i/
ZASTOSOWANIA MATEMATYKI
APPLICATIONES MATHEMATICAE
X1V, 2 (1974)

S. BIELAK (Gliwice)

A GENERAL SCHEME OF EQUATIONS
COVERING RECTILINEARLY DRAWN SHELL STRUCTURES

1. INTRODUCTION

The paper presents a general scheme of equations covering rectilin-
early drawn shell structures constructed of homogeneous isotropic ma-
terial and working in a moment state. The assumed mathematical model
representing the stress in shell is based on the linear theory of shells admit-
ting that the material medium of which shells are made is subject to the
principle of Hooke. The assumed model leads to some linear equations
with partial derivatives called the equations of equilibrium and to linear
differential connections between the functions describing the state of
strain of the shell and the coordinates of the displacement vector of the
middle inner surface of the shell. These equations, supplemented by al-
gebraic connections between stresses, moments and functions describing
the strain of the shell resulting from the assumed model of the material
medium, lead to a system of equations describing the static work of
the shell.

The essential problem in the theory of shell structures is the descrip-
tion of the strained middle inner surface with reference to that surface
before straining.

In this paper, the vector u of displacement, defining the positions
of the individual points of the surface and connected with the first dif-
ferential form, and the vector d, connected with turn and with the second
differential form, have been introduced to the description of the strained
surface. This way of formulation allows a better insight into the character
of the work of the shell as resulting from the moment state and of intro-
ducing on these grounds new conceptions of tensors of the moment state
‘ftl‘aining 0;; connected with the second differential form and of the bend-
Ing strain ¢;; connected with the third differential form. In view of what
Said above, the hitherto in the theory of shell structures employed con-
Ception of the strain tensor y;; is not precise and, therefore, in this paper
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it is called the tensor of momentless strain, since it is the carrier of the mo-
mentless work being connected with the first differential form. Geometrical
connections, prepared in this way, allow of a simple representation of any
layer parallel to the middle inner surface of the shell. It has been proved
that concerning the physical relations connecting stresses with strains,
the stress in any point of the shell can be examined within the limits of
the linear theory-as a sum consisting of stresses resulting from both the
momentless and the moment work of the shell. Furthermore, integrals
describing sectional forces and moments can be evaluated and represented
also by means of adequate sums composed of effects of the momentless
and moment works of the shell. ' '

An important fragment of the general scheme of equations are equa-
tions of continuity of the shell. In the hitherto published work this problem
is not presented uniformly and refers most often to some particular types
of shell structures. A uniform formulation of this problem can be obtained
if we begin with the condition of the necessity of fulfilling the equations
of Gauss and Codazzi by the coefficients of the first and second differential
forms of the strained surface. '

The previously introduced concept of tensors g; and ¢ facilitate
this and, as a solution, gives three equations called the equations of con-
tinuity of the shell. These equations hold not only for shell structures but,
under the assumption that H = 0, are valid also .for flat and upright
plates. ‘

It should be underlined that most of the considerations presented
n this paper refer to all shell structures and not only to rectilinearly drawn.

2. GEOMETRICAL REPRESENTATION

The middle surfaces of rectilinearly drawn shells are made by straight
lines called rectilinear gemerators. This means that through each point of
the rectilinearly drawn surface a straight line can be passed fully lying
on it. If the given curve p(u?) is intersected at each of its points by recti-
linear generators of directions defined by the unitary vector I(«2), then the
vector equation of the rectilinearly drawn surface is of the form

(2.1) r =p(u?)+ul(u?), -~

where ! and u? are curvilinear coordinates on the surface; u! gives the
- position of the point on the generator, and u? indicates the generator
on which the point lies. Differentiating equation (2.1) with respect to the
parameters ' and 2, we get the following vectors tangential to the recti-
linearly drawn surface (Fig. 1):

r, =1 and 7r,.=p,+ul,.
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The symbols ;, p; and I, indicate the derivatives with respect to
the variable u'. Introducing the unitary vector ¢, tangential to the line
u%, we can write the derivative 7, also in the form

(2'2) 1’2 == l/—g_;;t,

where ¢,, is the coefficient of the first differential form.

The second derivatives of the vector » are the following:
Tu=0, 7Tp="7"y= Ly, 7Ty = Potu'ly,.

