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AN EXAMPLE OF A LOCALLY UNBOUNDED
COMPLETE EXTENSION OF THE p-ADIC NUMBER FIELD

BY

W. WIESLAW (WROCLAW)

1. In paper [6] (p. 471, Table 1, and p. 472, Table 3) Mutylin raised
the question if there exists a complete minimal and not locally bounded
extension of the p-adic number field Q, (a field topology J is said to be
locally bounded provided there exists a bounded neighbourhood A of
zero, i.e., for every neighbourhood U of zero there exists a neighbourhood V
such that AV < U). A field topology 7 is called minimal if it cannot
be non-trivially weakened, i.e., if the only topology weaker than J is
trivial. It is well known (see [5] and [7]) that if (K, ) is a topological
field endowed with a minimal topology Z, then the completion K of K
in J is a field.

In this note we give an example of a complete locally unbounded
extension of a normed field.

I am indebted to Professor S. Hartman for valuable remarks con-
cerning this paper.

2. Let k denote a non-trivially normed field with a norm |a|, and
let L = Fk(x) and I = k[x], where « is transcendental over k. Let
€ = (&9y &1, €3, ...) denote an infinite sequence of positive real numbers.
We take the sets of finite sums

Ule) = {f(a:) = Zanwne I:V |a, < en},
n=0 n

as a base of the neighbourhoods of zero in I. We extend this topology
to L by putting U(e,g) =gU(e), ge I, and taking the sets V(e g)
= Uleg) /(1 + U (¢, g)) as neighbourhoods of zero in L. Denote this topo-
logy by . It was shown in [3] that if ¥ = R (with its usual topology),
(L, 7) is not a locally bounded topological field. This result is true also
for any locally bounded field % [2].

Now, let £ be a normed field.

THEOREM 1. (L, J) is a topological field. Moreover, 7 is a locally un-
bounded field topology.
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This theorem can either be deduced from [2] or else proved directly
by a slight modification of the original proof of Gould [3].

We prove that the completion Lof Lin 7 is a complete locally
unbounded topological field. Hence we obtain

THEOREM 2. For every complete mon-trivially mormed field k, there
exists a complete locally unbounded extension.

First, we need the following )

THEOREM 3. Suppose that (K, T) is a topological field, and K is the
completion of K in I . Then either Kisa topological field or it has divisors
of zero. In other words, K cannot be a proper integral domain.

Proof of Theorem 3. If 7 is the discrete topology, there is nothing
to do since K = K.

Hence suppose that J is a proper field topology and that R = K
is an integral domain. Since R contains K as a topological subring, and R
has a unit element, every non-zero element invertible in K remains in-
vertible in R. It follows from [1] (Lemma 3, p. 755) that R contains no
proper closed ideals. On the other hand, every principal ideal of R is
closed: aR = aR holds for every ae¢ R, a # 0.

In fact, if @ is a unit of R, in particular, if ae K*, it is clear that
a 'R = R, whence aR = aR = R. Now, let ae¢ R, a # 0, be any non-unit.
Since K lies densely in R, there is a net a,¢ K with a,—~a. We can
suppose, without lose of generality, that-a, = 0 for all o’s. Let V be any
symmetric neighbourhood of zero in R. Then a,—aeV for sufficiently
large a. It follows that a,ea+V and, consequently, R = a,Rc(a+ V)R
caR+VRc R, whence akR = R—VR = R+VR. But Rc R+VR = aR
and, finally, aR = R holds for every non-zero ae¢ R. It proves that R
is a field. The continuity of division z+— 2~ ' in R, x # 0, follows from the
continuity of division in the dense subgroup K* = K\ {0} of the multi-
plicative complete group R* = R\ {0} of R.

Before proving Theorem 2 we insert

LEMMA. If the completion I of I in T -topology has mo zero divisors,
then L has none.

Proof. Assume a, be j}, a #0,b #0, and ab = 0. Since L is dense

n L and L is the quotient field of I, we have

. a
(1) a=1lim—, b =1lim—,
n n n n

whence

a b ’ '
lim-—af’ - =0 (a,,a,,b,, b,el).
n nYn
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If [,/9.2>0 (fus gnelI), then f,~>0. In fact, by the definition of 7,
for any ¢ and ge I, there is an noe N such that

L‘_ Ule, 9)

259 tor all n> n,.
gn 1+ Ule, g) ’

Fixing g, we have f, = gh,, h,e U(e), for every ¢ and large n, and so
h,">0 in I. By the continuity of multiplication, we infer that f,, ™ 0 in I.
We shall show that {a,} and {b,} are Cauchy sequences. We have

Ay Ule, 9)

a1+ T(e,g)’
whence aa, —a, = gh, and a, = 1+ gh, with some h,, he U(e). Similarly,
aa,,—a, =gh', and a,, =1+4gh,. Hence a—a, = g(h—ah,), a,—a
= g(ah,—1'), and, finally, a,—a, = g(ah; —h"), where h, = h,+h;,
b’ =h+h', and b, b€ U(e). So a,—a,—0 for n, m - co.

Since I is complete, we have (by (1))

a,*acl, b,2fcl and af =0.

Then the assumption of the Lemma yields a =0 or § =0, 50 a =0
or b = 0. This completes the proof of the Lemma.

Proof of Theorem 2. It is sufficient to show that L has no zero

divisors and to apply Theorem 3 together with the obvious remark that L
is locally unbounded since (by Theorem 1) such is L. In view of

the Lemma, we have but to prove that I has no zero divisors. Let ab = 0
in I, and b # 0, where ¢ =lima,, and b =limb, (a,,b,eI). If

n n
a,(@) = D aPa¥, by(a) = ) bPd,

k=0 k=0
k
(%) = a,(®)b,(r) = Zcﬁ"w", where ¢ = Zaﬁ"’b}}‘_)r,
k=0 r=0

then, since lim a,b, = 0, we have

n

Ve = (g, €19 Egy o0s) Elno n= nolcﬁc’"l < &,

and so ¢ 2 0 for every k = 0,1, 2, ... All sequences {a{”} and {b{™} are
Cauchy and so convergent in I.
Let m be the smallest integer for which

limb{™ =£ 0
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(if there were no such m, we would have hmb = b = 0, contrary to the
assumption). Since

o0 — b 4 a b | 1 ... +apM B0,

we have lima{™ = 0. Since
n

05311 = af,")bgll +a{" o) +... + a;ﬂlbgn) =0,

there must be lima{® = 0 and so on. Thus,
n

a0 for k =0,1,2,... and @ = lima,(z) = 0.
n

It means that I has no zero divisors. The proof of Theorem 2 is com-
plete.

COROLLARY. The Gould topology I on L fails to be the intersection
of the type V topologies of L.
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