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By (4.7) and. (4.3) I; is estimated by a sum of triple integrals with respect
to the variables a, f,, f,, where £, and ¢, are of the same gign. Integrating
first over o using (4.8)~(4.9) and then over ¢, and #, using (1.1), we obtain

I; €« XYolog" X,

Hence in view of (4.2)
1/2
[ 18(a, 1) B IT (@) da < ] Lmin(V%a?) < XY Nlogh X.

Ik a¥—1 7
This combined with (4.6) proves (1.2).
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The moments of partitions, 1
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L. B. Rrcumond (Winnipeg, Canada)

1. Let p,,(n) denote the nmmmber of partitions of » into m parts.
D. H. Lehmer [7] has considered calculating f,(n), the kth moments of
Py () defined for & = 0,1, ... by

T
tp(n) = Em’kpm(%)'
m=]
The purpose of this paper is the determination of the asymptotic behaviour
of the ¢,(»n) for arbitrary fized & ag n—-co.

Pmin) is the number of microstates of a Bose-Ringtein gas of m
particles and of energy » distributed over the energy levels (e =1, 2, ...)
[8]. Tt iy hoped that the following results are of interest in statistical
mechanics as well ag in number theory. The first moment has been con-
sidered by Husimi [5] and there are certain similaryities in method between
{p] and thig paper. However, we shall avoid using the transformation
equation for the gemerating function of the #,(n).

We require the generating function for the ¢,(n) and we give the
derivation of D. H. Lehmer [7]. It iz known that ([1], p. 193)

(1.1) G(z,2) = > M pumae” = [ [ (1—a)™
=0 =0 el
If we introducé the operator
]
0w e
e
then _ .
(1.2) 2 T mkp,, (n) o = "G,
Homal Hisel _

Now
(1.3). : 04 = ¢ N1 A
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and from di Bruno’s formula for the Bell polynomials we obtain for
E=1,2,...

It [ 6" 8\h -t g\
G = G8H =G Y 2 :
(-4) 6 =68 "GZ 311..‘z,sr(1!) ( %! )
where the summation is over all partitions of & (kb = I+ 213 --... -+ &l})

and here and throughout this section

o 2
= 8z, 2) = .5."1—”55‘?
r=1 i

and 8 (z, 2) will be defined as in (1.4).
‘We see from (1.2) that the generating funetion for #,(n) is §*@ evaluated
at @ =1, say 6%G(z). Thus from Cauchy’s theorem

(1.5) () = f 65G () " dw
. 27 &

where (' is any ecircle about the origin inside the unit circle. We choose
the radius of the circle to be ¢, where a ip the solution of

oo

(1.8) . n = 2 e“’il«, — (8 (e=%) _E%_ 809 (g=e

r=1

Thiz as we shall see is a saddle-point condition. Furthermore we sghall
see that (1.6) has a unique solution for » sufficiently large and that an
asymptotic expression for « in terms of elementary functions of n may
be obtained.

It follows from (1.5) that

S P HkG(B—u)‘ I3 aka(e—a-]-'iw) e
(L.7) hmy =20 j“@"fse(e—a)““@ dy.

2. Throughout this section ¢ is defined by (1.6). All equations and
estimates involving o may hold only for e sufficiently large. ¢ and & ghall
refer to arbitrary real constants > 0.

First, let us determine o from (1.6). We define the integers of for
§=1,2,..., §=0,1,2,...,¢ recursively by af) =0, o =1, o) =1,
af) =1, and for 5> 2;

§a (s —j + 1) a2,
07 j = gL, »

(2.1) _ agsq-l) - 1 <ji<s,
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Then it is eagily seen that

(2.2) 018z, 2) =Z e

¥=]

Hence we are led to consider sums of the form

o

—afy
2.5 Sie) = M4
( ) k‘(e ) rL}I" (1__6—-—117')]{:

Now

....ajr

(1 -ur)i’c = ;kzn(% 1

1 1

(n— k2 g si=),

Using the identity

o-4-ica

1
e““x% f a”t D) dt

g—{o0

Fis
>0, |a;rgal<-5~ — &,

o

(throughout this paper I'(t) = [ we™"du) we obtain that

=N

G-doa
. — 1 _ . . ™
(2.4)  Si(e™ = %_[ s L@, o> b, largal < 5 — 6

" where [(f) is the Riemann zeta-function and

_ N n(%bl)..‘(n—k—ljfa)
S = L T = hey

Note that £, ,(?) = {{).
Lmmma 2.1, The function {; ,(¥) 4s regular for all values of t ewoept at
=i (ie {1, 2y ..., k}). Abt = ithe fundtion has o simple pole with residue O,
where

Je—1
(@bl —f) = 3 Opat.

