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Let I be an odd rational prime and k = Q(V —m) an imaginary
quadratic mumber field with (I, m) == 1. Tnet K Dbe the cyclotomic (or
fundamental) Z,extension of % and (%), 4(k) the Twasawa invariants
of K /L. In an earlier paper, (3], we showed how one could compute the

¥
values of these invariants in the case (TL) = —1. Qur purpose below

is to extend this method fio the case (—:Zﬂ) = -+1 and to give the results

of some computations in this case.
Let ¢ be a primitive I"-th root of unity and P, the unlque subfield
of Q(L,..) of index I —1. Set k, = k,-P,- Then &, is cyclic of degree ™ aver

k, and K = |J%,. Let ¢, be the exact power of I dividing the class

n=0
number of k,. By the fundamental result of Iwasawa, [4], for all suf-
ficiently large n,

e, = AE)n+ ()" +¢  for ceZ independent of n,
M), (k) e V.

Using the results of [1], [3] we have programmed a computation
of ¢, ¢, in the case (m, 1) = 1. In [3] we showed that a knowledge of.
€y, 61, €, is sufficient in many cases (all of those examined) to determine

4, u when (%"3) — —1, This assertion is based on a result of which

Theorem 1, helow, is a restatement.
Let ./1 71[[5‘?]] the power series ring over the l-adic integers.

Tet M be a discrete .-module and M Homy (JII QI—), the Pon-

I

tryagin dual. IE JI'I is a noethema.n torsion A-module, then M is isogenous

to a A-module of the form @ where s;e N and each f; is either

& 7
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I or an irreducible distinguished polynomial of A ([7], [8], [107]).
Let w, =1-—(1—TVed and, for any A-module X, let X'n

= {weX| w,x =0} Call X strictly finite if is finite.

i3

See [3] for a proof of the following:
TurorEM 1. If X is a strielly finite compact A-module with no finite

toA
submodule and X 1is isogenous o @ -—, then

=1 (f7¥)

f .

) = []12e (004,

fe=1
i

HE ey = [ (20800 (#0605

i=1

Let A, be the I-primary part of the ideal elass group of %,. Let
4 == lim4,, where the limib is taken over the natural extension maps.

This A is the Iwasawa module for & {k. When (—%?') = —1, there is

a unigue ramified prime in K& and A satisfies the hypotheses of The-

orem 1. When (T) = -1, however, there are two ramified primes

in K[k and 4 is no longer strictly finite. We will find a strictly finite module
by reducing 4 modulo the classes generated by ramified primes.

- Let 1, T, be the two primes of %, which lie over 1. Then LI, is an
ideal of P, and hence l-prineipal. Algo 1 = I, and, if I, has [~order i in
Ay, then the l-order of [, in 4, is **" [2]. Let 8= {I,, 1,}, where the
value of n will vary with the context. Let B, be the quotient of .4, mo-
dulo the cyclic subgroup of 4, generated by the classes of I,,1,. So
(Ay,) = ¥(B,)- 1" The natural extension 4,—4,,, m>n, induces a map
B,—+B,, which ig injective, [2]. Let B = l_i_ngn nnder these maps. We
will show that B satisties the hypotheses of Theorem 1. Clearly B is
a quotient of 4 and therefore B can be imbedded in 4. Since A s » noe-
therian torsion /-module without finite submodule, [5], [6], [7], it fol-
lows that B has these properties as well. It Temains to show that B is
gtrictly finite.

