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Introduction. In this paper* certain results about semi-ideals of a semi-
-lattice are obtained; some of these are analogues of known results about
ideals of a distributive lattice. Also, some known results about distribu-
tive lattices are extended to semi-lattices. The notion of disjunction is
extended to semi-lattices and various sets of necessary and sufficient
conditions are obtained for a semi-lattice to be a disjunction semi-lattice.
It is proved that a pseudo-complemented disjunction semi-lattice is
a Boolean algebra. The results about semi-ideals are applied to study
some special features of a topology on the set of all prime semi-ideals
of a semi-lattice. A natural topology is introduced on the set of all proper
dual ideals of a semi-lattice. It is proved that this topology is T, and
that it is compact and non-regular if the semi-lattice has the greatest
and the least elements. The subspace of maximal dual ideals is proved
to be T,.

1. Preliminaries. This section is devoted to a summary of known
concepts and results which will be used in subsequent sections.

First we shall recall some concepts introduced in [8] and [9]. For
lattice-theoretic and topological concepts which have now become common-
place the reader is referred to [4], [6] and [7]. A non-null subset A of
a poset (partially ordered set) P is called a semi-ideal if ae A, b < a (be P)
=>be A. A semi-ideal 4 of P is called an tdeal if the lattice-sum of any
finite number of elements of A, whenever it exists, belongs to 4. An element
a of a poset P with 0 is said to have a pseudo-complement a* if there exists
an element a* in P such that (a]n(a*] = (0] and for be P, (a]n(b] = (0]
= (b] = (a*]. A semi-ideal of a poset with 0 is said to be normal (dense) if
it is a normal (dense) element of S, (the set of all semi-ideals of a poset
with 0 forms a lattice under set-inclusion; this lattice is denoted by 8,).

* This paper formed a part of the author’s Ph. D. thesis (University of Madras),
prepared under the guidance of Professors V. 8. Krishnan and V. K. Balachandran.
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A proper ideal or a semi-ideal A of a poset is said to be prime if (a]N(b]
€ A = (alJc A or (b] < A. A prime semi-ideal is called a minimal prime
semi-ideal if it does not contain any other prime semi-ideal. The dual
concepts are defined in an obvious way.

A point of a topological space is called an anti-T, point if it does
not belong to the closure of any other point.

Set-inclusion is denoted by <. The lattice-sum and lattice-product
in 8, coincide with set-union and set-intersection and these are denoted
by U and N, respectively. In the poset of ideals of a poset, the lattice-
-sums, if they exist, are denoted by v. The same symbol is also used to
denote lattice-sums in the poset of dual ideals, whenever the sums exist.
(a] denotes the principal ideal generated by a. The principal dual ideal
generated by a is denoted by [a). The set of all prime semi-ideals of a poset
is denoted by 2 and F'(A) denotes the set of prime semi-ideals containing
a semi-ideal A. F'(A) stands for 2 — F(A).

We collect below some known results used in the sequel.

LeMMA 1. Any proper ideal (dual ideal) of a poset with 1 (0) is conta-
ined in a maximal ideal (dual ideal).

LeMMA II. Any semi-ideal of a poset is the product of all the prime
semi-ideals containing it.

LrMmMmA II1. If the product of a finite number of semi-ideals of a poset
with 0 is (0], then any prime semi-ideal contains at least one of them.

LemMA IV. 8, is a complete 2, n-distributive lattice; consequently, it
18 closed for pseudo-complements.

LEMMA V. The normal elements of a semi-lattice closed for pseudo-
-complements form a Boolean algebra.

LeEMMA VI. If P is a poset with 0, then

i) F(U4) = N F(4),

(i) F(4,nA,n...nA,) =F(A)VF(4,)u... VF(4,),

(iii) F(P) =0,

(iv) F((0]) = 2.

(Here the A; are semi-ideals of P.) Consequently, F defines a closure
operation in P, thereby giving rise to a topology on 2.

LeMMA VII. In the topological space 2, IntF(A) = F'(A*), where
A™ is the pseudo-complement of A in S,.

LenMMA VIII. 2 is semi-reqular if and only if every semi-ideal of P
i8 a union of normal semi-ideals.

LEMMA IX. An open subset F'(A) of P is compact if and only if A is
a union of a finite number of semi-ideals.

Lemmas I-IV are proved in [9]; Lemma V is proved in [5] and the
rest in [8].
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2. Prime semi-ideals in semi-lattices. In this section we obtain
some results about prime semi-ideals of a semi-lattice. These are
analogues of results obtained by Balachandran [2] for prime ideals of
a distributive lattice. Throughout this section S denotes a semi-lattice
with 0.

