REALIZATION OF SMALL CONCRETE CATEGORIES BY ALGEBRAS AND INJECTIVE HOMOMORPHISMS

BY

JAROSLAV JEŽEK (PRAHA)

- 0. Jónsson and Płonka (see [2]-[4]) characterized permutation groups which are automorphism groups of a universal algebra. The purpose of this paper is to extend their results to the case where — roughly speaking — not one, but a family of permutation groups and bijections between their underlying sets is given; more precisely, a small concrete category K with only injective morphisms is given and we find (in Theorem 2) some necessary and sufficient conditions for K to be realizable by algebras and injective homomorphisms. Theorem 2 is an easy application of Theorem 1 in which necessary and sufficient conditions are found for K to be realizable by algebras and arbitrary homomorphisms. We suppose that K has only injective and constant morphisms. At present, it seems hopeless to prove a similar result for K arbitrary, since no characterization is known as yet even if K has only one object. On the other hand, a characterization of small concrete categories which are realizable by partial algebras and homomorphisms is given in [5] and [1]. Theorems 3 and 4 extend Płonka's results on automorphism groups of algebras with bounded arities of operations.
- 1. If A is an ordered pair, then its first member is denoted by \dot{A} .

 By a concrete category we mean a category K satisfying the following three conditions:
- (1) every K-object is an ordered pair, its first member being a non-empty set;
- (2) if α is a K-morphism, $\alpha: A \rightarrow B$, then $\alpha = \langle f, A, B \rangle$ for some mapping f of \dot{A} into \dot{B} ;
- (3) the mapping assigning to every K-object A the set \dot{A} and to every K-morphism $\langle f, A, B \rangle$ the triple $\langle f, \dot{A}, \dot{B} \rangle$ is a covariant functor of K into the category of non-empty sets.

The functor defined in (3) is called the forgetful functor of K.

Evidently, a category K is concrete if and only if the following four conditions are satisfied:

- (1') as (1);
- (2') every K-morphism is an ordered triple $\langle f, A, B \rangle$, where A and B are K-objects and f is a mapping of A into B;
 - (3') for every K-object A, the triple $\langle 1_A, A, A \rangle$ is a K-morphism;
- (4') if $\langle f, A, B \rangle$ and $\langle g, B, C \rangle$ are K-morphisms, then $\langle g \circ f, A, C \rangle$ is a K-morphism.

Let a type Δ be given, i.e., $\Delta = (n_i)_{i \in I}$, where I is a set and every n_i is a non-negative integer. An algebra of type Δ is an ordered pair $A = \langle X, (f_i)_{i \in I} \rangle$, where X is a non-empty set and f_i is an n_i -ary operation in X for every $i \in I$. We denote f_i by i_A .

Let A and B be two algebras of type Δ . By a homomorphism of A into B we mean a mapping f of A into B such that

$$f(i_A(a_1, \ldots, a_{n_i})) = i_B(f(a_1), \ldots, f(a_{n_i}))$$

$$\text{for all } i \in I \text{ and } a_1, \ldots, a_{n_i} \in \dot{A}.$$

With every type Δ we associate two concrete categories H_{Δ} and M_{Δ} : objects of both categories are algebras of type Δ ; H_{Δ} -morphisms are triples $\langle f, A, B \rangle$ such that A and B are algebras of type Δ and f is a homomorphism of A into B; M_{Δ} -morphisms are H_{Δ} -morphisms $\langle f, A, B \rangle$ such that f is injective.

Let two concrete categories K_1 and K_2 be given. A one-to-one functor F of K_1 onto a full subcategory of K_2 is said to be a realization of K_1 in K_2 if the following two conditions are satisfied:

- (I) if F(A) = B for some K_1 -object A, then A = B;
- (II) if $F(\langle f, A, B \rangle) = \langle g, C, D \rangle$, then f = g.

Evidently, a realization F is defined if and only if F(A) is defined for all K_1 -objects A and the following there conditions are satisfied:

- (I') as (I);
- (II') F(A) = F(B) implies A = B for all K_1 -objects A and B; (III') for every two K_1 -objects A and B, $\langle f, A, B \rangle$ is a K_1 -morphism if and only if $\langle f, F(A), F(B) \rangle$ is a K_2 -morphism.