Let & =@, ,, = Gal(k,/k,) o= Zm—n. Let I, B he, respectively,
the.ideals of k,, prime to ideals of S, the § u 8, —units of &, (8, = set
of infinite primes). Map k,, to IS by a — (a) and then delete from (a) all
oceurrence of primes of 8. The image, to be denoted by P, eonsists of
all ideals principal modulo powers of 1, 1,,. The following exact sequences
of G-modules are immediate: . '

0B >k, Py >0, 0P IS »B, 0.
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In the usual manner one pastes together cohomology sequences to
arrive at

0 - HY G, BS) —~ (I5)° Py — (B,)" - H' (&, By) — HY@, Fy)-
Noting that (I5)F = 15, we have '
0 %’HI(G: E;?'l) ”“%’Bn - (Bm)a "*HO (Gs E':‘Sn) ""HO(GJ km)'

The map B,— (B,) is the natural extension which, as we have re-
marked above, i injective. Hence H'(G, By} = {0}. Moreover, the Her-
brand quotient of BS is computable (e.g.[9]) and shows that #H (G, BE))
e= ™% We ean, in fact, determine the structure of H(G, Ef,) = H; |V {(B,).
Sinee 1,1, is an ideal of P, there is a g, relat}gely I;rime to I, such t.ha.t _
(1,1,)7 == (o,) for some g, <P, . Furthermore, B = ¥ which is.l?rmclpal
and. I"*® i the exact l-order of [, in 4,,. For some g, prime to I, (BN = (4),
Aek,. It is clear that I is generated by £, (the unifs of %,), 0,y and A.
Every unit in 70“ ig the morm of a unit of %,, [6] Also (g,) = (L, L.}
= N(l,L.) = (¥ (e,)). Hence g,eN(E;,). Hence M, (N (E;) is generated
by the class of 4 and, since I, has exact {-order ™% in 4,,, 2 has order
=" modulo N (EL). :

THEOREM 2. B is stricily finite; F(B™) = 197" "% for some fiwed
t = 0.

Proof. B ig the inductive limit of groups (B,)%m over increasing
m. By the preceding remarks we have an exact sequence

(%) 0 —+ B, —+ (Bp)® - Ker (B3 [N {B5,) = Fy /N (Fy)) 0.

We proceed to determine the size of this kernel. Let ¢(n, m) denote the
minimal ¢ such that A*° in &, is the norm of an element of k,,. This power
of 1 generates the kernel and hence the kernel has order " where
%(m, m) = (m—n)—s(n, M)

Tevma 1. (1) If a'=mn, then $(n,m)< s(an', m)-+(n —n) and
{n, m) = x(n', m). .

(i) If m' =m, then s(n, m)<s(n, m) 4 (m' —m) and =(n, m'}
= % (n, m).

Proof. Let N, , be the norm from &, to k,. If mzazn and
7 = Ny (B, fetim, then 25T = W, (8). Hence s(n, m) < s(n', m) -+
+ (% -n). The inequality in (ii) follows in exactly the same manner
and the statements for x(n, m) follow by definition. :

Lemma 2. The conductor of P[P, is LT, where

) w1y .
f zf(PmIan) = (fm’""%)ln“}"( 1—1 )+1'
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Proof. The diseriminant of @ (Z,.,)/@ is well known. Since @ (¢,,,)/P,
is tamely ramified, it is easy fo compute the discriminant of P, /9 and
therefore alse of P, /P,. It d(P,/P,) denotes the exact power of .1,
dividing the discriminant of P,,/P,, then .

FPw[Py) = @) APy [P,) — (P, -y /P,)]

by the econductor-discriminant formula. The expression of Lemma 2 is
the result of this computation.

Lemncs 3. Let v (' —1) = t+1. Then for each n, x(n, m) o= 1 for
oll sufficiency large m. '

Proof. Sinee k,/k, is cyclic, ¥° e (k,,) iff A is loeally & norm every-
where. If p =1, 1, then 1 ig a p-unit and p i8 unramified in %, /%, . Hence
418 a local norm at p. By the norm symbol product theorem, the gmallest
power of 4 which is locally a norm at T, is the smallest power of 4 which
18 globa.}ly & norm. The completion of &, at I, equals the completion of
P, at 1,1, the unigue prime over I. In these completions, A is a local unit.

