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1. Introduction. In this paper we study the sets

8(a) = {n: o¢(n) = a (mod n)},
Sp(e) = {n: ¢(n) = kn-ta},
Fla) ={n: n =a(mod p(n))};
Fla) = {n: n = k-p(n)+a},

where ¢ and k are infegers, % is a natural number, o(#) is the sum of the
divigsors of n, and ¢(n) is Huler’s function. _ :

There are several famous problems in number theory connected with
cerbain of these sefis. For example, §,(0) is the set of perfect numbers and
8(0) is the set of multiply perfect numbers. No one knows any odd members
of §8{0) other than 1, nor is it known if §(0) is infinite.

Another famous question is to identify the composite members of
F(1), it there are any. :

Other problems that have been raised along these lines are: Is
§8.(1) = 6% (Cattaneo [1] has called members of §8,(1) guasi-perfect.)
‘What are the members of F{—1)% (D. H. Lehmer [8] identified 8 mémbers
of thiy set.) What are the members of §,(2)? (Makowgki [9] identified
11 members.) What are the members of F(0)? (Sierpiniski [11], p. 232,
completely deseribed this set.)

From Sierpinski’s description of F(0) it follows that this set has
density 0. Although a complete description is lacking for §(0), Kanold
[7] showed that this sef also has density 0. The main result obtained in
this paper ig that for any choice for a, the sets §(a) and #(a) have density
0. In fact we show that the number of members of §(a) (or F(a)) which
are < % is O(n/logn) and that for some choices of a this result is best
possible.
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fr is a real oumber, then a natoral number » will be ealled r-abun~
-~ dant it o(n)jnz=r, and n will be called primitive r-abundant if the only
divisor of n which is r-abundant is = itself. The main result of Section
4 is that if @ 0, then there are only finitely many members of S,(a)
which are nol primitive k-abundant numbers, wﬂ;h cerbain explicit excep-
tions -given.

Another result obtained is that for every a, 8(ea) containg at least
two elements and F{a} containg at least four elements.

2. Elementary observations.

TrmorEM 1. If k<1, then Sy(a) end F (a) are finite sets for amny
choiee of a, ewcept that 8,(1) = I'y (1) = the set of primes.

Proof. This result iz obvious if k< 0 or if o < 1. Hence we assume
k=1 and 4> 2. Then every member of §,(a) and F,(a) iz composite.
Let #» be an arbitrary composite mumber > a2 Then n hag a divisor b
with & <b<mn. Hence o(n)zun+b>n+ae and pr)Ln—b <n—aqa,
8o that n¢S,(a) and n¢F' (a). Hence every member of S,(a) and 7, (a)
is << ol

We ask for which values of % and a is 8,.(a) or 7, (@) finite or infinite.
Theorem 1 sefitles this question if % < 1. The following theorem identifies
some infinite §y(a) and Fy(a) where k> 1.

TumorEM 2. If ne8(0), then pn'e‘S‘a(n),,;( (n) for all primes pin.
If mekF | (0}, then pMESm,W(m)( m) for all primes p+m.

Proof. Let neS(0) and let. » be a prime with p 1n. 'l‘hen a{pn)
= (p-+L)o(n) = (a(n)/n) pn+ o(n). Also if meF(0) and p i a prime with
ptm,  then - p(pm) = (p—L)g(m) = (p(m)/m) (pm~m) s0 that pm

= (mjp(m)) ¢(pm)+m.

We note that Theorem 2 genemhzes the observation of Mglkowslki
[9] that if = is perfect and p is a prime with »tn, then pnely(2n). We
further note that Theorem 2 does not necegsarily desoribe every member
of a SL,(,L,,,,,( a(n)) or a Iy (). Indeed 24e8,(12) (Where == 668, (00)
and 1122 ¢ 1,(1.62) (where m = 162 e 7, (0)).

.+ - Makowski [9] has noted that §,(--1) contains every power of 2 2, s0
that there are infinite S,(a) which are not in the form S(,(,,‘)m( (n)).
We know of no ofher example. Also J9(0) containg every power of 2
and F 3(0) contains every power of 6, so there are infinite #.(a)

which are not in the form F ..., (m). Again we know of no otber

. examples

Theorem 2 suggests that we partition each S(a) and F(a) into two
dlBJOlD.t subsets

S(a) = 8%(a) v §(a),
F( a) = I*(a) v F'(a),
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where

8%a) = {pn: p prime, pta, neS(0), o(n) = a},
(w) = S(a)\8%a),

Fo(a) = {pm: p prime, prm, meF(0), m = a},

I'(a) = Fla)F"(a).