Then the derivative evaluated from (2.2) is

Where » is the curvature of the line 2, and n the vector of the normal
Principal curve wu2

Knowing the first and second derivatives of the vector », we can
evaluate the coefficients of the first differential form g;; and of the second
differential form b;; as well as their discriminants g and . We obtain

gn =1, Ji2 = g = 1p, = l/62—2”1
gy = P2+ uly|%, g = 922[1"(”)2],
(2.3) " bjy =0, by, = by =lm,

byy = ggexmm, b = —(1,m)3.
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The unitary vector m occurring in (2.3) is normal to the middle inner
surface of the shell. This vector is perpendicular to vectors I and ¢ and,
therefore, can be represented by the vector product

Ixt
m = .
[T x t

The Christoffel symbols of the second kind for rectilinearly drawn
surfaces in the assumed system of coordinates are given by the formulas

912 09
Pllll=07 Flzl)=07 F1;=P2i—_glgi'az_;2
. 1 odg gs2 | Og — Jlit
2 22 . 22 22 ost
(2.4) Iy =Ty :2—9 ur by = _Z_g[ Jul —2V g5 au |’
Iz _ 1 0922 dg
22 _2_9 Ly

In an orthogonal system of coordinates, the Christoffel symbols (2.4)
are considerably simplified:
1 adg
2¢g Oul ’

Fl}’__()’ Flﬂ';:O’ F1;=in=07 F13=F2%=

(2.5)
1 dg ’ 1 dg

2 out’ 22 =§_g—6u2.

1 __
Iy =

The rectilinearly drawn surfaces with regard to their construction
can be devided into two groups: evolving surfaces and all others. With
regard to evaluation we devide rectilinear surfaces into three groups:
I. evolving surfaces, II. helical surfaces and III. all other rectilinearly.

drawn surfaces.
If K is the Gauss curvature and H the mean curvature, the indi-
vidual groups have the following characteristics.

Group I:
by =0, by, =0by =0, by =gpxmm, K=0, H#O0.
Group II:

by =0, by =0by =lm, by=0, K=+#*0, H=0.
Group III:

biu =0, by =by =1lm, by =gpmm, K=#0, H+#O.
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3. GEOMETRICAL RELATIONS OF THE SHELL

We can precisely define the position of a surface in the space by its
first and second differential forms. It follows that to define any strained
surface it is necessary to know its first and second differential forms. Let
the inner middle surface of the shell » = r(u!, 4?) turn after the straining

into the surface »’ = »’(u!, u2), and let u be the displacement vector
(Fig. 2). Then the strained surface is defined by the formula

"_
r’ =r4u,

which is a function of the points of the strained middle inner surface of
the shell.

3.1. Coefficients of the first and second differential forms of the strained
surface. The coefficients of the first differential form of the strained
surface g;;, after having introduced the concept of the momentless strain
tensor y;; defined (see [4]) by

-(3.1) vii = $(95—94),
are given by the formula
(3.2) i = 95+ 274

Introducing the concept of the moment strain tensor g;;, the compo-
hents of which are represented by the coefficients of the second differential
form similarly to (3.1),

(3.3) 05 = 3(bi;—by),

We are able to define the coefficients of the second differential form of the
Strained surface by by the formula

(3'4) b:'i = b;;+2¢;.
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3.2. Connection of the components of displacement with the tensor of
strain. We define the displacement vector u in the basis 7, and m. Then

(3.5) u = whr,+w'm,

where w* and w® are counter-variant components of the displacement
vector wu.
For minor displacements it can be assumed [4] that

(3.6) Vi = 3(ru;+ruy),

where the sign , (comma) denotes the common derivative. Introducing
in (3.6) the proper derivatives evaluated from (3.5) we have the connection
of the tensor of strain with the displacement vector,

vii = 3 (W*;gn + wF; ;) — by,

where the vertical line signifies the co-variant derivative.

It is obvious that to determine the shape of the examined surface
it is necessary to know the coefficients of the second differential form.
If the surface under the examination is strained, it is not sufficient to
know the displacement vector u only for its unmistakable definition,
but it is necessary that the vector d (Fig. 2), which is strietly connected
with the shape of the surface, be also given. Any point of the strained
surface will be unmistakably defined with respect to the middle inner
surface of the unstrained shell if the vector functions # and d are known.
The introduction in this paper of the new concept of the vector d, which
is connected with turn, has an essential influence upon results obtained.

Let us consider now the connection of the moment strain tensor
with displacements u and d. Now, evaluate the tensor 0;; for minor dis-
placements. .

Introduce in the formula b; = —r;m; the appropriate derivatives-
taken from the sums (see Fig. 2) »' = r+u and m’ = m + d. Then we
obtain
by = b;—myu,—r;d;—w;d;.

