

Examples of Iwasawa invariants, II

by

ROBERT GOLD (Columbus, Ohio)

Let l be an odd rational prime and $k = Q(\sqrt{-m})$ an imaginary quadratic number field with (l, m) = 1. Let K be the cyclotomic (or fundamental) \mathbb{Z}_l -extension of k and $\lambda_l(k)$, $\mu_l(k)$ the Iwasawa invariants of K/k. In an earlier paper, [3], we showed how one could compute the values of these invariants in the case $\left(\frac{-m}{l}\right) = -1$. Our purpose below is to extend this method to the case $\left(\frac{-m}{l}\right) = +1$ and to give the results of some computations in this case.

Let ζ be a primitive l^n -th root of unity and P_n the unique subfield of $Q(\zeta_{n+1})$ of index l-1. Set $k_n=k_0\cdot P_n$. Then k_n is cyclic of degree l^n over k_0 and $K=\bigcup_{n=0}^{\infty}k_n$. Let e_n be the exact power of l dividing the class number of k_n . By the fundamental result of Iwasawa, [4], for all sufficiently large n,

$$e_n = \lambda_l(k)\, n + \mu_l(k) l^n + c \quad ext{for} \quad c\, \epsilon\, oldsymbol{Z} ext{ independent of } n\,, \ \lambda_l(k)\,,\, \mu_l(k)\, \epsilon\, oldsymbol{N}.$$

Using the results of [1], [3] we have programmed a computation of e_1 , e_2 in the case (m, l) = 1. In [3] we showed that a knowledge of e_0 , e_1 , e_2 is sufficient in many cases (all of those examined) to determine λ , μ when $\left(\frac{-m}{l}\right) = -1$. This assertion is based on a result of which Theorem 1, below, is a restatement.

Let $\Lambda = \mathbf{Z}_l[[T]]$, the power series ring over the l-adic integers. Let M be a discrete Λ -module and $\hat{M} = \operatorname{Hom}_{\mathbf{Z}}\left(M, \frac{Q_l}{\mathbf{Z}_l}\right)$, the Pontryagin dual. If \hat{M} is a noetherian torsion Λ -module, then \hat{M} is isogenous to a Λ -module of the form $\bigoplus_{i=1}^t \frac{\Lambda}{(f_i^{s_i})}$ where $s_i \in N$ and each f_i is either

l or an irreducible distinguished polynomial of A ([7], [8], [10]). Let $\omega_n = 1 - (1 - T)^{l^n} \epsilon A$ and, for any A-module X, let $X^{\Gamma_n} = \{x \epsilon X \mid \omega_n x = 0\}$. Call X strictly finite if $\frac{X}{\omega_n X}$ is finite.

See [3] for a proof of the following:

THEOREM 1. If X is a strictly finite compact Λ -module with no finite submodule and X is isogenous to $\bigoplus_{i=1}^{t} \frac{\Lambda}{(f_i^{g_i})}$, then

$$\begin{split} ^{\#}(\hat{X}^{\varGamma_{0}}) &= \prod_{i=1}^{t} \left[\mathbf{Z}_{t} \colon \left(f_{i}(0)^{s_{i}} \right) \right], \\ ^{\#}(\hat{X}^{\varGamma_{n}}) / ^{\#}(\hat{X}^{\varGamma_{n-1}}) &= \prod_{i=1}^{t} \left[\mathbf{Z}[\zeta_{n}] \colon \left(f_{i}(1-\zeta_{n})^{s_{i}} \right) \right]. \end{split}$$

Let A_n be the *l*-primary part of the ideal class group of k_n . Let $A = \varinjlim A_n$, where the limit is taken over the natural extension maps. This A is the Iwasawa module for K/k. When $\left(\frac{-m}{l}\right) = -1$, there is a unique ramified prime in K/k and \hat{A} satisfies the hypotheses of Theorem 1. When $\left(\frac{-m}{l}\right) = +1$, however, there are two ramified primes in K/k and \hat{A} is no longer strictly finite. We will find a strictly finite module by reducing A modulo the classes generated by ramified primes.