We call K_1 realizable in K_2 if there exists a realization of K_1 in K_2 . Let K be a concrete category. By a path in K we mean a finite sequence

$$a = \langle A_0, f_1, A_1, f_2, A_2, ..., f_n, A_n \rangle$$

such that n is an even positive integer, $A_0, A_1, A_2, \ldots, A_n$ are K-objects, f_1, f_2, \ldots, f_n are injective mappings, $\langle f_k, A_{k-1}, A_k \rangle$ is a K-morphism for

all odd numbers $k \in \{1, ..., n\}$, and $\langle f_k, A_k, A_{k-1} \rangle$ is a K-morphism for all even $k \in \{1, ..., n\}$. We call a a path from A_0 to A_n . Write

$$\hat{a} = f_n^{-1} \circ f_{n-1} \circ \ldots \circ f_2^{-1} \circ f_1,$$

so that \hat{a} is an injective mapping of a subset $D(\hat{a})$ of \dot{A}_0 into \dot{A}_n .

Let A be a K-object and $X \subseteq A$. We denote by $C_A^K(X)$ the set of all $x \in A$ such that

- (i) if a is a path in K from A to some B and $X \subseteq D(\hat{a})$, then $x \in D(\hat{a})$;
- (ii) if α and β are two paths in K from A to B and $\hat{\alpha}|_X = \hat{\beta}|_X$ (so that $X \subseteq D(\hat{\alpha}) \cap D(\hat{\beta})$), then $\hat{\alpha}(x) = \hat{\beta}(x)$.

Evidently, $X \subseteq C_A^K(X)$.

If there are given a set A and an element a, then the (unique) mapping of A into $\{a\}$ is denoted by O_a^A .

An n-ary operation g is called quasi-trivial if

$$g(a_1, \ldots, a_n) \in \{a_1, \ldots, a_n\}$$
 for all a_1, \ldots, a_n .

- 2. THEOREM 1. Let K be a small concrete category such that if $\langle f, A, B \rangle$ is a K-morphism, then the mapping f is either injective or constant. K is realizable in some H_{Δ} if and only if the following conditions are satisfied:
- (U) if A and B are K-objects such that $\dot{A} = \dot{B}$ and $\langle 1_{\dot{A}}, A, B \rangle$ and $\langle 1_{\dot{A}}, B, A \rangle$ are K-morphisms, then A = B;
- (a) if A and B are K-objects and f is an injective mapping of \dot{A} into \dot{B} such that, for every finite $X \subseteq \dot{A}$, there exists a path a in K from A to B satisfying $\hat{a}|_{X} = f|_{X}$, then $\langle f, A, B \rangle$ is a K-morphism;
- (β) if A, B are K-objects and $a \in A$, then $\langle O_a^{\dot{A}}, A, A \rangle$ is a K-morphism if and only if $\langle O_a^{\dot{B}}, B, A \rangle$ is a K-morphism;
- (γ) if A, B are K-objects, $a \in A$, f is an injective mapping of A into B, and $\langle f, A, B \rangle$ and $\langle O_{f(a)}^{\dot{B}}, B, B \rangle$ are K-morphisms, then $\langle O_a^{\dot{A}}, A, A \rangle$ is a K-morphism;
- (8) if A is a K-object, $a \in A$, and $\langle O_a^{\dot{A}}, A, A \rangle$ is not a K-morphism, then $C_A^K(\{a\})$ has at least two elements.

If these conditions are satisfied, then there exists a realization F such that every F(A) is an algebra with one unary and some quasi-trivial operations.

Proof. Let F be a realization of K in H_A . (U) is evident and (α) is easy. To prove (β) and (γ) it is sufficient to notice that $O_a^{\vec{B}}$ is a homomorphism of F(B) into F(A) if and only if a is an idempotent of F(A), i.e., $i_{F(A)}(a, \ldots, a) = a$ for all $i \in I$. The set $C_A^K(\{a\})$ contains a and all $i_{F(A)}(a, \ldots, a)$; if a is not an idempotent, some $i_{F(A)}(a, \ldots, a)$ is different from a and we get (δ).

Let (U), (α) , (β) , (γ) and (δ) be satisfied. Denote by V the set of all $\langle A, a \rangle$ such that A is a K-object, $a \in A$, and $\langle O_a^{\dot{A}}, A, A \rangle$ is not a K-morphism.

Define a binary relation \sim on V as follows: $\langle A_1, a_1 \rangle \sim \langle A_2, a_2 \rangle$ if and only if there exists a path a in K from A_1 to A_2 such that $a_1 \in D(\hat{a})$ and $\hat{a}(a_1) = a_2$. Evidently, \sim is an equivalence relation. There exists a subset Z of V such that every element of V is equivalent to exactly one element of Z.

