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But the fractions pfijo(pf) appear in reduced form, so pft = pf2 = ..,
2 conclusion we have already seen is impossible. Hence Case 1 coes not
0Geur.

Agsuming Case 2 holds, we note that

& = g (Mg Pgy— kg Py = (Pg+1) o (M) — kmyp; = plo{mg) —Ekm;]4 o (my).

Then if o(m,;) = km;, we would have a = o(m;) and hence m,p;¢8 (@),
a contradiction. Hence we may assame o{m;) > km;, Then fori =1, 2, ...
we have

H

& 2 py+o(my) 2= py+my.

But either {p;} or {m;} is unbounded, so we have a contradiotion. This
completes the proof of Theorem 5.
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An “exact” formula for the 2n-th Bernoulli number
_ N

TTAns Rissen (Stockholm)

Summary. In [1], Chowla and Hartung prove the following formula
for the Bernoulli number B,,: The integer

an
B - TE e T 6: T A e N
N 2(2% —1)( 1) By, =1+ [“*—zm:'fﬂ—mrﬂz L
Jims1
where [#] as usual denotes the greatest integer < a. The iden behind
the above formula is te use the formula

i Tty
. 1 - . 2 mn ( 1‘) 20

and to sum the series for {(2n) far enough to get j;he rational mu.nber
B,, out sufficiently aceurate in order to have its procise valuo determ1ged.
According to heavy overestimation of the denomlnffmtor. of B,,, howe\rer,—
(1) snms the sexies in. (2) unnecessarily far. The obJectwg of _the prese_nt
paper is to show that a much smaller number of terms suftlces’m t-he Beries
for £(2n). It turns out as is natural to suspeet, that .the B,’s with laur-ge
denorminators will need morve terms than the others in a for_nuklla, of the
Chowla—Hartung type; to make a comparison, 0}1r formu?a. (.1.3) needs
only 4 terms for By, which has a large denowminator 1919190, where
Chowlo—Hartung’s formula needs B4 terms. fl‘he nuiml.mr gf. Terins
neodlod 1o get By nb all procigely by the used 1‘:eehmque is in this 0a80 3.
We also deduce a corresponding formula with the dencminatoxs entlm%y
removed by the use of the von Staudi~Clausen theorem. Tt needs still
fewer terms from the series for £(2n).

An upper bound for the denominator @y, of By, = Pyp [Qgn s A I8
well-known, the denominator of B,, is

(3) Q=[] »
(1) |20
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where the product is extended over all primes p, for which p —1 divides
2n. The question is: How large might @,, get? First, all primes except
2 are odd, hence (apart from the trivial factor 1) only even divigors of
2n count. Now the even divisors of 2n all are of the form 2 x (a divisor
of n). Furthermore the number of divisors of n, d(n), is < 2[Vn], since
the divisors oecur in pairs, d and »n/d, and there are at most [V@] divigors
< [Vn]. (If n = m® there is even one divisor less, since m == njm in this
case.) If all the even divisors 2d of 2% would lead to primey 2d--1, we
would have

2n
4 = =
(4) ‘ Q= 2 ﬂ(zd-{-i)( y 11),
d<[Vn)
and o fortiord
L 20
(5) 2 2 2d -1 (__ )
. & Q( -+1) p -1

But (5) is easy to overestimate accurately. First,

6) ﬁzd;1

_(2sF1)! (28 +17H Y9 (25 £1) - e0/12Es4D), g2e
o= 28-(8!)2 o BTl a8, G889 o, bafbs
< (28 11)%(V25 +1)8 |
(23)2S ‘8.~g]/§;
25 3/ ‘ |
- i (1 - _1._) . M gt (2_3_5_1:)_13__2_:";
N Ve sV 2x

e
Here we have used Stirling’s formula with remainder (0 < 6, <1, 0 < 8, < 1),

and the fact that (1-+1/n)" approaches its limit e from helow, as n—oo.
Next,

28, 31/12(25-1—1)

. 61/’243 .

