, then there ewists
at least one increasing and convexr function ¢ :I—>RE such that ¢(0) =0,
fulfilling equation (1) in I.

Proof. 1° Suppose that there exists a positive number ¢ < @ such that

(2) a(z) =inf2, <0, 2ze{0,c),
and let us put
3) (@) =0, ze0,0).

Next, we define the sequence ¢, by the recurrent relation

(4) Pn (@) = h(mi (pn—l[f($)])7 n=1,2,...

It follows from (ii) and (iii) that §(x) > 0 for ze I. Thus we have a(x)
< go(2) < B(=) for e (0, ¢). This together with f(x) < z yields g,[f(x)]e 2,
for ze {0, ¢). Suppose that for a certain » > 1 and for all ze {0, ¢) we have
On-1[f(@)]e Q.. In view of (4) this means that ¢, is well defined in (0, ¢).
Then ¢,_,[f*(x)]e £, and according to (4) and (iii) we get

on[f(2)] = h(f(m), Pr_1 [fz(m)])f h(f(w), Qf(a:)) c Q,.

Hence ¢,[f(z)]e £, for ze (0, ¢). We prove by induction that ¢,[f(z)]e 2,
for each n, and from (4) it follows that ¢, is well defined in {0, ¢) for each =.
It follows from (i) and (ii) (induction) that ¢, is an increasing sequence of
increasing and convex functions in {0, ¢). Since f# < + oo (cf. Remark 1),

@, (%) is bounded for exery ze (0, ¢). Thus there exists a ¢(z) = limg,(z)
n—>o0

for ze {0, ¢) and, evidently, ¢ is increasing and convex in (0, ¢). Taking
into account (3), (4) and (ii), we obtain ¢(0) = 0. Letting n—>oo in (4),
we see that ¢ satisfies equation (1) in <0, ¢). Using (i), (iii) and equation
(1), we can extend this solution onto the whole interval I (compare
M. Kuczma (2), the proof of a theorem of Kordylewski). For simplicity
we denote this extension by g. We shall prove that ¢ is increasing and
convex in I. Let w be the supremum of all ¢ such that ¢ is increasing in
{0, t). For the indirect proof suppose that « < a. Since f(u) < %, it follows
from the continuity of f that there exists a u, > « such that f(z) <u
for ze (0, u,). Thus, in view of (i) and (ii), we have for 0 < v, <z, < u,

p(z,) = h(a’l ’ ?’[f(xl)]) < h(wzy ‘P[f(wl)]) < h(xza 9’[f($2)]) = @(&,),

(¢2) M. Kuczma, Funclional equations in a single variable, Monografie Matema-
tyczne 46, PWN, Warszawa 1968, p. 70.
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i.e., @ is increasing in {0, u,). This contradiction completes the proof of
the monotonicity of ¢ in I.

Now we denote by # the supremum of all ¢ such that ¢ is convex
in €0, t) and suppose that 4 < a. Since f(%) < w, it follows from the'con-
tinuity of f that there exists a u, > u such that f(z) < u for z¢ (0, u,).
Now from the monotonicity of ¢ and from conditions (i), (ii) we have for
0o, < Uy 4, >0, 4,+2, =1, k=1,2

P (A )+ A @) = M{A, 2y + A5, @ [f(A,2,+ A, 2,)])
< By @i + Ay, @ [Auf (1) + Aof (5)])
< h(Aoy+ 2:@y, L9 [f(@)]+ 209 [f(@2)])
< Mh(zy, @ [f(20)]) + Aah(as, 9 [f(22)])

= MLo(2)+ A 0(2,).

Thus ¢ is convex in {0, %,). This contradiction proves that we must have
u = a, or that ¢ is convex in I.

2° Now, suppose that there is no a ¢ > 0 such that (2) holds. Then
according to the convexity of 02, the function a(x) = inf 2, has the fol-
lowing properties (cf. Remark 1):

(5) a(0) =0, a is increasing and convex in I.
‘We define
(6) po(®) = a(z), =xel.

Using (i)—(liii), it is easy to verify (induction) that the sequence (4) with
@, defined above is well defined for z< I and forms an increasing sequence
of increasing and convex functions in I and such that ¢,(0) = 0. Moreover,
(@) < BIf"Hx)] < oo for zel. Thus, the function ¢(z) =lim ¢,(z)

n-»o0
for ze I is increasing, convex, fulfils equation (1) in I and condition

®{0) = 0. This completes the proof.

2. In this section we assume that

(iv) for every wxel, supf2, = + oo and there exists a 4> 0 such
that inf Q2 < 0 for ze <0, §).

It -follows from (ii) and (iv) that there exist partial derivatives:

, k(z, 0 . . h(0
hy(0+,0) = lim M, h,(0,0-+) = lim ©,9)
z—>0+ r o+ Y
By (i) we have
f(0+) = lim f(m)-
z-0+ L

We shall prove the following result. N
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THEOREM 2. Let conditions (i)-(iv) be fulfilled. If
(7 F(O+)h,(0,0+) <1,

then there exists an increasing and convex function p : I-R, fulfilling equation
(1) in I and condition ¢(0) = 0.
Proof. For an ¢> 0 we denote
E=h (0+,0)+e, 1=h,(0,0+)+e, s=f(0+)+e.
In view of (7) we can choose the ¢ > 0 so small that

(8) sl < 1.

It follows from (i) and (ii) that there exists a b, 0 < b < §, such that
(9) h(z,y) <kw+ly, @,ye<0,b)

and

(10) f(®) < sw, el0,Dbd.

Let us put

(11) ‘mo=k(1—sl)?,

(12) ¢ = min(b, bm™1)

and denote by D the set
D={z9):0<2<e¢c, 0<y << ma}.
It follows from (12) that D < Q. Let D, = {y: (=, y)e D}. Evidently,
D, = (0, mz). We shall show that
(13) h{f(@), Dyy) = Dy, @€ (0, 6.
Take y ¢ D,y = <0, mf(2)). Then by (ii), (9), (i), (10) and (11) we obtain -

0 < h(f(2), ¥) < ¥f (#) + 1y < ke +Imf () < (k+ slm)z = ma

and (13) has been proved. Evidently, D is closed and convex. If we put
2 = D, then all the assumptions of Theorem 1 will be fulfilled. Thus
there exists an increasing and convex function ¢ : (0, ¢) - R, fulfilling
equation (1) in {0, ¢) and condition ¢(0) = 0. This solution has a unique
extension onto the whole interval I, which may easily be obtained by
using (iil) and equation (1) (compare M. Kuczma (2)). A similar argument
as in Theorem 1 proves that this extension is increasing and convex in
I. This completes the proof.

(®) M. Kuczma, cf. (?), p. 70, Theorem 3.2.
Regu par la Rédaction le 29. 7. 1970