Define a mapping h with domain Z as follows: if $\langle A, a \rangle \in Z$, then $h(\langle A, a \rangle)$ is an element of $C_A^K(\{a\}) - \{a\}$ (this set is non-empty by (δ)).

Denote by I_0 the set of all $\langle e_1, \ldots, e_m, E \rangle$ such that E is a K-object, $m \geq 2$ and e_1, \ldots, e_m are pairwise different elements of \dot{E} . Put $I = \{\lambda\} \cup I_0$, where λ is an element not belonging to I_0 . Define the type $\Delta = (n_i)_{i \in I}$ by

$$n_{\lambda}=1, \quad n_{\langle e_1,\ldots,e_m,E\rangle}=m.$$

For every K-object A, define an algebra F(A) of type Δ : the first member of F(A) is \dot{A} ; if $a \in \dot{A}$ and $\langle A, a \rangle \notin V$, then $\lambda_{F(A)}(a) = a$; if $\langle A, a \rangle \in V$, we denote by $\langle D, d \rangle$ the element of Z equivalent to $\langle A, a \rangle$, choose a path α from D to A satisfying $\hat{a}(d) = a$ and put $\lambda_{F(A)}(a) = \hat{a}(h(\langle D, d \rangle))$; if

$$i = \langle e_1, \ldots, e_m, E \rangle \epsilon I_0$$
 and $a_1, \ldots, a_m \epsilon A$,

then

$$i_{F(A)}(a_1,\ldots,a_m)=a_2$$

if there exists a path a from E to A such that $\hat{a}(e_1) = a_1, \ldots, \hat{a}(e_m) = a_m$, while

$$i_{F(A)}(a_1,\ldots,a_m)=a_1$$

if such a path does not exist. (It is easy to see that the definition of $\lambda_{F(\lambda)}$ is correct.)

We shall prove that F is a realization of K in H_{Δ} . (I) is evident. By (U), (II') will be proved if we prove (III').

Let $\langle f, A, B \rangle$ be a K-morphism. We shall prove that f is a homomorphism of F(A) into F(B). If f is constant, $f = O_b^{\dot{A}}$ for some $b \in \dot{B}$; then $\langle B, b \rangle \notin V$ by (β) , so that $\lambda_{F(B)}(b) = b$; of course, we have

$$i_{F(B)}(b\,,\,\ldots,\,b)\,=\,b\quad \text{ for all } i\,\epsilon\,I_0$$

and, consequently, f is a homomorphism of F(A) into F(B). The case of f injective remains. If $\langle A, a \rangle \notin V$, then $\langle B, f(a) \rangle \notin V$, so that

$$f(\lambda_{F(A)}(a)) = f(a) = \lambda_{F(B)}(f(a)).$$

If $\langle A, a \rangle \in V$, then $\langle B, f(a) \rangle \in V$ by (γ) . Denote by $\langle D, d \rangle$ the element of Z equivalent to $\langle A, a \rangle$ and by

$$a = \langle D, f_1, A_1, \ldots, f_n, A \rangle$$

a path from D to A such that $\hat{a}(d) = a$. Evidently,

$$\beta = \langle D, f_1, A_1, \ldots, f_n, A, f, B, 1_{\dot{R}}, B \rangle$$

is a path from D to B such that $\hat{\beta}(d) = f(a)$. We get

$$f(\lambda_{F(A)}(a)) = f(\hat{a}(h(\langle D, d \rangle))) = \hat{\beta}(h(\langle D, d \rangle)) = \lambda_{F(B)}(f(a)).$$

Let $i = \langle e_1, ..., e_m, E \rangle \in I_0$ and $a_1, ..., a_m \in A$. If there exists a path

$$a = \langle E, f_1, A_1, \ldots, f_n, A \rangle$$

from E to A such that $\hat{a}(e_1) = a_1, \ldots, \hat{a}(e_m) = a_m$, then

$$\beta = \langle E, f_1, A_1, \ldots, f_n, A, f, B, 1_{\dot{R}}, B \rangle$$

is a path from E to B such that $\hat{\beta}(e_1) = f(a_1), \ldots, \hat{\beta}(e_m) = f(a_m)$, so that

$$f(i_{F(A)}(a_1,\ldots,a_m)) = f(a_2) = i_{F(B)}(f(a_1),\ldots,f(a_m)).$$

Assume that α does not exist. If

$$\beta = \langle E, g_1, B_1, \ldots, g_n, B \rangle$$

were a path such that

$$\hat{\beta}(e_1) = f(a_1), \ldots, \hat{\beta}(e_m) = f(a_m),$$

then $\langle E, g_1, B_1, \ldots, g_n, B, 1_B, B, f, A \rangle$ would have the properties of a. Hence, β does not exist, and we have

$$f(i_{F(A)}(a_1,\ldots,a_m)) = f(a_1) = i_{F(B)}(f(a_1),\ldots,f(a_m)).$$

We have proved that f is a homomorphism of F(A) into F(B).