Hence, in particular, if ¢ =4 o(n) for ail %<S{0), then (@) = 8(a), and

i w ¢ B(0), then F'(a) = F(a).

3. The mam result,
Lwumma 1. There i a constant o such that
o{n) n,
e e glOgloOg R
n gln)
Jor every natural nwumbor nZ 3.

Temma 1 follows from Theorems 328 and 329 in E’[ardy and V\fmght
(5], ». 267.

Lemma 2. Let  be an integer, let ¢ be o natural number, and let p,,
ps be primes suoh that (1) p,re, (i) p; > 2aloglogo whm o= 3, (i) p,e
> 4lol, and (iv) p;ced’(a} for ¢ =1, 2. Then p, = p,.

Proof. Let k; he the integer (0‘ (pec) —a)[pee for 4 =1, ﬁ E»u_ppow
first 1:11an Iy ==ky = k. Then

kpio--a = o(pe) = (pg+1)a(e},
go that
pilo(e)—ke] = a—o(e) for 4=1,2.
That is, | |
Pala(6)—ko] = py[o(6)—Te] = a—a(c),

and our result, p; == p,, will follow provided we ghow o(&)—ke = 0.
But i o(¢)—ko = 0, then a—¢(e) =0 and ¢e§(0). Thiz contradicts
condition (iv).
Now puppose &y 4 ke, 80 8ay by > ky. Bub
(Pe-t-1)o(e) == Tegpyo-i-a
Implies :
(L1 pi)o(e)/e) =

Then, sinee %, —ky, > 1 and |o/pe| < 1/4, we have

& ) ( 1 .1.) ale) 1 Ui?_)_

by--afpo  fox  de=1,2.

1 .
':"" <. lﬂl = kﬂ ”‘l" N
Pr @} ¢ Py ¢

2 P1e Pyl
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so that o(e)fe> 9,/2 > alogloge when ¢33, contradicting Lemma 1.
¥ ¢ =1, then clearly o(c)/c } p,/2. Finally, if ¢ = 2, then (i) implies
Py 3> 3, 80 agan o(e)je > p/2.

Teuma 3. Let @ be an integer, let ¢ be o natural number, and let p,,
Py be primes with (1) p,re, (i) p; > 14 2alogloge when ¢ =3, (i) po
> 64a?, and (iv) p,eel’(a) for i = 1, 2. Then p, = p,.

We omit the proof of Lemma 3 since it i almost identical with that

of Lemma 2. We note that it is helpful to use the fact that ¢(n) > I/Z/Z
- for every natural number n (cf. Sierpingki [11], p. 280).

Levmma 4. Let n be a notural number and let
= (lognloglogn)"

Then the nwmber of natural nwmbers m < » whioh do not sabisfy bol,h of the
conditions:

(1) the greatest prime foctor of m dis grester than esVe;
(2) the square of the grealesi prime factor of m does not divide m;
is O(n/e"™) where <1/I/F is an arbitrary constant.

If we let § be a constant < 1/24, then Lemma 4 ig an 1mmed1ate
corollary of a lemma proved by Erdss [3], pp. 50-51. Actually; the truth

of Lemma 4 for some positive constant g is the main thing, not how large

we rmay ta,ke B, for all of the corollaries to Theorem 3 would remain true.

For this reason, we omit the proof that any g < 1 /]/— 2 will do. This proof .

is easily obtained by sharpening the estxma.tes made by Erdos in the cited
lemma,

TeeoREM 3. Let a be an arbitrary integer. The number of members
m of 8 (a) (or F'{a)) whith ars < n is

8

n
O\————%
gf o nloglogn)t/

where §-< 1{V2 is, arbitrary.
CorOLLARY 1. The number of members m of 8 (a) (or I (4)) which are

= n 48
O N T
(logn)’
Jor any j.

COROLLARY 2. The sum of the reciproools of the members of S'(a) (or
I (a)) converges.
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CoroLLARY 3. The number of members m of S(a) (or F(a)) which

are = n s
#
4] .
(logﬂ)

In particulor, S{e) and F(a) have density O.

Proof of Uorollary 3. This iz a combination of the Prime Nuwmber
Theorem (or the weaker m(n) == O(nflogn)), Theorem 3, and the paxtition
of S{e) and (a) mentioned at the end of Section 2.

