VOL. XXX 1974 FASC. 1

## AN EXAMPLE OF A LOCALLY UNBOUNDED COMPLETE EXTENSION OF THE p-ADIC NUMBER FIELD

 $\mathbf{BY}$ 

## W. WIĘSŁAW (WROCŁAW)

1. In paper [6] (p. 471, Table 1, and p. 472, Table 3) Mutylin raised the question if there exists a complete minimal and not locally bounded extension of the p-adic number field  $Q_p$  (a field topology  $\mathcal{F}$  is said to be locally bounded provided there exists a bounded neighbourhood A of zero, i.e., for every neighbourhood U of zero there exists a neighbourhood V such that  $AV \subset U$ ). A field topology  $\mathcal{F}$  is called minimal if it cannot be non-trivially weakened, i.e., if the only topology weaker than  $\mathcal{F}$  is trivial. It is well known (see [5] and [7]) that if  $(K, \mathcal{F})$  is a topological field endowed with a minimal topology  $\mathcal{F}$ , then the completion  $\hat{K}$  of K in  $\mathcal{F}$  is a field.

In this note we give an example of a complete locally unbounded extension of a normed field.

I am indebted to Professor S. Hartman for valuable remarks concerning this paper.

2. Let k denote a non-trivially normed field with a norm |a|, and let L = k(x) and I = k[x], where x is transcendental over k. Let  $\varepsilon = (\varepsilon_0, \varepsilon_1, \varepsilon_2, \ldots)$  denote an infinite sequence of positive real numbers. We take the sets of finite sums

$$U(\varepsilon) = \left\{ f(x) = \sum_{n>0} a_n x^n \in I : \bigvee_n |a_n| < \varepsilon_n \right\},$$

as a base of the neighbourhoods of zero in I. We extend this topology to L by putting  $U(\varepsilon, g) = gU(\varepsilon)$ ,  $g \in I$ , and taking the sets  $V(\varepsilon, g) = U(\varepsilon, g)/(1 + U(\varepsilon, g))$  as neighbourhoods of zero in L. Denote this topology by  $\mathscr{T}$ . It was shown in [3] that if  $k = \mathbb{R}$  (with its usual topology),  $(L, \mathscr{T})$  is not a locally bounded topological field. This result is true also for any locally bounded field k [2].

Now, let k be a normed field.

THEOREM 1.  $(L, \mathcal{F})$  is a topological field. Moreover,  $\mathcal{F}$  is a locally unbounded field topology.

This theorem can either be deduced from [2] or else proved directly by a slight modification of the original proof of Gould [3].

We prove that the completion  $\hat{L}$  of L in  $\mathscr T$  is a complete locally unbounded topological field. Hence we obtain

THEOREM 2. For every complete non-trivially normed field k, there exists a complete locally unbounded extension.

First, we need the following

THEOREM 3. Suppose that  $(K, \mathcal{F})$  is a topological field, and  $\hat{K}$  is the completion of K in  $\mathcal{F}$ . Then either  $\hat{K}$  is a topological field or it has divisors of zero. In other words,  $\hat{K}$  cannot be a proper integral domain.

Proof of Theorem 3. If  $\mathcal{F}$  is the discrete topology, there is nothing to do since  $\hat{K} = K$ .

Hence suppose that  $\mathscr{T}$  is a proper field topology and that  $R = \hat{K}$  is an integral domain. Since R contains K as a topological subring, and R has a unit element, every non-zero element invertible in K remains invertible in R. It follows from [1] (Lemma 3, p. 755) that R contains no proper closed ideals. On the other hand, every principal ideal of R is closed:  $aR = \overline{aR}$  holds for every  $a \in R$ ,  $a \neq 0$ .

In fact, if a is a unit of R, in particular, if  $a \in K^{\times}$ , it is clear that  $a^{-1}R = R$ , whence  $aR = \overline{aR} = R$ . Now, let  $a \in R$ ,  $a \neq 0$ , be any non-unit. Since K lies densely in R, there is a net  $a_a \in K$  with  $a_a \to a$ . We can suppose, without lose of generality, that  $a_a \neq 0$  for all a's. Let V be any symmetric neighbourhood of zero in R. Then  $a_a - a \in V$  for sufficiently large a. It follows that  $a_a \in a + V$  and, consequently,  $R = a_a R \subset (a + V) R \subset aR + VR \subset R$ , whence aR = R - VR = R + VR. But  $R \subset R + VR = aR$  and, finally, aR = R holds for every non-zero  $a \in R$ . It proves that R is a field. The continuity of division  $x \mapsto x^{-1}$  in R,  $x \neq 0$ , follows from the continuity of division in the dense subgroup  $K^{\times} = K \setminus \{0\}$  of the multiplicative complete group  $R^{\times} = R \setminus \{0\}$  of R.

Before proving Theorem 2 we insert

Lemma. If the completion  $\hat{I}$  of I in  ${\mathscr T}$ -topology has no zero divisors, then  $\hat{L}$  has none.