=0

(2.B) (@tk—1—f)w+k~-2—7F).
Proof. The lemma follows in a manner similar to that sometimes
used to prove the case ¢, (t) = (). That is, with

(+h—1(o+5—2),.
(@ +j)°

(1)

@ (@) ==

8 - Acta Arithmetica XXVI4
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and ¢ any fixed positive integer ([2], p. B26)

A 0) B B,
@8 Gals) = [ wlario+ I — 20— e (0)=

By,

G e +f Py (@)™ () d

where B, is the #th Bernoulli number and P,(») is the rth Bernoulli poly-
nomial. The second integral converges for all s with real part > &k —2¢—1.
Also ¢{0) is regular for all j= 0. Since

@ s oot
— P S A—
J o (@) duw 20 TR

for s 21,2 , & we have the lemma.
Using (2 4 &nd Lemma 2.1 we may now determine the a.bymptotlc
behaviour of the sums 8} as a—0.

Tmmata 2.2, Let k= 2. Then
Si(e™™) = () (k) L0 [
and for sz 1 u
6(e™) = ngﬁ—l) +0{ay.

Proof. Let o = Ret and let kF—l4e< o< b It iz known ([2],
p. 224) that

(2.7) Ploig) = 0{i Fe+")

a8 |y|—oo; and clearly

(2.8) flot+iy) =0{1} as  |yl—co.
Finally, it follows readily from (2.6) that

(2.9) Gulod-dy) = 0{lyl} a8 |y|—oo.

With these order relations we may transform the contour in (2.4) from
o>k to 0> k—1+4¢ and the difference iz the residue a:t t == k. Thig
gives the first part of the lemima.
According to (2.2)
8-+1

I'is+1 -1
st = 3 ) S oty

T=1

icm
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and from (2.1) it is easily seen that

41 8

(0+1) ) —
thj —szaj = 2s1,
=1 g1

Hence we have the second part of the lemma.
Define Z(4g, 4y, ..., Ay) bY

—. k! A\ Ao 2l
(2.10) VMT—_M (1,) (w;;w!i) —}_J {0y Aay-evs Agn)s
where the summation extends over all partitions of & (I, -~ 21, 4., . - &l = k).
Lemwma 2.3. Let v denote Buler’s constont. Then

GTEG(G‘“) . o

— exp (g;) pal Z‘ (,; —f—].og%, 2£(2), ..., 2((7a-1)1)e;(;'a)) x

X [L40{a'"}].
Proof. In [B] it is shown that :

n? a M
(2.11) G{e™) = exp (-—) (—) [1-+40(a)].

B/ \2nr
The case & = 1 has aldo been considered hefore in [5] and
(2.12) L6 =G () 2 (-1ogi +y) [140(a)].

“We note for future reference that in this case {, ,(¢) = C(t) and there is

a double pole at ¢ == 1. The residue therefore is

Ao Ty 1
( ] 2 P()(C(‘)”Wl))m

' 1
and ([4), 3. 327) (¢ =577 ) =7 ') = = (2], . 328)
wal .
Lemma 2.4.
IQW) (a—e ' :
A8 — g [log" = ~|~O{lug’““li}].
do o _ @
Proof. From (1.4)
() p —u
013 ﬁ_“;;g_

PR\t 308 [ or8\R -1 8\ e
[ (1!) da,'( 2!) ( ] ) heeet

zk g\ gLy Iy Bﬁ:-l’sv -1 qor-18
+7€!”(_§T)(2! ) ( Tl ) dar ]’.