Neglecting the scalar product of u; and d ; as a minor quantity of
higher order, using (3.3) and assuming the simplification, we obtain

(3.7) e = —k(m u;+r.d;).
Let us resolve the vector d within the basis r, and m. We have

(3.8) d = —&r,—*m.
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Then, let us evaluate the derivatives u; and d; .from expres-
sions (3.5) and (3.8) and introduce them in (3.7). We obtain -

(3.9) ;i = ¥ (w¥; bjrx + &1; gir) — 3 (w? by bF + 8° by),

where the quantities ¢° are connected with the tensor of displacement w'
by the formulas

& = (Wby+wh)g” and & = bfw'—w|— 1.'+ ]/g; .

3.3. Geometrical representation of a layer parallel to the middle inner
surface of the shell. Let a surface, every point of which is at a distance 2
from the middle inner surface of the shell structure, be called the parallel
layer. We define this layer by a vector equation

R =7r+zm.

Let the coefficients of the first differential form of the parallel layer
be stated by G;. They are defined (see [4]) by the formula G; = R;R;.

Employing formulas, given in manuals of shell structures theory,
e.g. [2], we write

(3.10) G'U == gU had Zzbw + zz bik bjc

or, equivalently,

where K = b/g is the Gauss curvature, and H = %g"’bkl the mean cur-
vature. The counter-variant component of tensor G* can be given by the
formula

(3.11) G = [g"f(l—Kzz)-.-zKBff(1—Hz)z]—g—~.

The counter-variant tensor b” occurring in this formula is connected
with b;; by
Y Y

pu %2 prz — p2t _EE 2 — ﬁ

b’ b’ b

b

Where b = |b;| is the discriminant of the second differential form. For
the discriminant @ of the quadratic form of G,; we have (see [2])
(3.12) G = g(1—-2Hz+ Kz?%)2.

Neglecting in expressions (3.10), (3.11) and (3.12) the infinitely small
quantities of second order, for minor displacements, we obtain '

(3.13) @, = g, —22by, Gﬁ=(gﬁ—2Kz5ﬁ)%, G = (I— 2Hz)g.
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3.4. Strain tensor of any layer parallel to the middle inner surface
of the shell. Examining the strain of a parallel layer, we rely on the first
principle of Kirchhoff which says that in the case of thin shells it can be
assumed that fibres perpendicular to the middle inner surface of the shell
retain the same position also after straining, not changing at the same time

their lengths.
Let the strain of the parallel layer be described by the vector U

which is defined (see [3]) by the equation
(3.14)  U=u+zud.

The vector equation of the strained layer is of the form
(3.15) R =R+ U.

We evaluate the coefficients @;; of first differential form of the strained
parallel layer by the formula G;; = R;R;. Making use of (3.14) and (3.15),
neglecting the product U ,U ; as a minor quantity of higher order and
employing quantities (3.6) and (3.7), we obtain

Gy = Gy + 29— 2(0i;+ 01) 2 + (myd j+m ;d ;) 22,

Introducing the concept of the bending strain tensor &;, the com-
ponents of which are defined by the formula

Uy =3t(md;+m;d)),
employing at the same time the symmetry of the temnsor p;, we have
| Gy = Gy +2y;— 4052 +29;22.
The strain tensor of any parallel layer, defined by the difference
)’:j = %(G;j—Gﬁ);
is given by the expression

(3.16) y:) = y”—2guz+19uz2.

4. PHYSICAL RELATIONS

Physical connections establish the interrelations between strains
and stresses upon the basis of the principle of Hooke. In technical publica-
tions dealing with shell structures these relations are given as a rule for
curvate systems of the curvilinear coordinates. The unquestionable
advantage of a curvate system lies in its being an orthogonal system of
coordinates not only on the middle inner surface of the shell, but in any
parallel layer also. Whereas transferring the characteristics of a curvate
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system to any orthogonal system related to the middle inner surface of
the shell not always gives accurate results. ‘

Although the curvate system is advantageous for physical connec-
‘tions it need not to be the most proper system for defining other quanti-
ties and dependences occurring in a shell structure. The proper system
of coordinates for rectilinearly drawn shells is a system basing on a group
of rectilinear generators since such a system affords the simplest para-
metrisation of this group of shells.

4.1. Stresses and strains. We get the connections between stresses
and strains for thin shells from the generalized principle of Hooke. In any
curvilinear system of coordinates these connections are expressed by the
formula

(4.1) = QA 4w (G™F+ G E™) ymn
or
T‘i]' _ l* Gij Gmn y:nn + 2 My*ij’

where ¥ is the counter-variant tensor of the stress and »*¥ is the counter-
variant tensor defined in the basis GY. The parameter A* is connected
with the constants of elasticity, the factors of Lame 4 and ,u,'_by the formula

2 ui
=Tt

Relation (4.2) results from the simplifying supposition adopted in
the linear theory of shells [2] assuming that the stresses perpendicular
to the middle inner surface of the shell are of minor quantity and can be
neglected (the assumption of Kirchhoff).