First let # = 0. Since the conductor exponent for P, [Py, by Lemma
2 or as is well-known, is m 1, a unit of (Py), = @, is locally & norm from
P, it and only if, up to (1—1)-st roots of unity, it is congruent to 1 modulo
", Henece, if vy (=1 ~1) = ¢ 41, then s(0, m) = m —t for all m > ¢, There-
fore (0, m) = ¢ for m > ¢ .

For general #, by Lemma 1, we have w(n, m) < x(0, m) = ¢ for m =t

On the other hand, if (A7 —1) =141, then v (AT L) = (1)
. "
The exponent of the conductor of P, /P, is 6"+ (El_:_ll‘) -+1 by Lemma 2.

Thig is less than (141)1". Hence A is a local norm from P, toP,. So
s{ny n+1) = 0 or z(n, n-+1) =t Applying Lemma 1 again, we see that,
for m = n 44,4 = u(n, n+1).< %(n, m) ' %(0, m} = 1. So for every n and
w2z w45, w(n, m) = 1. :

Returning to {+) and the proof of Theorem 2, we see that for all
sufficiently large m,

FB)YT = (B, ¥ = F(A,,) 10 o penn—att
Let ¢, be the exact power of | dividing [ B”: #], Then,

En = C—n—a-+t  and e —e ) =m0, —6, 1.

COROLLARY 0F THEOREM 1 (see [3]). if for some nz 1, &, — s, _, < (i),
then |

W(B) =0 and A(B) = By Epy-
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The exact sequence 0 > Z/I*1%Z — 4, — B, — 0 gives rige, in the limit,
to 0-Z;—+A->B—0. Hence, by [3], u{k) = u(d) = u(B) and A(k)
= A{A) = A(B)+1. Thus follows:

COROLLARY. If (—mfl) = +1 and for some n=1, 6,—e,_, < @(i*),
then

1 (QV —m)) = 0
’1!(@ (]/:E,)) =8y 8y 1.

and

Explanatien of Tables

Table 1. For each 1 = 3, 5,7, and 11 and for each d with 0< d < 264 and
{—dfl) = -1 the computed values of ¢, e, ¢, are given. Recall ¢; is the [-order of

the class number of the 4th layer of the Zj-extension of Q(I'/—:&). The computational
formula i that of [37. :

Table 2. For each [ = 3,5, 7, and 11 and each 4, 0 < d < 264, the entry in the
bable gives the sign of (—d/l) and the nonnegative integer 2;_(@(]-/—-d)). In all cages
(R —

d)} = 0. The class number of Q(}"Td) is given under k. For (—4dfl) = 41
the values in this table are read off from Table 1 by application of the above corollary.
In all cases e, —e, was sufficiently small to imply that g = 0 and i = e,-e,. For
(—d/ly = —1 tho valuegs'giveu are copied from [31. For the case l}d, one may use
the fact that if 6, = 0 and I doos noi decompose as a product of distinet primes in
Q¥ —d), then all e, = 0. The eniries for 1@ ave left blank in the table.

We note also that, as a congequence of Corollary 4. of [3], the formula e, = 1, 4 &,
is valid for all n = 0 for all values of I and 4 in this table with the single exception
I =8, d = 239. In this exceptional case wo have instead e, — 6n—2 for n> 1.