It is easily seen that a subset of § is a prime semi-ideal if and only
if its set-complement is a dual ideal and we have the following

THEOREM 1. A subset A of S s a minimal prime semi-ideal if and only
if its set-complement CA is a maximal dual ideal.

Proof. Suppose CA is a maximal dual ideal. Then A is a prime semi-
-ideal. Let B = A, B being a prime semi-ideal. Then CB = CA. Now CB
is a dual ideal and CA4 is a maximal dual ideal. Hence CB = CA4 and so
B = A. Thus A is minimal prime.

Conversely, suppose A is a minimal prime semi-ideal and CA < B,
B being a proper dual ideal of S. Then CB is a prime semi-ideal and
A = CB. Hence, as A is minimal prime, it follows that 4 = CB. Con-
sequently, CA = B. Thus CA4 is a maximal dual ideal.

Remark. By Lemma I, maximal dual ideals exist in S and so Theorem 1
establishes the existence of minimal prime semi-ideals of S.

As a consequence of Lemma I and Theorem 1 we have the following

THEOREM 2. Any prime semi-ideal of 8 contains a minimal prime
semzi-ideal.

CorROLLARY. The product of all the minimal prime semi-ideals of S
18 (0].

The corollary follows from Lemma II and Theorem 2.

THEOREM 3. If a prime semi-ideal of 8 meets the lattice-sum of a family
of dual ideals, then it meets at least one of them.

The proof of this theorem is similar to that of the corresponding
known result about ideals in a lattice (vide [1], Theorem 3).

The following theorem gives a necessary and sufficient condition
for a prime semi-ideal to be minimal prime:

THEOREM 4. A prime semi-ideal A of S is minimal prime if and only
if A contains precisely one of (x], (x]* for every x in S.

Proof. Suppose 4 is minimal prime. Then, by Lemma III, A contains
at least one of (z], (x]*. Suppose A = (z]. Thenz¢ CA andso CAv [z) = 8.
Hence zy = 0 for some ye CA. Clearly, ye (x]* and y¢ A. Therefore
(«]" & 4.

Conversely, suppose A satisfies the given condition and xe¢ A. Then
(#]* & A. Hence there exists ye (x]* such that y ¢ A. Clearly, ye CA and
oy = 0, so that 0 CAv [x). Hence CAv [z) = S. Thus C4 is maximal.
By Theorem 1, it follows that A is & minimal prime semi-ideal.
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COROLLARY. If M is a minimal prime semi-ideal of 8, then xe M
> (" <= M.

This corollary follows from Theorem 4 and Lemma III.

We obtain below a sufficient condition for a semi-ideal to be contained
in a minimal prime semi-ideal. The condition is, in general, not necessary,
as can be easily seen by considering a non-principal prime ideal of a Boolean
algebra. (In a Boolean algebra every prime semi-ideal is a prime ideal.)
However, in the case of a principal ideal, the condition turns out to be
necessary.

THEOREM 5. Any non-dense semi-ideal of S is contained in a minimal
prime semi-ideal. Any principal ideal contained in a minimal prime semi-
-ideal is mon-dense.

Proof. Let A be a non-dense semi-ideal of §. Then A* % (0], and
s0 there exists xe¢ A%, x = 0. By Lemma I, there exists a maximal dual
ideal M containing [z). Clearly, z¢ CM and so A* £ CM. By Theorem 1,
CM is a minimal prime semi-ideal and, by Lemma IIT, 4 < CM.

Now suppose (a]< A, A being a minimal prime semi-ideal of 8.
Then, by Theorem 4, (a]* & A. Hence (a]* # (0].

The following theorem gives a characterization of the pseudo-com-
plement of a semi-ideal:

THEOREM 6. The pseudo-complement of a semi-ideal A of S is the product
of all the minimal prime semi-ideals not containing A.

Proof. Let B be the product of all the minimal prime semi-ideals
not containing 4. By Lemma III it follows that A* = B. Suppose A* # B.
Then there exists ze¢ B —A*. Clearly, xy # 0 for some ye¢ A. By Lemma I,
there exists a maximal dual ideal M containing [xy). Clearly, z, ye M and
8o z,y¢ CM. Consequently, A, B ¢ CM. This is a contradiction to the
choice of B since, by Theorem 1, C M is a minimal prime semi-ideal. Hence
A* = B.

Since any normal semi-ideal of S is the pseudo-complement of some
semi-ideal, we have the following

COROLLARY 1. Any normal semi-ideal of S is the product of all the
minimal prime semi-ideals containing it.