"Zrl
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where the outside summation is over all partitions of k. Now

dﬁu — 2 (11.-[—-1)

and we m*a;j’apply (2.4) to obtain for %z 2

u—{—l ) l

ke L
9 SR 1 RGI4Y tydt
(.9.14) o 5 o™ {6 E(8) L, (£)

= —2a~L (k= 1)L (R)

and obtain with the argument noted after (2.12)

a0 s A{ta= =1 P(1)} e ( 1 )
(218) — = = (--—_—dt +2a T (L) - -5 .
1
log— +1+y
- %
- -

The lemma follows from (2.13), (2.14) and (2.15) upon noting that the
1 .
term of (2.13) with i, = k is the largest by a factor of loga and that

(1)
-Clju = 1.

and
= R L f )
* where .
fin) =0 {n=").
Furthermore

expian} 0°G (e mexp(l/ﬁ 1’2)2“”2 B8 (6% fre)F % 3¢
R (7)Y

‘ 1
< 3 s

Proof. From Lemmas 2.3 and 2.4 and {1.6) it follows that

" T2 1 0 1
"~ 6ot * 2a + —alogaf’

The firgt pa.i*t of the lemma follows routinely from this. The second panrt
follows at once from the firgt part and Lemma 2.3.

by, 28(2), en, 2{(h~1) z)n'c(k)) [1L O {nt407,

Levma 2.5, Hquation (1.6) has o unigue solution for sufficiently large n

icm

The moments of portitions, I ‘ © LT
LeMma 2.6.
1w
ech(g—a+1vr) -1‘
2 wmpd 1}4,”-—3#; 1 O rn-—l/;(
OJGG(ema) w [ _1 { ]

Proof. We break the range of integration up as follows:
"y

[+]

¥, g

b =3

I = f = f

where ¢, = = ™. With this choice of ¢, it has been shown by Roth and
Bzekeres [8] that for arbitrary. fixed m > 0, if y, < |¢| < = then

(e ™) [G (67"} = O{a™}.

Clearly
8% (goro) 8% (¢=7) << L.
Thus ) :
¥y
(2.16) Le= [ 4 0fa™).
v

We shall now see that the factor 8(8) = 8M(¢~“t™)/8"™(s~*) does
not significantly change the value of the integral, )
‘We obtain from. Taylor’s theorem

(2.17) B(p) = idy (o) p— dy(a)y? + O{dy(a) y%}.
Here we use the fact that
—of (e )
d"f’s p=0 !

a3 8% (gmetiny
o P
which in turn follows from (2.2) and (2.4} [note that |y} < ™57
For |y < v, we may use equation (2.4) to represent the derivatives.
with respect to y. By the same methods used to estimate d8™(e~")/da
we obtain that

(2.18) dy = 0{a™} for j =1,2,3.
Thus '
(219 log8(y) = dd (o) p—e(a)p*-- O {a ™ y3}.

Tt is shown in [8] that for [w <y, = ',
log@(e™""") = 4.4, (a) g — dy(a) y*-1- O {Ay{a)y?}

where )
oy Y pRe™
(e = D Z VEEEAS
(2.20) oo , =
- o e
| LGt
Aa(a)- f{:{ (era )
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From the Fuler-Maclaurin summation formuls, one obtains that

(2.21) Ay(w) = + 0@, Ay(@) = O}

3a’

Eguation (1.6) shows that A{a)+dy(e) —n = 0. Letting B, = 4,+¢,

2 /5
1= f dy = j exp( — Byy?) [1 -+ 0 {a~*y3) ] dy
—¥p —gTh
a—1410
1

2) oty = [27)"
= ax — &%) ax 1"" a | &= (—,‘”) 1 0 .
7 P(—o*)da[l+0(a)]) = () [1+0{a)]
Now B, = A,[1+0{a}] by (2.18) and thus using (2.16) and (2.21) we
obtain the lemma. '
Now from Lemmasg 2.5 and 2.6 we obtain our rmain resulb:

THrROREM 2.1.

I,’Z k
! n‘le"Vﬁfa((____ﬁﬂ')l )cx

—g—1/10

- /3 w
T

% 2 (1og'i@}r)-_ 9,y 20(2), oy 2{(—1) :)h:(k)) [1+ Ofn~1e+e),

a8 p-»oo, where the sum is defined by (2.10). -
COROLLARY 2.1.