Let I_n , \bar{I}_n be the two primes of k_n which lie over l. Then $I_n\bar{I}_n$ is an ideal of P_n and hence l-principal. Also $I_n^n=I_0$ and, if I_0 has l-order l^a in A_0 , then the l-order of I_n in A_n is l^{a+n} , [2]. Let $S=\{I_n,\bar{I}_n\}$, where the value of n will vary with the context. Let B_n be the quotient of A_n modulo the cyclic subgroup of A_n generated by the classes of I_n , \bar{I}_n . So $\#(A_n)=\#(B_n)\cdot l^{n+a}$. The natural extension $A_n\to A_m$, $m\geqslant n$, induces a map $B_n\to B_m$ which is injective, [2]. Let $B=\varinjlim B_n$ under these maps. We will show that \hat{B} satisfies the hypotheses of Theorem 1. Clearly B is a quotient of A and therefore \hat{B} can be imbedded in \hat{A} . Since \hat{A} is a noetherian torsion A-module without finite submodule, [5], [6], [7], it follows that \hat{B} has these properties as well. It remains to show that \hat{B} is strictly finite.

Let $G = G_{n,m} = \operatorname{Gal}(k_m/k_n) \cong \mathbb{Z}_{l^{m-n}}$. Let I_m^S , E_m^S be, respectively, the ideals of k_m prime to ideals of S, the $S \cup S_{\infty}$ —units of k_m ($S_{\infty} = \operatorname{set}$ of infinite primes). Map k_m to I_m^S by $a \mapsto (a)$ and then delete from (a) all occurrence of primes of S. The image, to be denoted by P_m^S , consists of all ideals principal modulo powers of I_m , I_m . The following exact sequences of G-modules are immediate:

$$0 \to E_m^S \to k_m \to P_m^S \to 0$$
, $0 \to P_m^S \to I_m^S \to B_m \to 0$.

In the usual manner one pastes together cohomology sequences to arrive at

$$0 \to H^1(G, E_m^S) \to (I_m^S)^G/P_n^S \to (B_m)^G \to H^0(G, E_m^S) \to H^0(G, k_m).$$

Noting that $(I_m^S)^G = I_n^S$, we have

$$0 \to H^1(G, E_m^S) \to B_n \to (B_m)^G \to H^0(G, E_m^S) \to H^0(G, k_m).$$

The map $B_n \to (B_n)^G$ is the natural extension which, as we have remarked above, is injective. Hence $H^1(G, E_m^S) = \{0\}$. Moreover, the Herbrand quotient of E_m^S is computable (e.g.[9]) and shows that $\#(H^0(G, E_m^S)) = l^{m-n}$. We can, in fact, determine the structure of $H^0(G, E_m^S) = E_n^S/N(E_m^S)$. Since $\mathbb{I}_n \mathbb{I}_n$ is an ideal of P_n , there is a g, relatively prime to l, such that $(\mathbb{I}_n \mathbb{I}_n)^g = (\varrho_n)$ for some $\varrho_n \in P_n$. Furthermore, $\mathbb{I}_n^{l^{n+a}} = \mathbb{I}_n^{l^a}$ which is l-principal and l^{n+a} is the exact l-order of \mathbb{I}_n in A_n . For some g, prime to l, $(\mathbb{I}_n^{l^a})^g = (\lambda)$, $\lambda \in k_0$. It is clear that E_n^S is generated by E_n (the units of k_n), ϱ_n , and λ . Every unit in k_n is the norm of a unit of k_m , [6]. Also $(\varrho_n) = (\mathbb{I}_n \mathbb{I}_n)^g = N(\mathbb{I}_m \mathbb{I}_m)^g = N(\mathbb{I}_m \mathbb{I}_m)^g = N(\mathbb{I}_m \mathbb{I}_m)^g$. Hence $\varrho_n \in N(E_m^S)$. Hence $E_n^S/N(E_m^S)$ is generated by the class of λ and, since \mathbb{I}_m has exact l-order l^{m+a} in A_m , λ has order l^{m-n} modulo $N(E_m^S)$.

THEOREM 2. B is strictly finite; $\#(B^{r_n}) = l^{e_n-n-a+t}$ for some fixed $t \ge 0$.

Proof. B^{r_n} is the inductive limit of groups $(B_m)^{G_{n,m}}$ over increasing m. By the preceding remarks we have an exact sequence

$$(*) 0 \to B_n \to (B_n)^G \to \operatorname{Ker}\left(E_n^s/N(E_m^s) \to k_n/N(k_m)\right) \to 0.$$

We proceed to determine the size of this kernel. Let s(n, m) denote the minimal s such that λ^{l^s} in k_n is the norm of an element of k_m . This power of λ generates the kernel and hence the kernel has order $l^{\kappa(n,m)}$ where $\kappa(n, m) = (m-n) - s(n, m)$.

LEMMA 1. (i) If $n' \ge n$, then $s(n, m) \le s(n', m) + (n' - n)$ and $\varkappa(n, m) \ge \varkappa(n', m)$.