COROLLARY 2. Any mormal prime semi-ideal of S is minimal prime.

Corollary 2 is an immediate consequence of Corollary 1.

TIEOREM 7. A necessary and sufficient condition for a principal ideal
of 8 to be a normal semi-ideal is that it is the product of all the minimal prime
semi-ideals containing it.

Proof. In view of Corollary 1, under Theorem 6, we need prove
only the sufficiency of the condition. Let

(a] = M M,

iel
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M, being minimal prime semi-ideals. By the corollary under Theorem 4
it follows that
(a]** < m M'i‘

(74

Consequently, (a] = (a]**, thus proving the result.

COROLLARY. Any principal ideal, which is a mintmal prime semi-ideal,
18 a normal semi-ideal.

3. Disjunction semi-lattices. In this section we generalize the work
of Balachandran [3] on disjunction lattices.

A poset P with 0 is called a disjunction poset if a,be P and a # b
imply that there exists ce P such that exactly one of the ideals (a]Nn(c],
(b1N(e] is (0].

In the case of a semi-lattice the above definition can obviously be
reformulated as follows:

A semi-lattice § with 0 is called a disjunction semi-lattice if a,be S
and ¢ #* b imply that there exists ce S such that exactly one of the products
ac, be is 0.

TizoREM 8. If a disjunction poset P has 1, then 1 is the only dense
element of P.

Proof. Let ae P and a # 1. Then, as P is a disjunction poset, there
exists ce P such that exactly one of the ideals (a]n(c], (1]N(c] is (0]
Now (1]n(¢] = (¢] # (0]. Hence (a]n(c] = (0]. It follows that a is not
dense.

We obtain below a mnecessary and sufficient condition for a poset
to be a disjunction poset.

THEOREM 9. A poset P with 0 is a disjunction poset if and only if
distinct principal ideals of P have distinct pseudo-complements in S, .

Proof. Suppose P is a disjunction poset and (a], (b] two distinct
principal ideals of P. Then a +# b and so there exists ce P such that exactly
one of (a]ln(c]l, (b]n(e] is (0]. Hence ¢ belongs exactly to one of
(a]*, (b]*. It follows that (a]* s (b]*.

Conversely, suppose distinct principal ideals of P have distinct pseudo-
-complements in S,. Let a, b,e P and a + b. Then (a] # (b] and so (a]”
# (b]*. Hence there exists ce P such that ¢ belongs exactly to one of
(al*, (b1*. It follows that exactly one of the ideals (a]n(e], (b]N(c]
is (0]. Thus P is a disjunction poset.

For a semi-lattice the notion of disjunction ecan be sharpened as in
the following

LEMMA 1. A semi-lattice 8 with 0 is a disjunction semi-lattice if and
only if a,be S and a Z b imply that there exists ce S such that ac = 0 and
be +# 0.
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Proof. Suppose § satisfies the given condition and a, b are any two
distinet elements of S. Then ab S a or ab S b. Let us take ab I a. Then,
by hypothesis, there exists de S such that abd = 0, ad # 0. Taking ad = ¢,
we have b¢ = bad = abd = 0; ac = aad = ad # 0. Hence § is a disjunc-
tion semi-lattice.

The converse is obvious.

We shall now obtain various sets of necessary and sufficient conditions
for a semi-lattice to be a disjunction semi-lattice.

THEOREM 10. A semi-lattice S with 0 is a disjunction semi-lattice if and
only if every principal ideal of 8 is a normal semi-ideal.

Proof. Let 8 be a disjunction semi-latticé. Suppose (a] Z (a]** for
some principal ideal (a]. Then there exists be (a]**—(a]. Now (b] < (a]**
and so

(1) (] =2 (aT"

Also b  a and so ab 3 b. Hence, by Lemma 1, there exists de S such
that abd = 0, bd =+ 0. Taking bd = ¢, we have ac = 0, bc = bbd = bd +# 0.
It follows that ce (al]*, c¢ (b]*. Consequently, (a]* & (b]*. This contra-
dicts (1). Hence (a] = (a]**. Thus (a] is a normal semi-ideal.

Conversely, suppose every principal ideal of S is a normal semi-ideal
and (a] # (b]. Then (a]* s (b]*. Hence, by Theorem 9, S is a disjunction
semi-lattice.

COROLLARY. A semi-lattice S with 0 is a disjunction semi-lattice if and
only if every principal ideal of 8 is the product of all the minimal prime
semi-ideals containing it.

This corollary follows from Theorems 7 and 10.