Proof of Theorem 3. In the notation of Lemmas L and 4, let
n be large enough go that eV = 1.-2aloglogn. In view of Temma 4

- we may ignorve those nurabers m =< » which do not satisfy conditions

(1) and (2) of that lermma. Let the members of 8'(a) (resp. I (a)) which
are = » and 2= 64a? and which satisfy conditions (1) and (2) of Lemma
4 be Ty, Mgy .-y Wy, Lael p; be the largest prime dividing m;, and write
Wy = P, where pite;. Then for ¢ =1,2,...,1 we have ¢ < nfedvi,
Hence it will be sufficient to show that ¢, ey, ..., ¢ are all distinet. Bub
thig follows from Lemma 2 (resp. Lemma 3). Thiz completes the proof
of the main theorem. '

‘We remark that mueh betber eatimates arve available for §(0) and
J(0). Indeed, Hornfeck and Wirsing [6] (also see Wirsing {12]) proved
that the number of members of §(0) which are = n is O(n’) for every
e > 0. Sierpitgki noted that

H(0) = {1} U {2'39: £ 0,4 = 0}.

Hence the number of members of F(0) which are < n is O ((logn)3).

It might be true that for a general a, the sets §'(e) and F'(a) ave
just as sparse as §(0) and F(0). Indeed, we know of no counter-example.
But we also know of no proof,

Had our only goal heen to prove that §(a ( ) and F{a) have density
0, there would hawve bheen a shorter route which would have by-passed
the need for Lemmay L—zL Indead, nmkum use of the continuons distri-
bution functions of o(n)jn snd njp(n) (of. Davenport [2], Erdés [4],
and Schoenberg [107), the result is a;lm.oat immediate,

4, Qther resulis.

TiRoREM 4. Hor every o, tlm'a are ab Zeass twe members of N{a) and
Jour members of T (a).

Proof. st we note that L8 (a) for every a. Suppose ¢ = 0 or 2.
Then there is & prime p with ple—1, and hence peS{g). In addition
6e3(0) and 20¢8(2). _

To prove the assertion about F'(a), we first note that 1 and 2 <F(a)
for every a. Tun addition 4 and 6¢F(a) for évery oven a. Hence we may
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agsume a 18 odd. Then 3eF{a). Now every odd a satisfies precisely one
of the following congruences: ‘

a=1(4), a=7(8), a=3(24), ao=11(24), a =19(24).

- But 5eF(a) if & =1(4), 16¢F(a) it & =7 (8), 9cF(a) if a =3 (24),
35l (a) if @ =11(24), and 7<F{a) if o =19 (24).

‘With regards to possibly improving Theorem 4, we remark that we
know of no members of §(b} other than 1 and 2. Iowever it might well
be provable that every F(a) contains at least H members, since we cannot
find an a for which 5 members of F(a) are not easily obtained.

‘We notied in the proof of Theorem 4 that peS(a) for every prime
p dividing & —1. But ¢ —1 is “usually” divisible by loglog (& —1) distinct
primes (¢f. Theorem 431 in Hardy and erght [6], p. 366). Hence given

.any N, the set of all o for which §(a) has < IV elements has density 0
in Z. We de not know if the same i3 true fox F(a). However it is easy to
obtain a weaker result: namely, given N, the set of all a for which F{a)
has < ¥ elements has upper density << 1 in Z. Indeed, if m iz a natural
pumber > N and if ¢ =0(mod2™), then 2'<F(a) for ¢ =10,1,...,
m 41, so that F(a) has > m+2 > N elements.

We recall now the deﬁmblon of a primitive r-abundant number
(cf. Seetion 1).

THREOREM 5. Let a2 0, k be integers. Then there arve ot most fimitely
many members of 8,(a) N & (a) which are not primitive k-abundant numbers.
To prove Theorem 5, we shall need the following lemma:

Lievwa 5. If m is o proper divisor of n, then o (m)fm < ar(n {n. Further,
if omYn =k, then

a(m)—km < o(n)—kn.

Proof. The first assertion follows from the fact that o(z)/x is a mulbi-
plicative function of z, and if z = p® a prime power, we have o(p%)/p®

=1+p'4...4p% To prove the second assertiom, we note tha;t
a(m)/m << o (n)fn implies '
m)—k —
o(m) m< o (n)—Tm .
m d

Since o(n)—kn = 0 and since 0 << m < », we have

o{n}—kn _ o(n)—kn
= .
) m
and our coneclusion follows.