Table 3. Thig table gives sorne values of the invariant ¢ deseribed in. Theorem
2 and in Lemma 3. Note that if ¢, = 0, then { = 0 if and only if all ¢, = =, [2].
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Table 1
[ =3 I =5 =17 I ==11
d € € @ d e e & & 6 ey 6y d e 6 e
T8 o 1 2 4 0 1 2 3 0 1 2 70 1 2
11 0 1 2 10 2 4 12 0 1 2 8 0 1 2
2 ¢ 1 2 19 0 1 2 20 0 1 2 19 ¢ 2 4
23 1 2 8 24 0 1 2 24 0 1 2 24 0 1 2
3 0 2 4 310 1 2 31 0 1 2 3 0 1 2
47 0 2 4 39 0 1 2 40 0 1 2 00 1 2
56 0 2 4 51 0 2 4 47 0 1 2 40 0 1 2
58 1 2 3 56 0 1 2 B2 0 1 2 43 0 1 ¢
68 0 1 2 59 0 1 2 85 0 1 2 5. 0 1 2
1 0 1 2 L0 1 2 89 0 1 2 52 0 1 2
88 1 2 3 79 1 2 8 88 0 1 2 68 0 1 2
95 0 1 2 84 0 1 2 83 0 1 2 79 0 1 2
104 1 2 3 91 0 1 2 87 0 1 2 8 0 1 2
107 1 3 B 104 0 2 4 08 0 1 2 84 0 1 2
16 1 2 3 11 0 1 2 104 0 1 2 87 0 1 2
119 0 1 2 116 0 1 2 1L 0 2 4 9 0 1 2
131 0 1 2 119 1 2 3 115 0 1 2 107 0 2 4
143 0 1 2 131 1 2 3 131 ¢ 1 2 116 0 1 2
152 1 2 3 126 0 2 4 132 0 1 2 120 0 1 2
158 0 1 2 | 129 0 1 2 126 0 2 4 128 0 1 2
164 0 3 @ 51 0 1 2 139 0 1 2 127 0 2 4
167 0 1 2 159 1 2 3 143 0 3 ¢ 181 0 1 2
79 0 1 2 164 0 2 4 152 0 1 2 186 0 1 2
191 01 2 179 1 2 3 159 0 1 2 151, 0 1 2
208 0 1 2 18¢ 0 1 2 164 0 1 2 i6d 0 1 2
212 1 2 3 191 0 1 2 1w 0 1 2 187 0 1 2
215 0 1 2 199 0 1 2 187 0 1 2 183 0 1 2
227 0 2 4 211 0 1 2 195 0 2 4 | 184 0 1 2
239 1 ¢4 10 219 0 1 2 199 0 1 2 195 0 1 2
248 0 1 2 231 0 1 2 216 1 2 3 213 0 1 2
251 0 1 2 230 1 2 3 223 1 2 3 216 0 1 2
280 0 2 4 244 0 1 2 227 0 1 2 219 0 1 2
263 0 1 2 251 0 1 8 244 0 1 2 227 0 2 4
' 250 0 1 2 248 0 1 2 228 0 1 2
264 0 1 3 281 1 2 3 239 0 1 2
255 0 1 2 244 0 2 4
; 264 0 1 2 248 0 1 2
255 0 1 2
250 0 1 2
260 0 1 2
263 0 1 2