THEOREM 11. A semi-lattice 8 with 0 is a disjunction semsi-lattice if and
only if every principal dual ideal of S is the product of all the maximal dual
ideals containing it.

Proof. In view of the corollary under Theorem 10, it is sufficient
to establish the equivalence of the following two conditions:

(i) Every principal ideal of 8 is the product of all the minimal
prime semi-ideals containing it.

(ii) Every principal dual ideal of S is the product of all the maximal
dual ideals containing it.

We shall now show that (i) is equivalent to

(iii) @, be S and a £ b imply that there exists a minimal prime semi-
-ideal containing a but not b. That (i) = (iii) is clear. Suppose (iii) holds
and A is the product of all the minimal prime semi-ideals containing (a].
Suppose (a] S A. Then there exists be 4 such that b { a. Clearly, ab Z b
and so, by (iii), there exists a minimal prime semi-ideal M such that
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abe M, b¢ M. As M is prime, ae M. It follows that A £ M, (a]c M;
this is a contradiction to the choice of A and so (a] = 4. Thus (iii) = (i).
In a similar manner we can show that (ii) is equivalent to:

(iv) a,be S and a Z b imply that there exists a maximal dual ideal
containing a but not b.

By Theorem 1, it follows that (iii) <> (iv). Consequently, (i) < (iii),
which completes the proof.

THEOREM 12. A disjunction semi-lattice closed for pseudo-complements
18 a Boolean algebra and conversely.

Proof. Suppose § is a disjunction semi-lattice closed for pseudo-
-complements and aeS. Then, by Theorem 10, (a] = (a]** = (a™*].
Hence a = a** and so, by Lemma V, § is a Boolean algebra.

The converse is obvious.

4. The topological space #. This section is a sequel to Section 6
of [8]. Throughout this section § denotes a semi-lattice with 0 and # the
space of prime semi-ideals of 8. A4 and 4", denote the set of minimal
prime semi-ideals and the set of normal prime semi-ideals of 8§, respec-
tively. By Corollary 2 under Theorem 6, 4", < A",

TuHeEoOREM 13. If 8 is a disjunction semi-lattice, P is semi-regular.

Proof. Suppose S is a disjunction semi-lattice. Then, by Theorem 10,
every principal ideal of § is a normal semi-ideal. Clearly, every semi-
-ideal is a union of principal ideals. It follows that every semi-ideal of
S is a union of normal semi-ideals. Hence, by Lemma VIII, £ is semi-
-regular.

THEOREM 14. If 8 is closed for pseudo-complements, then the exterior
of every compact open subset of 2 is compact.

Proof. Suppose 8§ is closed for pseudo-complements and g a compact
open subset of #. Then, in view of Lemma IX, we can write

g = F'((0,]U(a;]U ... U(a,]),
where a,,a,,...,a,¢8. By Lemma VII, it follows that ExtF (4)
= F'(A*). Hence
Extg = F'(((a,]V(a,]V ... U(a,])*) = F'((a.T* N (a, TN ... " (a,T)
= F((afa; ... ay]).
Now the result follows by Lemma IX.

Theorems 15 and 16 proved below generalize the corresponding
results of Balachandran [2] on distributive lattices.

THEOREM 15. The subspace A", is discrete.
Proof. Let X = {N;|7eI} be any subset of 4", and NeClX. Then

N=>(N;.

tel
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Suppose N 2 N, for any ie I. Then, for every ic I, N = N; and so
N = |J N;. It follows that

N2 (N N)u(U 7).

tel tel
Consequently

N*c (Q N,.)*m_(g Nt = (Q Ni)*n(g N) = (0].

This is contrary to the fact that N is normal. Hence N = N, for some
Jje 1. By Corollary 2 under Theorem 6 it follows that N = N;. Thus Ne¢ X
and so C1X = X. Hence 47, is discrete.

THEOREM 16. The subspace A" is T,.

Proof. Since no minimal prime semi-ideal contains any other minimal
prime semi-ideal, 4" is T,.

Let X be any non-void closed subset of #” and A¢ X (4e.#). Then
X = #'NF(B) for some Be S, and A 2 B. Hence there exists be B such
that b¢ A. By Theorem 4, A = (b]*. Thus Ae F((b]"). Set

X, = /V'nF((b]) and X, = A NF((b]).
Then, clearly, X, 2 X, A¢ X; and 4de X,. Now
XnX, = 4N (F(B)NF((bT)) < & n(F(d)NF (T
= A NF((bJu(d]*) =0
by Theorem 4. Also
X, UX, = 4 0(F(B)VF((D])) = 4 NF((BIND]) = #'nF((0]) =4
Hence it follows that 4" is regular. This completes the proof.