(ii) If $m' \geqslant m$, then $s(n, m') \leqslant s(n, m) + (m' - m)$ and $\varkappa(n, m') \geqslant \varkappa(n, m)$.

Proof. Let $N_{m,n}$ be the norm from k_m to k_n . If $m \ge n' \ge n$ and $\lambda^{l^s} = N_{m,n'}(\beta)$, $\beta \in k_m$, then $\lambda^{l^{s+(n'-n)}} = N_{m,n}(\beta)$. Hence $s(n,m) \le s(n',m) + (n'-n)$. The inequality in (ii) follows in exactly the same manner and the statements for $\varkappa(n,m)$ follow by definition.

LEMMA 2. The conductor of P_m/P_n is $I_n^f \bar{I}_n^f$ where

$$f = f(P_m/P_n) = (m-n)l^n + \left(\frac{l^n-1}{l-1}\right) + 1.$$

Proof. The discriminant of $Q(\zeta_{n+1})/Q$ is well known. Since $Q(\zeta_{n+1})/P_n$ is tamely ramified, it is easy to compute the discriminant of P_n/Q and therefore also of P_m/P_n . If $d(P_m/P_n)$ denotes the exact power of $\mathbb{I}_n\overline{\mathbb{I}}_n$ dividing the discriminant of P_m/P_n , then

$$f(P_m/P_n) = \varphi(l^{m-n})^{-1} [d(P_m/P_n) - d(P_{n-1}/P_n)]$$

by the conductor-discriminant formula. The expression of Lemma 2 is the result of this computation.

LEMMA 3. Let $v_{i_0}(\lambda^{l-1}-1)=t+1$. Then for each $n, \varkappa(n,m)=t$ for all sufficiency large m.

Proof. Since k_m/k_n is cyclic, $\lambda^{l^s} \in N(k_m)$ iff λ^{l^s} is locally a norm everywhere. If $\mathfrak{p} \neq \mathfrak{l}_n$, $\overline{\mathfrak{l}}_n$, then λ is a \mathfrak{p} -unit and \mathfrak{p} is unramified in k_m/k_n . Hence λ is a local norm at \mathfrak{p} . By the norm symbol product theorem, the smallest power of λ which is locally a norm at $\overline{\mathfrak{l}}_n$ is the smallest power of λ which is globally a norm. The completion of k_n at $\overline{\mathfrak{l}}_n$ equals the completion of P_n at $\overline{\mathfrak{l}}_n$, the unique prime over l. In these completions, λ is a local unit.

First let n=0. Since the conductor exponent for P_m/P_0 , by Lemma 2 or as is well-known, is m+1, a unit of $(P_0)_l=Q_l$ is locally a norm from P_m if and only if, up to (l-1)-st roots of unity, it is congruent to 1 modulo l^{m+1} . Hence, if $r_{l_0}(\lambda^{l-1}-1)=t+1$, then s(0,m)=m-t for all $m\geq t$. Therefore $\varkappa(0,m)=t$ for $m\geq t$.

For general n, by Lemma 1, we have $\varkappa(n,m) \leqslant \varkappa(0,m) = t$ for $m \geqslant t$. On the other hand, if $\nu_{l_0}(\lambda^{l-1}-1) = t+1$, then $\nu_{l_n}(\lambda^{l-1}-1) = (t+1)l^n$. The exponent of the conductor of P_{n+t}/P_n is $tl^n + \left(\frac{l^n-1}{l-1}\right)+1$ by Lemma 2.

This is less than $(t+1)l^n$. Hence λ is a local norm from P_{n+t} to P_n . So s(n, n+t) = 0 or $\varkappa(n, n+t) = t$. Applying Lemma 1 again, we see that, for $m \ge n+t$, $t = \varkappa(n, n+t) \le \varkappa(n, m) \le \varkappa(0, m) = t$. So for every n and $m \ge n+t$, $\varkappa(n, m) = t$.

Returning to (*) and the proof of Theorem 2, we see that for all sufficiently large m,

$$^{\#}[(B_n)^G] = ^{\#}(B_n) \cdot l^t = ^{\#}(A_n) \cdot l^{-(n+a)} \cdot l^t = l^{e_n-n-a+t}.$$

Let ε_n be the exact power of l dividing $\#[B^{r_n}]$. Then

$$\varepsilon_n = e_n - n - a + t$$
 and $\varepsilon_n - \varepsilon_{n-1} = e_n - e_{n-1} - 1$.