(7 H (2n+d) < (2% +- %i) ,

[ 20

aeeording o the inequality between the geometric and arithielic mean.
Thus, finaily

81,’243

8
s ) 25(28 1)

o . s
(8) Qﬂn < 2 (2%_'%" e
5V 9

< 0.8(dnts+1P (25 1) 605, with s = [Va].
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The numerater { —~1)*1P, of (—1)""'B,,. Using (8), we now get the
integer

- (27)1Q
(9) (”"1),1_11)21@, = (_1)11, IBZnQEW. = 22%1113: g(‘?‘ﬂ‘)
M1 [2<3
Zn)! N VT,
_ @010 (N Y1)
f=l Jo=a Il

Now the remainder

[nv] 4]
10) S < [ MU M0 (2 —1)
M _ i

= (1. + ——?L) M=o, it M 3n-—-1.
2n—1

In order to defermine the integer (——1.)”"1?2,,,' precigely, by using only
the M —1. fitst terms of the series, it suffices to choose M large enough
to make the remainder

| 2010 T o
(11) Rl 2416 < 1.
M

e
22n Ln.m

Using (8) and (L0), we geb the tollowing condition for this:
(2m)10.8 (4n 5 +1) (28 H1)*7 24

-1 2%
2 w8

aM <,

{12)

where s = [1/;]. This gives

{(2n) 1P 3.2 (4 - 5 1)
2,”,31/2%

(A )t (3.2

1fan
'""S” ) (4% Ny «l—l)s‘mn (28 __[__1)!!;,‘41@6],143718 ,

(28 -+ 1)3/m1561/-1a'ns

it Mo 2n—1. o
Tixampa, For 2m = 36, (13) gives with & == [V18] = 4

(14) Mo «_'ir»lﬁ- (72r)H12 0,81 TTHI T GRS o 4 0L,
. o
Tn this case our deduction shows that 4 torms of the geries would sulfice
to give the numerator of By with an error less than one unit. Knowing
By, = —26315 27155 8053477373 /1919180 we can check upon - 19191908, X
% k=%, and in this way we find that only the 3 first terms of the series
actually are needed to defermine Py, precisely. The asymptotic value
of M in (13) is nf(em) = 0.1171n, compared b0 Chowla—Hartung’s 3#.
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Remark. The practical man5s approach to the pfoblem would
to discard the whole of the foregoing theoretical discussions, includ
the complicated formula (13), and just compute the integer

(Zﬂ) !sz

227&--1 TEE?’L

(15) Py, = (L2~ L3~ L )

by taking just as many terms of the series as needed for this integer
identify itgelf mnambiguously.

A formula with still fewer terms. By the use of the von Stau
Olausen theorem:

(16) By = — > 1fp(mod1),
(p—-1)i2n
we know that
(17) ' 02:1‘:*329:,'4" X l/.'p
- (p—1)j22

ig an integer. These integers have heen computed by Knuth and Buekk
[2]. Tn this way we get Tid of the tedions deduction of an wpper bol
for @,,, and we get

Tl — f __1yua-—l _ Ty 1_,;':__.
(18) (=17 0oy = (=17 By (1) Y

1 2n}!
= (= 3 e

B! @n)! 1
= Y g () Y]
fgeml Toun 4
Using (10), we get the remainder
(2m)t
(19) R < iy 2 n
if M<2n—1. Now R<1 for all
2 !11/2n4:1lzﬂ. .
(20) o> AEMET Gy,
_ 2 o7t

‘With this formula the previous example 2n = 36 gives I > 2.36, wh
shows that 3 terms suffice with this technique. As a matier of f
—C434°37 a0 107" 5o that only 2 terms would suffice in this case. 1
asyraptolic number of terms needsd is the swme as for the previous cs
nf(ew). The “practical man’s approach” also applies.
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Formulas with still fewer terms. One might use other relations hetween
B,, and {(2n) to get similar results. Using e.g.
o0 ) :
™y . ( __1)n—1 {2211. _1) n:m .B.;
21 ‘} Pl 1Y) oo {1 BTEY F (D) mm o e mrm e s
1) @k = )¢ (2n) e

would give formulas for B,, that need only approximately half as mumy
terms a8 the ones expesed above.
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