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On mean values of L-functions and short character sums
with real characters

by

Marrr Jorra (Torka)

1. Intreduction. Let g, be the Dirichlet character {mod|D|) determined
by Kronecker's symbol (I)/n). Here D is assumed to be & non-square integer
satisfying D =0 or 1 (mod 4). A summation over such values of D will
be denoted by 3" and a summation over fundamental discriminants
by ™. Our aim in this paper is to prove the following two theorems (the
constant in the symbol < is everywhere absolute):

THEOREM 1. For X 2= 3, T' > 0 we have

(1.1) P f|L ity xp)|2dt € XTlog" (X (1 +1)).
IDl<X ~1
Tunorem 2. For X =3 and 1 = ng Y we have
(1.2) . 33| 3 amAn|r < XN X

DX 1Y 0V

The basgic tools in the proef of Theorem 1 are a mean value theorem
for Dirichlet polynomials. with real characters (Lemma 1 below} which
we obtained in [2], and an expression for L(s, ) due to Ramachandra [4]
(Lemma 2 below). A combination of these yields the theorem by a straight-
forward calculation.

Theorem 2 is deduced from Theorem 1 using a method of Linnik
(Lemmas 3 and 4).

In [1] we proved the following mean value estimate for character
gpums which we applied to Dirichlet polynomialy in [2]:
Z" P gw(fn)l2 < X logtx.
DX 1 ¥
In an earlier version of the paper we modified the method of [1] to prove
Theorem 2 directly, without using L-functions, and then deduced Theorem 1
from it. However, the present method is technically simpler though also
less elemontary, mince we need the functional equation for. L-functions
and complex integration which we digpensed with in the earlier version.
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2. Lemmas. The firgt lemma is Theorem 1 of [2].
LeMua 1. Let X = 3, N = 2 be natural numbers, let a,, n =1, ..., ¥

be any complex numbers, and define

N
Fs, ) = X oy m)n.

Write
| X
I
Zy = 3 la,f.
1

Then for any real T, and any pbsitive T we have

Ty+

|17, o)

DX Ty

1]

< TX (G | 4= (T XYM N5 200" N,
’ 1<m, RN
M=ol

LeMMA 2. Let x be o primitive non-principal chavacter, U = 2, and leot
L(s, %) =v(s, 0 L(1—¢,7)

be the fumctional equation for Li(s, x). Then we have for s == L 44t, 0 << f << 1

— 2 x(%) ,n—ae—'n.fU o
1

: -] I —14-g+w w
T T om w(s E—w,x)(Zx(%)n ) I'(w) Udw —
Rowe —F-} =7
1
ct [ vtern o S ey,

Rew=-—p§ ) n U

Proof. This is an analogne of Lemma 3 in Ramachandra’s paper [4].
We repeaf the proof for completeness. Starting with the well-known
identity

oo 1 z-{-.ioc:
v y
;x(%) T W"sz Lig 4w, %) (w) U,
we move the line of integration first to Rew = —f—% (at w = 0 we

encounter a pole of the integrand with the residue L (s, y)), use the funetional
equation, retain the portion » > U of the series for L(l-s—w,7) and
move the line of integration in ‘nhe mtegrcml containing the portion n < U
to the line Rew = —,6’
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Lmyvma 3. Write for a Dirichlet chavacier y and for real a ¥ 2 2

8layz) = > e(—na)e™™F y(n).

H[ 78

1
Then with © = N +2nia we have

D A-Foa
Sla, g) === | Lw, ) w)a"dw,
where 7% meons the principal value of the power.
LommA 4. Led

N
T{a) = > e(na)e™,
[\]
Then

oo R
S ('n—l—v)‘ e < D [|8(a, 1o} T(a) 2da.
|1 DX n=1 o<v<N I1Dl=X ¢
Lemma 3 iy verified by Mellin’s transformation and Lemma 4 by

interpreting arithmetically the integral on the right.

3. Proof of Theorem 1. If T < 1, then (1.1) follows from (1.3) by
partial suromation. So we assume that T= 1, If 4 is a fundamental
discriminant, then xa is primitive, and by Lemma 2

T
2 f | Le(% -4, xg)RdE < 2 f'l%a: ”)%—(mﬂt) ——n/Ui di

s ~T gl X 1
o 2* f{ f]'w(—'ﬁ—Fif-l--'i’L‘, xd)w 2%&(”)%_1_/‘;““‘”) %
& X -1 oo =i
iy
X \D(—B=3+in)| T aw ar+ 37 flw% fit+iv, 2l %
[ﬂIkX—-,P _

x| 3 galmyn= =D D g )| U e |

N5 U7

= A+ B0,

say. Choose U = (XT), B = (log(X1))~"
Mplitting up the series in 4 into sums over intervals of the type
[94, 9%, § = 0,1, ..., and using Lemmsa 1 to each of thege sumy we have

4 < XTlog(XT) Y
j=0 t'sm, 11.<:22?'+1
mip=={l

+(XT) log( XT) Ny (2 Log(ad)

=0

(m%)—:lfz e-—(‘m-l-'n),’U +
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g0 That
(3.1) A <€ XTlog®(XT).