Proof of Theorem 5, If neS,(a) is not a primitive k-abundant
number, the first part of Lemma'5 Implies we can write n = mp where
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a(m) = km and p is a prime. Henece if Theorem b fails, there is a sequence
My Py < MgPy < ... such that m;p,e8(a} O 8 (a), o(my) = km;, and p, is
prime. By passing to an infinite subsegquence, we may assume either

1. pylmg for 4 =1,2,...;

2. pytm for i =1,9,...

Asgume COase 1 holds. Let a; > 0 be such that pfflm,. If {m,} is
a finite set, then {p,} is a finite set, and hence {m,;p;} is a finite set, a con-
tradiction. Hence by pasging to an infinite subseqguence, we may agsume

My, Mg, +.. are mutually digtinet.
Now for 4 ==1,2,..., we have
o (P :
{1) o == o (mypy) — kmyp, = Tl o (my) —km;py
80 tha
o (my)

‘ & = P;Lo (1) == Emy] =l
(2) pifo(my) 1 o (p)
Hence

(™) ( m, ) My
R ] ;p;____._
o (pf) it oot

Hence by passing to an infinite pubsequence, we may asgume

® ==

Ilence there is & natural number u such that for ¢ =1,2,... we have

(4) m; = upf .

Suppose for some ¢ = j we had p; = p;. Then since m; == my, (4)
implies 2, s o, say ;< o;. Then myp, is a. proper divisor of m;p;, s0
that (1) contradiets Lemma b. Hence we have that py, P, ... are mutua]ly
distinet. Bub (2) gives us

(B) a = p;lo(mg)— k] +o (@),

and henee for 4 == 1, 2, ..., we have p;|a—o(u). Bince the p, are mutually
distinet, wo must have & = o(u). Then (3) implies o(my) ==lm; tor

L]

i1, 8, .. Henoe
a(my) kg pi
7(u) = o (p) = p . o(pf)
so that (3) implies
,’;'31‘ - ___.:pz —.
o(pfy  o(pP)
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But the fractions pfijo(pf) appear in reduced form, so pft = pf2 = ..,
2 conclusion we have already seen is impossible. Hence Case 1 coes not
0Geur.

Agsuming Case 2 holds, we note that

& = g (Mg Pgy— kg Py = (Pg+1) o (M) — kmyp; = plo{mg) —Ekm;]4 o (my).

Then if o(m,;) = km;, we would have a = o(m;) and hence m,p;¢8 (@),
a contradiction. Hence we may assame o{m;) > km;, Then fori =1, 2, ...
we have

H

& 2 py+o(my) 2= py+my.

But either {p;} or {m;} is unbounded, so we have a contradiotion. This
completes the proof of Theorem 5.
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An “exact” formula for the 2n-th Bernoulli number
_ N

TTAns Rissen (Stockholm)

Summary. In [1], Chowla and Hartung prove the following formula
for the Bernoulli number B,,: The integer

an
B - TE e T 6: T A e N
N 2(2% —1)( 1) By, =1+ [“*—zm:'fﬂ—mrﬂz L
Jims1
where [#] as usual denotes the greatest integer < a. The iden behind
the above formula is te use the formula

i Tty
. 1 - . 2 mn ( 1‘) 20

and to sum the series for {(2n) far enough to get j;he rational mu.nber
B,, out sufficiently aceurate in order to have its procise valuo determ1ged.
According to heavy overestimation of the denomlnffmtor. of B,,, howe\rer,—
(1) snms the sexies in. (2) unnecessarily far. The obJectwg of _the prese_nt
paper is to show that a much smaller number of terms suftlces’m t-he Beries
for £(2n). It turns out as is natural to suspeet, that .the B,’s with laur-ge
denorminators will need morve terms than the others in a for_nuklla, of the
Chowla—Hartung type; to make a comparison, 0}1r formu?a. (.1.3) needs
only 4 terms for By, which has a large denowminator 1919190, where
Chowlo—Hartung’s formula needs B4 terms. fl‘he nuiml.mr gf. Terins
neodlod 1o get By nb all procigely by the used 1‘:eehmque is in this 0a80 3.
We also deduce a corresponding formula with the dencminatoxs entlm%y
removed by the use of the von Staudi~Clausen theorem. Tt needs still
fewer terms from the series for £(2n).

An upper bound for the denominator @y, of By, = Pyp [Qgn s A I8
well-known, the denominator of B,, is

(3) Q=[] »
(1) |20