Including in (4.1) expressions (3.13) and (3.16) and neglecting products

comprising 22 and higher powers of z as minor quantities of second order,
we have

(4.2) A

(4.3) 7 ={[2"g"g"™" + pu(g™ g™ + 9" ™) 1 Vmn—
—22[(A* g7 g™ + u(g™ ¢ + 4™ ¢™)) Omn +
2
€ K(l* (gijbmn+gmnbij) _{_‘u(gimb]‘n +gjnbi1n +ginbjnl +gjmbin )) ymn” (g) .

Introducing the concepts of tensors of momentless stress 7 and of
moment stress t7, defined by the expressions

= 297 4" Ymn + 2 uyY
and

= 27 ™ o+ 2107 + K [2* (g9 6™ + §"bY) pyn + 2 (7 + B )],
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we are able to express formula (4.3) in the form

g e ALY
. G (79 9 )
(4.4) T (1 2T )( )

4.2. Inner forces. We evaluate the sectional forces (stresses and

moments) on the basis of formulas given in [4]. Then the counter-variant
tensors of tensions N“ and the counter-variant tensors of moments M%

are expressed by
h E
N9 = f ]/ — (64— 2bf) ™ de,
9

h —‘G
M — f ]/ T (8] — 2bl) 2z
g

—h

(4.5)

Putting (4.4) in expression (4.5), employing at the same time the
discriminant G from (3.13) and neglecting minor quantities of higher
order, we have

h
" 1 o "
Nu — P o _Fnj d
J (I—2Hep [ — 2k 1dz,
h

.. 2 —ii i
W= [y B
-k

(4.6)

where F7 = 217 4 bi7%* The integrated expressions (4.6) are equal
(4.7) NI — J B, MY = g7 —J, B,

where the integrals J, , for a simplified version under the assumption that
2hH < 1, are given by

3o 23
Jo=2h, Jy=4b'H, J,=Zh"

Eliminating the function’ F¥ from the system of equations (4.7)
we have
NY = 2h[1—3(2hH)®)t" +6 HMY,
and neglecting the .minor quantity of second order in brackets we can
write ' )
(4.8) NY =2p19 + 6 HMY.
Since 2k represents the thickness of the shell, the product 2ht” is

tllf, \counter_-y?,riant t'fensor of the momentless force. Let this tensor be
NY; then ‘NY = 2ht” which put in (4.8) makes

N9 = N9+ 6HM".
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The sectional forces (tensions) are then the sums composed of in-
fluences of the momentless work N” and of the moment work N — 6 H M.

5. EQUAITIONS OF EQUILIBRIUM

Let us express the general scheme of equilibrium equations for shells
in the vector notation (on the basis of [4]) by

N9, —@bi+P =0, NYb;+Q';+P° =0,
(5.1) .
MY;—@ =0,

where the quantities @° are the counter-variant tensors of shearing forces,
and P’ and P? are counter-variant load tensors. If we state the outward
oad by the vector P, then

P = Pir,+P’m.

Then, the system of equations (5.1) set down for rectilinearly zirawn
shells for which the geometrical quantities are stated by formulas (2.4)
and (2.5) is the following:

dVgN! N OV gN™2

oul ou? + 2111;'/9“1\712 +1'y '/;Nm +

1 _
+—l7: [glzblel—(922b12_912b22)Q2]+'/gP1 =0,
g

dVgN® N OVgN?

P s H 2NN + TRV +

1
+'/——' 2% +(b22”912b12)Q2]+‘/gP2 =0,
g
2b12N12'+ b22N22 +P3 - 0,

oVgM'™  oVgM' - - U
T S FIAV(M A M) 4 IVgMR V@' = o,

ou! ou’
OVgM™®  oVgME | - 2/ -
S e TRV (MY M) TV gMT V@t = 0.

In expressions (5.2) we have assumed the symmetry of the counter-
Variant tensor of stresses N” = N7,
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Transition from tensor coordinates to physical coordinates, i.e. related
to the unitary basis of the middle inner surface of the shell, is accomplished
as follows (1):

i i 1 i
N =]/?ﬁ‘ NY, Qi = FQ ’
11 ' 22
Mt—1| _ _]/gg" Mi2, Mlj_) — _2{7‘ Mil’
g g

Py =Vg,P', P =P3.