Let A, B be two K-objects and f a homomorphism of F(A) into F(B). We shall prove that $\langle f, A, B \rangle$ is a K-morphism. Suppose that there exist three different elements a, b, c of A such that $f(a) \neq f(b) = f(c)$. Put $i = \langle a, b, c, A \rangle$, so that $i \in I_0$. There does not exist any path a from A to B such that $\hat{a}(a) = f(a)$, $\hat{a}(b) = f(b)$ and $\hat{a}(c) = f(c)$, as \hat{a} is injective. On the other hand, $\langle A, 1_{\hat{A}}, A, 1_{\hat{A}}, A \rangle$ is a path and we get

$$f(i_{F(A)}(a, b, c)) = f(b) \neq f(a) = i_{F(B)}(f(a), f(b), f(c)),$$

a contradiction. This shows that f is either constant or injective.

Let f be constant, $f = O_b^{\dot{A}}$ for some $b \in \dot{B}$. Evidently, $\lambda_{F(B)}(b) = b$, so that $\langle B, b \rangle \notin V$. Hence, $\langle f, A, B \rangle$ is a K-morphism.

Let f be not constant, and thus injective. Suppose that $\langle f, A, B \rangle$ is not a K-morphism. By (α) , there exists a finite $X \subseteq A$ such that $\hat{a}|_X = f|_X$ for no path α from A to B. Put $m = \operatorname{Card} X$. Since f is not constant, we have $\operatorname{Card} A \geqslant 2$ and we may suppose $m \geqslant 2$. Denote by a_1, \ldots, a_m the elements of X and put $i = \langle a_1, \ldots, a_m, A \rangle$, so that $i \in I_0$. We have

$$f(i_{F(A)}(a_1, \ldots, a_m)) = f(a_2) \neq f(a_1) = i_{F(B)}(f(a_1), \ldots, f(a_m)),$$

a contradiction.

THEOREM 2. Let K be a small concrete category such that if $\langle f, A, B \rangle$ is a K-morphism, then the mapping f is injective. K is realizable in some M_{Δ} if and only if conditions (U) and (α) are satisfied and

(8') if A, B are K-objects, $a \in A$, Card B = 1, and $\langle O_a^B, B, A \rangle$ is not a K-morphism, then $C_A^K(\{a\})$ has at least two elements.

Proof. The direct implication is easy (as in Theorem 1). Let (U), (a) and (δ') be fulfilled. Construct a new concrete category L as follows: L has the same class of objects as K; if $Card \dot{D} \geqslant 2$ for all K-objects D, then $\langle f, A, B \rangle$ is an L-morphism if and only if it is a K-morphism or else f is constant; if $Card \dot{D} = 1$ for some D, then $\langle f, A, B \rangle$ is an L-morphism if and only if it is a K-morphism or else $f = O_b^{\dot{A}}$ for some $b \in \dot{B}$ and $\langle O_b^{\dot{D}}, D, B \rangle$ is a K-morphism. It is easy to see that L satisfies conditions (U), (a), (b), (c) and (d), so that, by Theorem 1, there exists a type Δ and a realization F of L in H_{Δ} . Evidently, F is a realization of K in M_{Δ} .

3. Corollary 1. Let K be a small concrete category such that $\operatorname{Card} A \geqslant 2$ for all K-objects A. If $\langle f, A, B \rangle$ is a K-morphism, then f is injective. K is realizable in some M_A if and only if it satisfies (U) and (a). The constructed realization F is such that, for every K-object A, all subsets of A are subuniverses of F(A).

COROLLARY 2. Let H be a set of injective mappings of a set A into A, closed under composition and containing 1_A . H is the set of all injective endomorphisms of some algebra if and only if H contains any f such that, for every finite $X \subseteq A$, there exists a finite sequence f_1, \ldots, f_{2n} of elements of H such that

$$f_{2n}^{-1} \circ f_{2n-1} \circ \ldots \circ f_2^{-1} \circ f_1$$

is defined and coincides with f on X.