5. A topology for the set of proper dual ideals. Throughout this section
S denotes a semi-lattice with 0 and 2 the set of all proper dual ideals of S.
The set of maximal dual ideals and the set of dual ideals disjoint with
a semi-ideal A are denoted by .# and G(A), respectively. G (4) stands
for 2 —G(A4).

LEMMA 2. A< B <+ G(4)=2 G(B) + G (4A) < G (B).

Proof. Clearly, A = B= G(4) =2 G(B). Suppose G(A) = G(B). If M is
any prime semi-ideal containing B, CM is a dual ideal and BnCM = 0.
Hence, by hypothesis, ANCM =@ and so M =2 A. By Lemma II, it
follows that A < B. Thus

Ac B <G(A) 2 G(B).
Since G'(4) = 2 —-G(A),
G(A) 2 G(B) <G (4) < G'(B).

Since the set-complement of a dual ideal is a prime semi-ideal, as
a consequence of Lemma VI, we have the following
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THEOREM 17. (i) G(U 4;) = N G4
tel tel

(ii) G(4,nA,n... n4,) =G(4,)VvG(4,)V ... UG(4,).

(iii) G(S) =

(iv) G((0]) = 2

This theorem shows that G defines a closure operation in 2 thereby
giving rise to a topology on 2.

TuroREM 18. (i) G'(U 4,) = U G (4)).

tel tel

(i) G'(4, mAzm . NA4,) =G (A4)NG (4,)N ... NG (4,).

(m) @ (8) =

(iv) &((0]) =

Since G'(4) = Q—G(A), Theorem 18 follows from Theorem 17.

As a consequence of Lemma 2, Theorem 17 and Theorem 18 we have
the following

THEOREM 19. The lattice of all open (closed) sets of 2 is isomorphic
(dually isomorphic) to S, and the mapping A — G (4A) (A — G(4)) takes
arbitrary lattice-sums into corresponding set-unions (set-intersections).

THEOREM 20. If X 48 any subset of 9, C1X = G(X,), where X, is the
product of the set-complements of all the members of X.

Proof. Clearly, G(X,) is a closed subset of 2 containing X. If G(Y,)
is any closed subset of 2 containing X, each member of X is disjoint
with Y, and so the set-complement in S of each member of X contains Y.
Hence X, 2 Y, and so, by Lemma 2, G(X,) = G(Y,). Hence the theorem.

From Theorem 20 it follows that the closure of a singleton set consisting
of an element A of 2 is the set of all dual ideals disjoint with the set-
-complement of A ; this set is the same as the set of all dual ideals contained
in A. Since, of any two distinet dual ideals, one is not contained in the
other, it follows that distinct points of 2 have distinct closures. Hence
we have the following

THEOREM 21. 9 48 T,.

Remark. Theorems 25 to 32 of [8], which we have proved for 2,
hold good for 2 also. The proofs are similar to those of the corresponding
results of [8] but for obvious modifications.

TiEoREM 22. (i) C1G'(4) = G(A4%).

(ii) Int G(4) = G'(4").

(iii) Ext @ (A) = G (4%).

Proof. (i) C1G'(4) = G(B), where B is the product of the set-
-complements of dual ideals meeting A. Clearly, B is the product of all
the prime semi-ideals not containing A. Hence Cl G'(4) = G(4").

(ii) Int G(4) = CCl G (4) = G'(4").

(iii) Ext @' (4) = Int G(4) = G'(4").
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THEOREM 23. The subspace A is T,.

Proof. Since no maximal dual ideal of S contains any other maximal
dual ideal, the closure of no point of M contains any other point of .#.
Hence # is T,.

Let X be a non-void closed subset of .# and M ¢ X (Me .#). Then
X = #NnGE(A) for some AeS, and MnA #0. Let ae MNA. Since
ae M, from Theorems 1 and 4 it follows that Me G ((a]*). Let X, = .#n
NG((al), X, = #NG((al*). Then, clearly, X, > X, M ¢ X, and M X,. Now

X,nX, = AN(G(A)NG((aT*) = AN (G (@) NG ((a]))
= MNG(a]u(al’) =0
since from Theorems 1 and 4 it follows that no maximal dual ideal can be
disjoint with (a]Ju(a]*. Also
X,UX, = #n(G(a])uE((al’)
= MANG(a]ln(a]’) = #£NG((0]) = #.
From this it follows that .# is regular. Hence the result.
We conclude with the following result which is easily proved:

THEOREM 24. The maximal dual ideals of S are precisely the anti-T,
points of D.
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