6. EQUATIONS OF CONTINUITY

In order that the first and second differential forms of the strained
surface bear the same character in certain surrounding of any point of
that area, it is necessary and, at the same time, it is sufficient that the
discriminant of the first form ¢’ be positively determined and that the
coefficients g;; and b;; satisfy the equations of Gauss and Codazzi. The
discriminant ¢’ evaluated from (3.2) after neglecting quantities of higher
order is given by the formula ¢’ = g(14+2¢"" V)

The equation of Gauss of a strained surface has the form (see [1])

7 ’ ’ ’
R1212 = bubzz - b12 b217

where R,,;, is the Riemann tensor of a surface. The tensor R,,;, can be
stated by means of coefficients of the first differential form. Employing
the results of [4] for the infinitesimal state of a strain we write

(6.1) Ry = R1212+27’12|12_711122_)’22|11,

where 1}1212 is the Riemann tensor of a surface before the straining. It

is known from differential geometry that fllm = b. Substituting then
in (6.1) the discriminants of the second differential forms for the Riemann
tensors, we have

(6.2) b = b+2712|12_712|22_'}’22|11-

On the other hand, the discriminant b’ can be evaluated from expres-
sion (3.4). Neglecting products containing infinitely small quantities of
higher order and raising discriminants ¢j in basis b;, similarly as it was
done in (3.11), we have

(6.3). b = b(1+26m, ).

(1) j is not to be summed up after ¢, and the sign ~] means physical coordinate.



Shell structures 325

Comparing (6.3) with (6.2) results in
(6.4) 2b5mn9mn =2¥12l12— Y11 |22 — V22l 11-

We write the equation of Codazzi for a strained surface in the tensor
formulation [1] as ’

(6-5) b;'j‘fk—bik'fj = 07

where the symbol {1 denotes a co-variant derivative evaluated on the
strained surface. There are only the following two independent equations
of Codazzi (6.5):

(6.6) byt —bpt, =0 and byt —b,t, = 0.
Putting expression (3.4) in (6.6), we have explicite
2(ontz— 01ta) + by1fs— b2ty = 0,

2 (9221’1 - Qzl‘rz) + b221'1 - bzfrz = 0.

The knowledge of Christoffel symbols I’;-}‘ of a strained surface makes
it possible to evaluate the derivatives of expressions (6.7). For an infini-
tesimal state of a strain these symbols equal

Iif = T — 9™ Ty + 9 Vijmo
where I';,, are Christoffel symbols of the first kind, and

(6.7)

Vitm = Vim,i T Ymi,j — Vij,m-
Knowing the symbols I';f, we evaluate the derivatives of expression

(6.7) and, after neglecting minor quantities of higher order, we obtain
the following scheme of Codazzi equations:

2(e11l2— 012l 1)_2H(71112_712|1)+b§7k1|1 -
—bf?’kzl 1 +(bffli"—b'fplé")ykm =0,
(6.8) 2(02211—02112) —2H (psa|1— 721 |2)+bf?’k2 | 2_b§7kll 2+
+ (b5 — 315" Yier = 0.
The evolving shell surfaces of group I parametrized in the orthogonal
Bystem of coordinates simplify equations (6.8) as follows:
enle—012ls = H(y1ula—29111) =0

Q2211 — 021l = H(yaeli+T13vs) = 0.
Equations (6.8) together with formula (6.4) are called equations of
continuity for shell structures. These equations must be absolutely satisfied

for an infinitesimal state of strain if the strained middle inner surface
of the shell has to be a regular surface.

1 — Zastosow. Matem. 14.2
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OGOLNY UKLAD ROWNAN POWLOK PROSTOKRESLNYCH
STRESZCZENIE

Praca omawia ogdlny uklad réwnan powlok prostokreslnych. Przyjety mode
matematyczny, opisujgcy stan naprezenia w powloce, oparto na linio wej teorii powlok
przy czym zalozono, ze osrodek materialny, z ktérego utworzone sa powloki, jest
oérodkiem Hooke’a. Model ten prowadzi do ukladu liniowych réwnan o pochodnych
czastkowych, zwanych réwnaniami réwnowagi, oraz do liniowych, rézniczkowych
zwigzkéw miedzy funkejami opisujacymi stan odksztalcenia powloki a wspélrzednymi
wektora przemieszczenia powierzehni srodkowej powloki. Réwnania te, uzupelnione
algebraicznymi zwiazkami miedzy napieciami i momentami a funkcjami opisujgcymi
stan odksztalcenia powloki, wynikajacymi z przyjetego modelu ofrodka, prowadza
do ukladu réwnan opisujacych statyczna prace powloki.