Corollary of Theorem 1 (see [3]). If for some $n\geqslant 1,$ $\varepsilon_n-\varepsilon_{n-1}<\varphi(l^n)$, then

$$\mu(B) = 0$$
 and $\lambda(B) = \varepsilon_n - \varepsilon_{n-1}$.

The exact sequence $0 \to \mathbb{Z}/l^{n+a}\mathbb{Z} \to A_n \to B_n \to 0$ gives rise, in the limit, to $0 \to \mathbb{Z}_l \to A \to B \to 0$. Hence, by [3], $\mu_l(k) = \mu(A) = \mu(B)$ and $\lambda_l(k) = \lambda(A) = \lambda(B) + 1$. Thus follows:

Corollary. If (-m/l)=+1 and for some $n\geqslant 1,\ e_n-e_{n-1}\leqslant \varphi(l^n),$ then

and

$$\mu_l(Q(\sqrt{-m})) = 0$$

$$\lambda_l(Q(\sqrt{-m})) = e_n - e_{n-1}.$$

Explanation of Tables

Table 1. For each l=3,5,7, and 11 and for each d with 0 < d < 264 and (-d/l) = +1 the computed values of e_0 , e_1 , e_2 are given. Recall e_i is the l-order of the class number of the ith layer of the Z_l -extension of $Q(\sqrt{-d})$. The computational formula is that of [3].

Table 2. For each l=3,5,7, and 11 and each d,0 < d < 264, the entry in the table gives the sign of (-d/l) and the nonnegative integer $\lambda_l(Q(\sqrt{-d}))$. In all cases $\mu_l(Q(\sqrt{-d})) = 0$. The class number of $Q(\sqrt{-d})$ is given under h. For (-d/l) = +1 the values in this table are read off from Table 1 by application of the above corollary. In all cases $e_2 - e_1$ was sufficiently small to imply that $\mu = 0$ and $\lambda = e_2 - e_1$. For (-d/l) = -1 the values given are copied from [3]. For the case $l \mid d$, one may use the fact that if $e_0 = 0$ and l does not decompose as a product of distinct primes in $Q(\sqrt{-d})$, then all $e_n = 0$. The entries for $l \mid d$ are left blank in the table.

We note also that, as a consequence of Corollary 4 of [3], the formula $e_n = \lambda_n + e_0$ is valid for all n > 0 for all values of l and d in this table with the single exception l = 3, d = 239. In this exceptional case we have instead $e_n = 6n - 2$ for n > 1.

Table 3. This table gives some values of the invariant t described in Theorem 2 and in Lemma 3. Note that if $e_0 = 0$, then t = 0 if and only if all $e_n = n$, [2].

References

- R. Gold, T-extensions of imaginary quadratic fields, Pacific J. Math. 40 (1972), pp. 83-88.
- [2] The nontriviality of certain Z_l -extensions, to appear in J. Number Theory.
- [3] Examples of Iwasawa invariants, Acta Arith. 26 (1974), pp. 21-32.
- [4] K. Iwasawa, On T-extensions of algebraic number fields, Bull. Amer. Math. Soc. 65 (1959), pp. 183-226.
- [5] On some properties of Γ-finite modules, Ann. of Math. 70 (1959), pp. 291-312.
- 6] On the theory of cyclotomic fields, Ann. of Math. 70 (1959), pp. 530-561.
- [7] On Z_l-extensions of algebraic number fields, Ann. of Math. 98 (1973), pp. 246—326.
- [8] Yu. Manin, Cyclotomic fields and modular curves (Russian), Uspehi Matem. Nauk. 26 (6) (162) (1971), transl: Russian Math. Surveys, 26 (1971), pp. 7-77.
- [9] M. Rosen, Two theorems on Galois cohomology, Proc. Amer. Math. Soc. 17 (1968), pp. 1183-1185.
- [10] J. P. Serre, Classes des corps cyclotomiques, Sem. Bourbaki, 174 (1958), pp. 1-11.