Bxomples of Iwasowae invariants, IT 239
Table 2
d h =3 5 7 11 d h 1=23 5 7 11
3 1 -0 + 1 -0 132 4 -~ 0 +1
4 1 ~0 +1 ~0 -0 | 13 4 —0 42 42 —0
7 1 —0 -0 +1 139 3 -1 +1 +1 +1
8 1 +1 —0 —0 +1 143 10 +1 —1 +3
11 I 41 +2 -0 148 2 -0 —0 —0 —0
15 2 -0 -0 |11 7T -0 41 =3 41
19 1 -0 +1 +1 +2 152 6 +1 -0 +1 0
20 2 41 +1  —0 | 135 4 41 -0  —0
23 3 +1 -0 -0 —0 159 10 +1 +1 -0
24 2 +1 +1 +1 163 1 -0 -0 -0 -0
3. 8 —-1 +1 31 -0 | 164 8 43 42 41 41
35 2 +2 +1 167 11 +1 —0 +1 +1
39 4 +1 —0 41 188 4 —0 —10
40 2 —0 +1 +1 179 8 ~+1 +1 -0 —0
43 1 —0 —0 -0 +1 183 8 —0 -0 +1
47 5 +2 -1 +1 —0 184 4 -0 +1 -0 +1
61 -2 +2 -0 +1 187 2 —0 —~0 +1
52 & -0 -0 41 . 41 ;191 13 +1 +1 -0 -0
55 4 -0 +1 195 4 +2 +1
58 4 +2 +1 —0 199 9 —1 +1 +1 —0
49 3 +1 +1 +1 —0 203 4 +1 —0 —0
67 1 -0 —0 —0 —0 211 3 —3% +1 -0 +1
68 4 -1 —0 +1 +1 212 6 -1 -0 —0 -0
71 7 +1 +1 —1 —0 215 14 4-1 +1 +1
7¢ 5 -0 41 -0 -1 219 4 41 —0 +1-
83 3 . +1 —0 +1 +1 223 7 -0 —0 “+1 —0
84 4 -1 -1 227 5 +2 —1 -+1 +2
87 6 —0 41 1 | 228 4 -0  —0 =1
88 2 —0 —0 -0 . 231 12 +1
91 2 —0 +1 —0 232 2 -0 —0 -0 —~0
96 8 +1 -0 —+1 235 2 -0 - —0 —0
103 5 - —1 +1 -0 ! 239 15 + & “+1 —0 -+ I
104 6 +1 +2 +1 —0 244 @ el 41 +1 +2
W7 % +2 -0 -0 2| 247 & -1 =0 —0 —0
111 8 +1 +2 -0 248 8 41 —0 +1 —+1
s 2 -0 +1 =0 | 251 7 1 41  +1 =0
- kLG 6 +1 +1 —0 +1 256 12 _ 41" +1
119 10 +1 -+1 —0 259 4 —0 +1 +1
120 4 -0 +1 260 8 -+2 —0 +1
123 2 —0 —0 +1 283 13 +1 —0 —0 +1
127 b -0 —2 -0 42 264 8 +1 +1
131 b +1 +1 -+1 +1



icm

240 R. Gold
[
Table 3 !
d 4 B { A d l h ¢ A 1
' |
11 3 2 0 1 1386 5 4 1 2 !
11 5 2 1 2 136 7 4 1 2
19 11 1 1 3 . 143 7 10 1 3
20 8 2 0 1 164 3 8 3 3
35 3 2 1 2 164 5 8 1 2
47 3 5 2 2 227 3 5 1 2
51 8 2 3 2 239 3 15 0 [§]
56 3 4 1 2 244 11 4] 1 2
84 5 4i 0 1 248 3 8 0 1
104 ] B 1 2 260 3 3 1 2
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1. Iniroduction. A sequence {z,> of real numbers iz called uniformly
distributed mod L if its discrepancy
(1.1) Dy = sup |N7TTA(N,a, f)—(f—a)|—0.
[ Ea2ef-E-}
Here A (N, o, f) is the number of indices n< N with a<{z,) <p. (As

-ugnal, {¢} denotes the fractional part of &.) Let {n,, k¥ = 1> be a lacunary

sequence of integers, i.e. a sequence of integers satisfying
{1.2) itz g>1 (B=1,2,..).
Tt is well known (8ee [87]) that the sequence (n,x) is uniformly distributed

mod 1 for almost all 2. A much sharper regult is due to Erdos and Koksma
r3]. They proved that for almost all @

(1.3) NDy(@) < (Nlog* Nloglog Naw (W)

where o{N) is any monotone sequence increasing to co. In 1854 Erdés
and Gaal improved (1.3) to

(L4) NDylz) < N*(loglog Ny e,

tor any &> 0, but their result wag never published. (Bee [1], p. 56.) As
a matbor of fact most workers in the field expected even a law of the
iterated logarithm to hold which would replace the exponent 5/2--¢
in (1.4) by } which is best possible. The purpose of this paper is to prove
this conjecture, often referred to as the Erdos-Gaal con]ecture More
precisely, we shall prove the following theorem.

THEOREM 1 For almast all @

ND,
(1.5) 3217 < Limsup D) <
¥ow VNloglogN