1 —

ty(n) = 4—1/5_ 4%—16n}/22113 1+ 0{%,_1[2_1.3}];
Ve el Von |

= 471:%1./2 ﬂTer?nfs (log T —}— y) [1 -+ O {,n-—ljz+ s}] ;

. ]/_3; . _ g_ ) - N
) = - 6V ((IOg}ifi + a») ~+~2:(2)) [1 4 Ofn5+];

y(n) = --i-m P2 g i3 ((log L
PR ™

+ 6 (log '—/?“ + 7’) £(2)+ 8@'(3)) [L 40 {n=",

Remark. With a more carefal apalysis, but along the same lines [57,

, we may replace the O{n~"***} terms in the expressions for #,(n), t,(n)
and ty(n) by O{n *logn}, 0{n""log*n} and 0{n " log*n} respectively.

icm
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COROLEARY 2.2. Let o*(n) denote the wariance or

ts () 13 (n)
ty(n) tg(m)

Then I
ot(n) = 2n[l -0 {n~ "],

CoroLrany 2.3. Let My(n) denote the third moment about the MEGT,
that is .
ta(n) ty(n)ty {m) 9 £ (n)

M) =

t(m) " f(n) th(n) "
Then
. 4 .
) =228 ¢y O,
"~ Let
Mem-ho
P;Eihn‘ = 2 J’Pm(”b)/'ﬂo(%)_
mzm—ho :

where % = & (#)/4,(n). Then from @& generalization of Tchebycheff’s
inequality [6] we obtain

THROREM 2.2. Let b be any number = 0. Lot v be any positive fiwed
imteger. Then '

1fr 1
Pianlt(n) fto ()17 2 1 — =

- COROLLARY. Leél f(n) be any fumction tending lo infinity, then the
number of summands in almost all partitions of n lies between

12
L (EW—') logn 4= f(m) n.
T\ 2 :

Of course, this result has been obtained before by FErdos and Lehner [3]
as o corollary of the following result (Erdds and Lehner): Let P, (n)

HE
= 3y (n). For
jmel
2\ P, (n) 2
P Pl | ot o e ("w— lim -y (—--’“3 2)
e logn 56’”' ’ L Tcn--wo to(n) P ¢

A further result of interest hore is that Szekeres (91 has shown that
the digtribution p,,(n) is unimodal.

3. In this section we shall earry out & quite analogous treatment
of ¢, (n), the number of partitions of » into exactly m parts. Hence we
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ghall avoid giving the details and shall only dizcuss the differences when
they are significant.

Since g,,(n) is the number of microstates of a Fermi-Dirac gas of m
particles and of energy « distributed over the energy levels (1 = 1,2, ...)
(5], it is hoped again that these results will be of some interest in statistical
mechanics a8 well as in number theory. ’

Firat of all g, (n) has the generating funetion ([1], p. 193)

= Z qu(ﬁ)mﬁzm =n(1 _iszr)_

Re=0 np=i) Pl

Hz, )

Letbing

Tk

u]r('”’) il E'm’k%n(ﬂ)!

=l
and again’ letting 6 denote the operator

0
f = g
g)Jaz : '

we obtain that-

2“1.:(”)03" = H(z,1) Z(GUT, BT, .., g1

M0

where

zw——z“m
T = Z e
=

Here we define the number b for s =1,2,...; j =1,2,..., 25 by
Wam1, - 1y
bflz) =1, b.(zg) == ._]: b?) = 2, b:(lz) = _25

and for s =2

IO+ (28 —f+2) 82y, G =2s;
B~ L0, IR RS
0, o J =242,

Then one may verify that

o 2 bgﬂ‘M—l) ol 21

i ‘?ml
67T = § ) T — Byl !
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and that for all k=1
. L%k
(3.1) Db =0
i=

,Oorrespoﬁdin.g to (1.7) we have

o*H (c‘““”)

(M) = o ()’“H e~ f FEH

e—«'im_udy) ‘

where § is determined by

oo
7

ﬁr

o=
r=sl .
(T corresponds to S® in (1.4)). Throughout this section § shall be
defined by this relation.
We deduce that

d
— (T (") W) ( -8

o300 2

(32) 0T = [ aywne Y e,

o— 500 =1

o>k,

‘where

Sy (e —1) ... (BT 4 2)

d) —
C_S,T.:(t) - ‘ (2” —[-.2 — 2k —l",?)i

g 1
Henge in particular
(3.3) WA+ R () = (L—27 ().
Luvwva 3.1. The fmwtwn C} 2 (3) is regular for ol volues of 1 ewcept af

Pa=1,2,...,k At ¢ =g, ¢ some integer with 1< s <k, the Sunction has-
@ sample pole with residue 27%C, ,_, where

2011:3

e,

(- dk —}-4——7)(9:-{ 4l -2 —) ... (@ 28+ 4 —7).