Table 1

t = 3				l = 5				l = 7				l == 11			
d	e_0	e_1	e_2	d	e_0	e_1	e_2	\overline{d}	e_0	e_1	e_2	d	e_{o}	e_1	e_2
8	0	1	2	4	0	1	2	3	0	1	2	7	0	1	2
11	0	1	2	11	0	2	4	19	0	1	2	8	0	1	2
20	0	1	2	19	0	1	2	20	0	1.	2	19	0	2	4
23	1	2	3	24	0	1	2	24	0	1.	2	24	0	1	2
35	0	2	4	31	0	1	2	31	0	1	2	35	0	1	2
47	0	2	4	39	0	1	2	40	0	1	2	39	0	1	2
56	0	2	4	51	0	2	4	47	0	1	2	40	0	1	2
59	1	2	3	56	0	1	2	52	0	1	2	43	0	1	2
68	0	1	2	59	0	1	2	55	0	1	2	51	0	1	2
71	0	1	2	71	0	1	2	59	0	1	2	52	0	1.	2
83	1	2	3	79	1	2	3	68	0	1	2	68	0	1	2
95	0	1	2	84	0	1	2	83	0	1	2	79	0	1	2
104	1,	2	3	91	0	I	2	87	0	1	2	. 83	0	1	2
107	1	3	5	104	0	2	4.	103	0	1	2	84	0	.1	2
116	1	2	3	111	0	1	2	104	0	1	2	87	0	1	2
119	0	1	2	116	0	1	2	111	0	2	4	95	0	·I	2
131	0	1	2	119	1	2	3	115	0	1	2	107	0	2	4
143	0	1	2	131	1	2	3	131	0	1.	2	116	0	1	2
152	1	2	3	136	0	2	4	132	0	1	2	120	0	1	2
155	.0	1	2	139	0	1	2	136	0	2	4	123	0	1	2
164	0	3	6	151	0	1	2	139	0	1	2	127	0	2	4
167	. 0	1	2	159	1	2	3	143	0	3	6	131	0	1	2
179	0	.1	2	164	0	2	4	152	0	1	2	139	0	1	2
191	0 -	I.	2	179	1	2	3	159	0	1	2	151	0	1	2
203	0	1	2	184	0	1	2	164	. 0	1	2	164	0	1	2
212	1	2	3	191	0	1	2	167	0	1	2	167	0	1	2
215	0	1	2	199	0	1	2	187	.0	1	2	183	0	1	2
227	0	2	4	211	0	1	2	195	0	2	4	184	0	1	2
239	1	4	10	219	0	1	2	199	0	1	2	195	0	1	2
248	0	1	2	231	0	1	2	215	1	2	3	211	0	I	2
251	0	1,	2	239	1	2	3	223	1	2	3	215	0	1	2
260	0	2	4.	244	0	I	2	227	0	1	2	219	0	1.	2
263	0	1	2	251	0	1	2	244	0	1	2	227	0	2	4:
				259	0	1	2	248	0	1	2	228	()	1	2
				264	0	1	2	251	1	2	3	239	0	1	2
								255	0	1	2	244	0	2	4.
					,			264	0	1	2	248	0	1	2
												255	0	1	2
				1								259	0	1	2
				\								260	0	1.	2
												263	0	1	2

Table 2

d	h	l = 3	5	7	11	d	ħ	l=3	5	7	11
3	1		-0	+1	-0	132	4		0	+1	
4	1	-0	+1	-0	0	136	4	-0	$+\overset{\circ}{2}$	+2	-0
7	1	-0	-0		· +1	139	3	-1	+1	+1	$+\tilde{1}$
8	1	+1	-0	-0	<u> 1</u>	143	10	+1	1	+3	•
11	1	+1	+2	0	-	148	2	-0	-0-	-0	-0
15	2			-0	-0	151	7	0	+1	3	+1
19	1	 0	+1	+1	+2	152	6	+1	0	+1	0
20	2	+1		+1	-0	155	4	+1		-0	-0
23	3	+1	-0	0	-0	159	10		+1	+1	-0
24	2		+1	+1	+1	163	1	-0	-0	-0	- 0
31	3	1	+1	+1	-0	164	8	+3	+2	+1	+1
35	2	+2			+1	167	11	+1	0	+1	+1
39	4		+1	-0	+1.	1	4		-0		-0
40	2	-0		+1	+1	179	5	- I	+1	-0	-0
43	1	0	-0	-0	+1	183	8		0	0	+1
47	5	+2	1	+1	-0	184	4	-0	+1	-0	+1
51	2		+2	0	+1	187	2	0	-0	+1	
52	2	-0	-0	+1	+1	191	13	+1	+1	-0	-0
55	4	-0		+1		195	4			+2	+1
56	4	+2	+1		0	199	9	-1	+1	+1	-0
59	3	+1	+1	+1	-0	203	4	+1	-0	0	0
67	1	-0	-0	-0	-0	211	3	2	+1	-0	+1
68 71	4 7	- - 1	-0	+1	+1	212	6	+1	-0	-0	0
79	5	$^{+1}_{-0}$	$+1 \\ +1$	$-1 \\ -0$	-0	215 219	14 4	+1	+1	$+1 \\ -0$	$^{+1}$
83	3	+1	-0		+1	223	7.	-0	-0	+1	-0
84	4	T.	-0 + 1	+1	$+1 \\ +1$	227	5	$^{-0}$	$-0 \\ -1$	+1 +1	+2
87	6		 0	+1	+1	228	4	72	-0	0	$+1 \\ +1$
88	. 2	-0	0	-0	T.*	231	$\frac{\pi}{12}$		$^{-0}$	0	Ţ. .
91	2	-0	± 1	····	0	232	2	-0	-0	-0	~0
95	8	+1	1. *	-0	+1	235	2	-0		_0 _0	-0
103	5	0	1	+1	-0	239	15.	+6	+1	0	+1
104	6	+1	+2	+1	_o	244	6	1	+1	- - 1	$+\tilde{2}$
107	3	+2	-0	-0	+2	247	6	-1	$-\tilde{0}$	0	-0
111	8		- <u>-</u> -1	+2	-0	248	8	+1	-0	+1	+1
115	2	0	• • • •	+1	-0	251	7	+1	+1	+1	-0
116	6	+1	+1	-0	+1	255	12		•	+1	+1
119	10	+1	-+1		-0	259	4	- 0	+1		+1
120	4			0	+1	260	8	+2		-0	+1
123	2		-0	-0	+1	263	13	+1	0	-0	+1
127	5	-0	-2	0	+2	264	8		+1	+1	
131	5	+1	+1	+1	+1						