Proof. Assume  $a, b \in \hat{L}, a \neq 0, b \neq 0$ , and ab = 0. Since L is dense n  $\hat{L}$  and L is the quotient field of I, we have

(1) 
$$a = \lim_{n} \frac{a_n}{a'_n}, \quad b = \lim_{n} \frac{b_n}{b'_n},$$

whence

$$\lim_{n} \frac{a_{n}b_{n}}{a'_{n}b'_{n}} = 0 \quad (a_{n}, a'_{n}, b_{n}, b'_{n} \in I).$$

If  $f_n/g_n \xrightarrow{n} 0$   $(f_n, g_n \in I)$ , then  $f_n \xrightarrow{n} 0$ . In fact, by the definition of  $\mathscr{T}$ , for any  $\varepsilon$  and  $g \in I$ , there is an  $n_0 \in N$  such that

$$rac{f_n}{g_n} \epsilon rac{U(arepsilon,g)}{1+U(arepsilon,g)} \quad ext{ for all } n \geqslant n_0.$$

Fixing g, we have  $f_n = gh_n$ ,  $h_n \in U(\varepsilon)$ , for every  $\varepsilon$  and large n, and so  $h_n \stackrel{n}{\longrightarrow} 0$  in I. By the continuity of multiplication, we infer that  $f_n \stackrel{n}{\longrightarrow} 0$  in I. We shall show that  $\{a_n\}$  and  $\{b_n\}$  are Cauchy sequences. We have

$$a - \frac{a_n}{a'_n} \in \frac{U(\varepsilon, g)}{1 + U(\varepsilon, g)},$$

whence  $aa'_n-a_n=gh$ , and  $a'_n=1+gh_1$  with some  $h_1,\ h\in U(\varepsilon)$ . Similarly,  $aa'_m-a_m=gh'$ , and  $a'_m=1+gh'_1$ . Hence  $a-a_n=g(h-ah_1),\ a_m-a=g(ah'_1-h')$ , and, finally,  $a_m-a_n=g(ah''_1-h'')$ , where  $h''_1=h_1+h'_1$ , h''=h+h', and  $h'',\ h''_1\in U(\varepsilon)$ . So  $a_n-a_m\to 0$  for  $n,\ m\to\infty$ .

Since I is complete, we have (by (1))

$$a_n \xrightarrow{n} a \in \hat{I}, \quad b_n \xrightarrow{n} \beta \in \hat{I} \quad \text{and} \quad \alpha\beta = 0.$$

Then the assumption of the Lemma yields a = 0 or  $\beta = 0$ , so a = 0 or b = 0. This completes the proof of the Lemma.

Proof of Theorem 2. It is sufficient to show that  $\hat{L}$  has no zero divisors and to apply Theorem 3 together with the obvious remark that  $\hat{L}$  is locally unbounded since (by Theorem 1) such is L. In view of the Lemma, we have but to prove that  $\hat{I}$  has no zero divisors. Let ab=0 in  $\hat{I}$ , and  $b\neq 0$ , where  $a=\lim a_n$ , and  $b=\lim b_n$   $(a_n,b_n\in I)$ . If

$$a_n(x) = \sum_{k \ge 0} a_k^{(n)} x^k, \quad b_n(x) = \sum_{k \ge 0} b_k^{(n)} x^k,$$

$$c_n(x) = a_n(x)b_n(x) = \sum_{k \geqslant 0} c_k^{(n)} x^k, \quad \text{where } c_k^{(n)} = \sum_{r=0}^k a_r^{(n)} b_{k-r}^{(n)},$$

then, since  $\lim_{n} a_n b_n = 0$ , we have

$$\forall \varepsilon = (\varepsilon_0, \varepsilon_1, \varepsilon_2, \ldots) \exists n_0 \forall n \geqslant n_0 |c_k^{(n)}| < \varepsilon_k,$$

and so  $c_k^{(n)} \xrightarrow{n} 0$  for every k = 0, 1, 2, ... All sequences  $\{a_k^{(n)}\}$  and  $\{b_k^{(n)}\}$  are Cauchy and so convergent in  $\hat{I}$ .

Let m be the smallest integer for which

$$\lim_n b_m^{(n)} \neq 0$$

(if there were no such m, we would have  $\lim_{n} b_n = 0$ , contrary to the assumption). Since

$$c_m^{(n)} = a_0^{(n)} b_m^{(n)} + a_1^{(n)} b_{m-1}^{(n)} + \ldots + a_m^{(n)} b_0^{(n)} \xrightarrow{n} 0$$

we have  $\lim a_0^{(n)} = 0$ . Since

$$c_{m+1}^{(n)} = a_0^{(n)} b_{m+1}^{(n)} + a_1^{(n)} b_m^{(n)} + \ldots + a_{m+1}^{(n)} b_0^{(n)} \xrightarrow{n} 0,$$

there must be  $\lim_{n} a_1^{(n)} = 0$  and so on. Thus,

$$a_k^{(n)} \xrightarrow{n} 0$$
 for  $k = 0, 1, 2, \dots$  and  $a = \lim_n a_n(x) = 0$ .

It means that  $\hat{I}$  has no zero divisors. The proof of Theorem 2 is complete.

COROLLARY. The Gould topology  $\mathcal{F}$  on L fails to be the intersection of the type V topologies of L.

## REFERENCES

- 1] В. А. Андрунакиевич и В. И. Арнаутов, Обратимость в топологических кольцах, Доклады Академии наук СССР 170 (1966), р. 755-758.
- [2] M. Endo, On the embedding of topological rings into quotient rings II, Scientific Papers of the College of General Education University of Tokyo 14 (1964), p. 51-54.
- [3] G. G. Gould, Locally unbounded topological fields and box topologies on products of vector spaces, The Journal of the London Mathematical Society 36 (1961), p. 273-281.
- [4] I. Kaplansky, Topological rings, American Journal of Mathematics 69 (1947), p. 153-183.
- [5] H. J. Kowalsky, Beiträge zur topologischen Algebra, Mathematische Nachrichten 11 (1954), p. 143-185.
- [6] А. Ф. Мутылин, Связные полные локально ограничённые поля. Полные не локально ограничённые поля, Математический сборник 76 (118) (1968), р. 454-472.
- [7] Вполне простые топологические коммутативные кольца, Математические заметки 5 (1969), р. 161-171.

INSTITUTE OF MATHEMATICS WROCŁAW UNIVERSITY

Reçu par la Rédaction le 28. 6. 1972