Denote by L_{Δ} the concrete category whose objects are algebras of type Δ and morphisms are triples $\langle f, A, B \rangle$ such that f is either an injective or constant homomorphism of A into B.

THEOREM 3. Let a natural number $n \ge 2$ be given and let K be a small concrete category such that if $\langle f, A, B \rangle$ is a K-morphism, then f is either

injective or constant. Then K is realizable in some L_{Δ} with $\Delta = (n_i)_{i \in I}$ satisfying $n_i \leq n$ for all $i \in I$ if and only if conditions (U), (β) , (γ) and (δ) are satisfied and

 (α_n) if A, B are K-objects and f is an injective mapping of \dot{A} into \dot{B} such that, for every $X \subseteq \dot{A}$ of cardinality not greater than n, there exists a path a in K from A to B satisfying $\hat{a}|_{C_A^K(X)} = f|_{C_A^K(X)}$, then $\langle f, A, B \rangle$ is a K-morphism.

If $n \geqslant 3$, we may replace L_{Δ} by H_{Δ} .

Proof. The direct implication is easy. For the converse, define $\lambda_{F(A)}$ as in the proof of Theorem 1; define I_0 as the set of all $\langle e_1, \ldots, e_m, e, E \rangle$ such that E is a K-object, $2 \leq m \leq n, e_1, \ldots, e_m$ are pairwise different elements of \dot{E} , $e \in C_E^K(\{e_1, \ldots, e_m\})$; put $I = \{\lambda\} \cup I_0$; if

$$i = \langle e_1, \ldots, e_m, e, E \rangle \epsilon I_0,$$

put $n_i = m$ and define $i_{F(A)}$ as follows: if there exists a path a from E to A such that

$$\hat{a}(e_1) = a_1, \ldots, \hat{a}(e_m) = a_m,$$

then

$$i_{F(A)}(a_1,\ldots,a_m)=\hat{a}(e);$$

if a does not exist, then

$$i_{F(A)}(a_1,\ldots,a_m)=a_1.$$

Let us prove only that if f is an injective but not constant homomorphism of F(A) into F(B), then $\langle f, A, B \rangle$ is a K-morphism. Suppose that $\langle f, A, B \rangle$ is not a K-morphism. By (α_n) , there exists a set $X \subseteq \mathring{A}$ of cardinality $m \leqslant n$ with the prescribed properties. We may suppose $m \geqslant 2$. Denote by a_1, \ldots, a_m the elements of X. If there exists a path a from A to B such that $\hat{a}|_X = f|_X$, choose an $a \in C_A^K(X) - X$ such that $\hat{a}(a) \neq f(a)$, and put

$$i = \langle a_1, \ldots, a_m, a, A \rangle$$
;

we have

$$f(i_{F(A)}(a_1,\ldots,a_m)) = f(a) \neq \hat{a}(a) = i_{F(B)}(f(a_1),\ldots,f(a_m)),$$

a contradiction. If a does not exist, put

$$i = \langle a_1, \ldots, a_m, a_2, A \rangle;$$

we have

$$f(i_{F(A)}(a_1, \ldots, a_m)) = f(a_2) \neq f(a_1) = i_{F(B)}(f(a_1), \ldots, f(a_m)),$$

a contradiction again.

In the proof of Theorem 1, to prove that f is either injective or constant we made use of a ternary operation. Hence, if $n \ge 3$, F is a realization in H_A .

COROLLARY 3. If $n \ge 2$ and a type $\Delta = (n_i)_{i \in I}$ is such that $n_i \le n$ for all $i \in I$, then Theorem 3 holds if we replace (α) by (α_n) .

Remark 1. In the case n=2, Theorem 3 does not hold if we replace L_A by H_A . For example, let K have a single object A; let $\operatorname{Card} A \geqslant 4$ and let $\langle f, A, A \rangle$ be a K-morphism if and only if f is either an injective or a constant mapping of A into A. K satisfies (U), (α_2) , (β) , (γ) and (δ) . However, if B is an algebra with at most binary operations, B = A and every constant and every injective mapping of A into A is an endomorphism of B, then every mapping of A into A is an endomorphism of B.