d	l .	h	í	λ	d	l	h	t	λ
11	3	2	0	I	136	5	4	1	2
11	5	2	1	2	136	7	4	1	2
19	11	1	1	2	143	7	10	1	3
20	3	2	0	1	164	3	8	3	. 3
. 35	3	2	1	2	164	5	8	1	2
47	3	5	2	2	227	3	5	1	2
51	5	2	3	2	239	3	15	0	6
56	3	4	1	2	244	11	6	1	2
84	5	4	0	1	248	3	8	0	1
104	5	- 6	1	2	260	3	8	1	2

DEPARTMENT OF MATHEMATICS ORIO STATE UNIVERSITY Columbus, Ohio

Received on 20. 8. 1973 (447)

Limit theorems for lacunary series

b:

WALTER PHILIPP (Urbana, Ill.)

Dedicated to Professor Paul Erdös to his 60th birthday

1. Introduction. A sequence $\langle x_n \rangle$ of real numbers is called uniformly distributed mod 1 if its discrepancy

$$D_N = \sup_{0\leqslant a < \beta\leqslant 1} |N^{-1}A(N,\,\alpha,\,\beta) - (\beta-a)| {\rightarrow} 0\,.$$

Here $A(N, \alpha, \beta)$ is the number of indices $n \leq N$ with $\alpha \leq \{x_n\} < \beta$. (As usual, $\{\varepsilon\}$ denotes the fractional part of ε .) Let $\langle n_k, k \geqslant 1 \rangle$ be a lacunary sequence of integers, i.e. a sequence of integers satisfying

$$(1.2) n_{k+1}/n_k \geqslant q > 1 (k = 1, 2, ...).$$

It is well known (see [8]) that the sequence $\langle n_k x \rangle$ is uniformly distributed mod 1 for almost all x. A much sharper result is due to Erdös and Koksma [3]. They proved that for almost all x

$$(1.3) ND_N(x) \ll (N\log^3 N\log\log N\omega(N))^{1/2}$$

where $\omega(N)$ is any monotone sequence increasing to ∞ . In 1954 Erdős and Gaal improved (1.3) to

(1.4)
$$ND_N(x) \ll N^{1/2} (\log \log N)^{5/2+\epsilon}$$
 a.e.

for any $\varepsilon > 0$, but their result was never published. (See [1], p. 56.) As a matter of fact most workers in the field expected even a law of the iterated logarithm to hold which would replace the exponent $5/2 + \varepsilon$ in (1.4) by $\frac{1}{2}$ which is best possible. The purpose of this paper is to prove this conjecture, often referred to as the Erdős-Gaal conjecture. More precisely, we shall prove the following theorem.

THEOREM 1. For almost all x

$$32^{-1/2} \leqslant \limsup_{N \to \infty} \frac{ND_N(x)}{\sqrt{N \log \log N}} \leqslant C$$