In B and O the integral over |tv] = log?(XT) is negligible. Congider
the remaining terms. In € we have

wt— it +dv, ) I —B+iz) U~ < log(XT),
and estimating the integral over ¢ and the sum over d ag above, we obtain
(3.2) : ¢ < XTlog"(XT).
To estimate B note that
(= B+it-tin, 20 (=B~} +iv) U=0-1) & (XT)'®,
and that bjr Lemmsa 1

1

Z* f f Z Xcz(%)%—l-“ﬁw(t-,‘,)
|dj =X -1 a7
Hence B < XTlog*(XT). Combining this with (8.1)~({3.2) we obtain
iy

20 [ LG+t zai*dr < XTlog" (XT).
<X —r
For the proof of (1.1) note that D = de? where d is a (uniguely

determined) fundamental diseriminant, and that then

T8y k) = Lls, za) [ [ (1~ zalp)p ).

nla

Y d < (XT)log (XT).

(3. 3)

So .
L3+t 2ol < ALG+it, )P [ [ (1 +p70p,

: via
where

n (14p~ Ve g (Z‘ 5—1/2)2 < v(a) Z 07 < 7(a)logX.
nla Bla : &ler .
Hence (1.1) follows easily from (3.3).

4. Proof of Theorem 2. We way suppose that ¥ < X, for the goneral
case follows from this by the periodicity of the chavacters. By Lemms 4
we have to estimate fthe expression

1
(4.1) 2 [ 18(e, zn) 1} T (@) 2 da.

IDI=X 0
The sum T (a) is estimated as follows:

(4.2) T(a) < min(X, o),

where [a|| means the distance of & from the nearesh integer,
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By periodicity we may integrate in (4.1) also over [— %, 41 Consider
separately the integrals over [—4¥ 7, 4¥™'] and 4¥ < la|< L. In
estimating thege we shall make use of the calenlations in Linnik’s paper [3].

If |af = 4 ¥, then by Lemma 3 we have, on moving the integration
to the line Rew ==}

t--io0
43) IS )P < Ti{w, p) T(w)a™dw "
wmEx DX 3~io

Using the estimates
s : 1
(4.4) Pt |mL“1“””exp{(imn_1;1})(—g—-——arotan(g 7 ))}

mrd
o 1
< |a|7H GXP {t (—g— ~aretan ( e o ))},

(4.5) ’ I} +it) < exp(—nft]/2)

as well as (1.1), we see that if |af < 4Y 7}, then

’

D) 18(a, z0)P < X¥log" X

DX
Hengce
4p~1
6) D [ I8(e, 1o)P|T(e) e < XN*1og® X < XY Nlogh X,
DX —4F—1 :

Now consider the integral over [4Y~', }]. Subdivide this interval
into subintervals [2/ ¥~!, 21 ¥~1], j =2,3,... (the last interval is
possibly incomplete) and congider the integral
a_1+1

27 ] i8e, gp)itda,

=X ay

47) =

where o = min (27 ¥4 ). Using (4.4)—(4.8) it is seen by caleulation
that for s, == 44-it, 6,20, b =1, 2

%1 e N

(4.8) [ wmuwsI(e)1(s,)da

4y
1 1
in [-———aey LJexp { — (14, - Ts) arotan, [
< mm(m ety ! ) P{ (fatta) (2WY°’;{+1)}

(see [31, § 5). Stmilarly, if ¢,< 0, % = 1, 2, thig integral is

(49) < min(

ity —%|

) | 1
Tty 1) okp { = (I -+ 1) (W — arctan ("Ea?cycxj ))}
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By (4.7) and. (4.3) I; is estimated by a sum of triple integrals with respect
to the variables a, f,, f,, where £, and ¢, are of the same gign. Integrating
first over o using (4.8)~(4.9) and then over ¢, and #, using (1.1), we obtain

I; €« XYolog" X,

Hence in view of (4.2)
1/2
[ 18(a, 1) B IT (@) da < ] Lmin(V%a?) < XY Nlogh X.

Ik a¥—1 7
This combined with (4.6) proves (1.2).
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The moments of partitions, 1
by

L. B. Rrcumond (Winnipeg, Canada)

1. Let p,,(n) denote the nmmmber of partitions of » into m parts.
D. H. Lehmer [7] has considered calculating f,(n), the kth moments of
Py () defined for & = 0,1, ... by

T
tp(n) = Em’kpm(%)'
m=]
The purpose of this paper is the determination of the asymptotic behaviour
of the ¢,(»n) for arbitrary fized & ag n—-co.

Pmin) is the number of microstates of a Bose-Ringtein gas of m
particles and of energy » distributed over the energy levels (e =1, 2, ...)
[8]. Tt iy hoped that the following results are of interest in statistical
mechanics as well ag in number theory. The first moment has been con-
sidered by Husimi [5] and there are certain similaryities in method between
{p] and thig paper. However, we shall avoid using the transformation
equation for the gemerating function of the #,(n).

We require the generating function for the ¢,(n) and we give the
derivation of D. H. Lehmer [7]. It iz known that ([1], p. 193)

(1.1) G(z,2) = > M pumae” = [ [ (1—a)™
=0 =0 el
If we introducé the operator
]
0w e
e
then _ .
(1.2) 2 T mkp,, (n) o = "G,
Homal Hisel _

Now
(1.3). : 04 = ¢ N1 A