THEOREM 4. Let K be a small concrete category such that if $\langle f, A, B \rangle$ is a K-morphism, then f is either injective or constant. K is realizable in some L_{Δ} with $\Delta = (n_i)_{i \in I}$ satisfying $n_i \leq 1$ for all $i \in I$ if and only if conditions (U), (β) , (γ) and (δ) are satisfied and

 (α'_1) if A, B are K-objects, f is an injective mapping of \dot{A} into \dot{B} , and $\langle f, A, B \rangle$ is not a K-morphism, then there exists an $a \in \dot{A}$ such that either $\langle O_a^{\dot{A}}, A, A \rangle$ or $\langle O_{f(a)}^{\dot{B}}, B, B \rangle$ is not a K-morphism and $\hat{a}|_{C_A^{K}(\{a\})} = f|_{C_A^{K}(\{a\})}$ for no path a from A to B.

Proof. Define Δ as follows: I is the set of all $\langle e, u, E \rangle$ such that E is a K-object, $e \in \dot{E}$, $u \in C_E^K(\{e\}) - \{e\}$ and $\langle O_e^{\dot{E}}, E, E \rangle$ is not a K-morphism; $n_i = 1$ for all i.

Define a realization F as follows: if A is a K-object, $i = \langle e, u, E \rangle \in I$ and $a \in A$, then $i_{F(A)}(a) = \hat{a}(u)$ if there exists a path a from E to A such that $\hat{a}(e) = a$, while $i_{F(A)}(a) = a$ if a does not exist.

Again, we prove only that if f is an injective homomorphism of F(A) into F(B), then $\langle f, A, B \rangle$ is a K-morphism. Suppose that this is not true. There exists an $a \in A$ as in (α'_1) . If $\langle O_a^A, A, A \rangle$ is not a K-morphism and $\hat{a}(a) = f(a)$ for no path a, we choose a $b \in C_A^K(\{a\}) - \{a\}$ and put $i = \langle a, b, A \rangle$; we get

$$f(i_{F(A)}(a)) = f(b) \neq f(a) = i_{F(B)}(f(a)),$$

a contradiction. If $\langle O_a^A, A, A \rangle$ is not a K-morphism and $\hat{a}(a) = f(a)$ for some path a, there exists a $b \in C_A^K(\{a\}) - \{a\}$ such that $\hat{a}(b) \neq f(b)$; we put $i = \langle a, b, A \rangle$ and get

$$f(i_{F(A)}(a)) = f(b) \neq \hat{a}(b) = i_{F(B)}(f(a)),$$

a contradiction again. Finally, if $\langle O_a^{\dot{A}}, A, A \rangle$ is a K-morphism and $\langle O_{f(a)}^{\dot{B}}, B, B \rangle$ is not, then there does not exist any path a from A to B

satisfying $\hat{a}(a) = f(a)$; choosing $b \in C_B^K(\{f(a)\}) - \{f(a)\}$ and putting $i = \langle f(a), b, B \rangle$, we get

$$f(i_{F(A)}(a)) = f(a) \neq b = i_{F(B)}(f(a)),$$

a contradiction.

Remark 2. It can be analogously proved that if type $\Delta = (n_i)_{i \in I}$ is such that $n_i \leq 1$ for all i, then Theorem 2 holds if we replace (α) by the following condition:

 (α_1'') if A, B are K-objects and f is an injective mapping of \dot{A} into \dot{B} such that, for every $a \in \dot{A}$ satisfying either $C_A^K(\{a\}) \neq \{a\}$ or $C_B^K(\{f(a)\}) \neq \{f(a)\}$, there exists a path a from A to B satisfying $\hat{a}|_{C_A^K(\{a\})} = f|_{C_A^K(\{a\})}$, then $\langle f, A, B \rangle$ is a K-morphism.

REFERENCES

- [1] J. Ježek, On categories of structures and classes of algebras, Dissertationes Mathematicae 75, Warszawa 1970.
- [2] B. Jónsson, Algebraic structures with prescribed automorphism groups, Colloquium Mathematicum 19 (1968), p. 1-4.
- [3] Topics in universal algebra, Lecture Notes in Mathematics 250 (1970).
- [4] E. Płonka, A problem of Bjarni Jónsson concerning automorphisms of a general algebra, Colloquium Mathematicum 19 (1968), p. 5-8.
- [5] A. Pultr, On full embeddings of concrete categories with respect to forgetful functors, Commentationes Mathematicae Universitatis Carolinae 9 (1968), p. 281-305.

Reçu par la Rédaction le 17. 6. 1972