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ON MANIFOLDS
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We give in the sequel two conditions that force a closed n-dimensional
manifold to be simply connected. One of these conditions is the entirely
topological one that the manifold have a residual set of codimension at
least two whereas the other requires the existence of a retraction of the
entire manifold onto its residual set. Though the conditions seem not to
be related at first glance, it will be seen that the proofs have a remarkable
similarity. '

In the original decomposition theorem [4], it was shown that each
topological closed manifold (connected) may be written as the union of
two disjoint sets, one of which is a copy of euclidean n-space E" while
the other is a nowhere dense continuum R, the residual set. From the
construction of R there exists in each neighborhood of R an n-manifold
N with a sphere boundary. Such an N contains R in its interior. It was
then shown in [2] that R may be selected so that it is the continuous image
of the boundary of a closed n-cell under a mapping of the closed n-cell
onto the manifold that is 1-1 on the interior of the n-cell. Finally, it is
shown in both [6] and [3] that R may be chosen to be a strong deformation
retraction of N under a pseudo-isotopy of N ; thus R can be selected a rather
nice ANR for which N acts as a topological analogue of a regular neigh-
borhood [8]. '

Homology and cohomology is over the integers unless indicated.

LEMMA 0. An n-manifold X that is compact and has a null-homotopic
8phere boundary is simply connected.

Proof. n = 1 or 2 is trivial. Otherwise close X with an attached n-cell
to get a closed manifold Y. ¥ —p (a point) has the homotopy type of X.
Sets ¥ and X have the same fundamental group. Let K be the universal
covering space of Y. If Y is not simply connected, the counter image of
the point p under projection contains at least two points. K less this counter
image is not trivial in dimension (n»—1)-homotopy. But this group is
isomorphic to that of X; worse Bd X is not trivial (homologically) in X.
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COROLLARY 1. Let K be a closed manifold of dimension at least three.
If K less a point has mo (n —1)-homotopy, then each factor of K is simply
connected.

COROLLARY 2. Let M be a closed n-manifold with a residual set R while
N i8 a compact neighborhood of R with a bicollared sphere boundary. If R
8 a retract of M, then M is simply connected and so orientable (n>2).

LEMMA 1. Let M be a closed n-manifold with an ANR residual set R.
If N is a manifold neighborhood of R with a bicollared sphere boundary,
then M retracts to R is equivalent to M retracts to N.

Proof. Certainly, if M retracts to N, then M retracts to R. Conversely,
if M retracts to R, one has that Bd N is null-homotopicin N. As R is an
ANR, there is an epsilon such that all maps of a sphere into N within
epsilon of R are homotopic [1].

NON-TRIVIAL EXISTENCE. There exist mon-sphere manifolds that are
closed and have residual retracts with non-vanishing (n —1)-homotopy.

Proof. Let M be a closed PL 4-manifold with a 2-sphere R. The
2-dimensional homology of M over rationals has R as a non-trivial 2-cycle.
Therefore R is a retract of M.

By the above equivalence N is also a retract of M. Thus BdXN is
null-homotopic in N. Further the three homotopy of N is non-trivial.

Call an n-manifold that is closed R-refractile if it retracts to its
residual set.

THEOREM 1. An R-retractile n-manifold is simply connected (n>2).

Proof. One may repeat the argument of Lemma 0 after disposing
of the dimension 2.

SEWING THEOREM. The set of R-retractile n-manifolds forms a semsi-
group under sums.

Proof. One takes the sum of two such manifolds, one joins the old
residual sets in disjoint manifolds with sphere boundaries; join the residual
sets by a flat arc meeting each residual set at one endpoint and each
boundary sphere in a point, shrink the arc to a point and retract. It
is true that if a manifold is a sum of two others, there is a nice map of the
manifold onto the one point union of the two factors.

Low DIMENSIONAL TRIVIALITY. If the Poincaré conjecture is true,
all R-retractile manifolds in dimensions three or less are spheres.

Indeed, they are all simply connected except for the 1-sphere.

THEOREM 2. Let M be a closed manifold and let R be an arbitrary residual
set (perhaps indecomposable). If dimension R is n—2 or less, then M 18
simply connected.

Proof. We take the universal covering space of M and note that the
counter image of R cannot separate it and conclude that the projection
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is 1-1; this follows immed\iately by intersecting R with a finite set of
closed evenly covered sets and applying Theorem III.2 of [5].

COROLLARY 1. There i8 no non-simply connected finite k-complex in
a PL n-manifold (k less than n—1) whose regular neighborhood has. a sphere
boundary.

COROLLARY 2. A closed n-manifold that is mot simply connected has
only (n—1)-dimensional residual sets.

DISOUSSION, APPLICATION, AND QUESTIONS

We note that the only homology value among the 4-dimensional
R-retractile spaces is the second Betti number.

ABSOLUTENESS PROPERTY. Let M™ be R-retractile and N a nice neigh-
borhood of R, an ANR again. Then N is a retract of every n-manifold in
which it embeds.

Proof. Put N in K, say. Attach a cone over boundary of N. Map the
closure of K — N into the cone with Bd N fixed. Now N plus the cone is
M and the retraction follows.

COROLLARY TO PROOF. If N is embedded in any k-manifold, there is
a map of the manifold into N that i3 fized on boundary of N.

Note that an N derived from an R-retractile space has many cell-
-like properties, though the fixed point property is not one of them by the
non-trivial existence above.

Manifolds fall into three classes according to properties of their
residual sets:

Simply connected with necessarily (n—1)-dimensional R.

Not simply connected with necessarily (n —1)-dimensional E.

Rest.

Since if M™ is R-retractile, n,(M) =1, then H,(M) =0 and H,_,(M)
has no torsion and H"'(M) = 0.

Because an R-retractile M* has no 1 or 3 non-zero Betti numbers
mod 2, we observe that an M* that is R-retractile necessarily has Euler
characteristic y(M*) = B,+2 and y(R) = B,+1. Thus y(M*) >2 and
if B, =0, M* is a homotopy sphere since x,(M*) = 0. In the case of all
others we may obtain an M* with B, > 0, by summing.

However, these conditions are not even sufficient since S x.8* has
not S°A8% as a retract. In this case BAN(8’AS8%)—N is essential.
Also a retraction r: M*—R is impossible because if ¢,, £&; generate the
H? of §*A 8%, then 74(&, U &) = 0. Hence in dimension 4 it is required
that M* have the property that the cohomology ring be such that if
&, 6 are not the identity nor of dimensions 0 or 4, then &6 = 0, since
dim &4+ dimé = 4.
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In light of the above observations it is interesting to inquire to what
extent the cohomology ring can be used to obtain results on retractile
manifolds. In particular, can they be -characterized using this ring and
some simple condition? (P 908) It is rather easy to get sufficiency results
that a product space need not be retractile.

The following question appears as P 819 in [7]. If dimension of R is
less than » —1 in a closed n»-manifold M while K is a compact connected
(n —1)-manifold in M that is closed, does K separate M ¢ It appears that
Theorem 2 above along with the argument in [7] yields an affirmative
answer to this question.
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