Let k=1, Then
0 (™) = Ofp~H).

Proof. In view of (3.1) the residue of (3.2) at ¢ = k--1 is 7@10,,
otherwise the proof is the same asy that of Lemmm 2.2.

Lomvma 3.3. Let k= 0. Then

Limvma 3.2,

O () = 2 Rexp {mﬁ} (105 ) [1+ 048],
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Proof. If we apply the Euler-Maclaurin formula to Dlog(L+e)
we obtain

H{e Py = 27 exp { }[1+ O{}].

128

In the case & = 1 we do not have a double pple at 1 =1 gince

lim (1 —27"H £ (t) = log2.
>l

The lemma, now follows in all cases & = 2 from Lemma 3 2 since

s 102, 0,0, ..., 0) = (B log2)".
LLMMA 3.4, Let b z=1. Then
dT(’“)( )

el =1
i =§ .[1+0(ﬂ)]

Lemma 3.5,
_ T‘_ ~12 0
B ——21/3%_ {147}

wherea
fim) = O{n ™"},
PFurthermore
3 e
- exp(fn) 6 H (e™P) = 3 P exp (77%—%‘”2) . (n —-'/— logﬂ) [L4 O (n~¥2+ey),
. T

Lewvnia 3.6.

’T-gk:H — -4 R - ]
f Gk‘HS-G(e_‘B) ) er..mquw - (21/2 3~1f4,n3[41) [1 -+ O{nwlm-l's}] .

‘(Ehns we obtain
ToarorEM 3.1, Lét k= 0. Then

T 12 -
1 7 [ m22V3log2 \* .
To obtain an asymplotlic relation for the variance we must obtain
sharper estimates for uy(n} and u,(n). (See the remark following Corollary
2.1.) From (3.2) and (3.3) '

{3.4) 62H =2 " exp ( lz; ) . [(}9%_2“)2 N

+Res [ (1) fj @) + O{a"l}] :
=1 7 =1 :
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In a sufficiently small neighbourhood of ¢ = 1

1 ‘
gty = 17 A4+ 0{1 -1}

and
: 3
Bopy T _
g S¥10 pFTE +b+0{1—1l}

I=1

where y i again Fuler’s constant and b is 2 constant whose value we shall
not reguire.
The residue in (3.4)
1
log —

3 B 1
=178 +ofg):

) (vm 2 3Y3 il
() —[ - logz) + 0 fgﬁmlogw—i—o-{w }].

hence

If we examine the proof of Theorem 3.1 more carefully, we see that
the pole at zero is a single pole, hence the O-term for % = 1 iz 0 {8} and
not O{p*~°}. Thus

1 +0{n

(ul(%)) (1/1291 logé)

2y (1)

and we obtain
ToworeM 3.2, Let o*(n) be defined by

2y — Maln) ()
O =) (uo(n)) ‘

!I’)‘wa@~

a2(n) == »31‘2 nlogn[1 -+ 0 {log~'n}].
4w g

QorOTLARY. Let f{n) be any fumction londing To infinity with 7, then
the number of summands in almost all partitions of » into distinet szr,fmmwnds
lies between

. 2V310g2
gt 208% Finyn'*log"*n.
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This corollary is an improvement on the prewous result of Krdés

and Lehner [3].
Again we point out that Szekeres [9] ha,s proven that the gm( ) form,
a unimodal distribution.

4. The author is very grateful to Professer D. H. Lebmer for

;bringing these problems to his attention, for suggesting that the saddle-

point method might be applicable and finally for supplying some of
the following numerical vesults for the comparison of the exact values
with the asymptotic values. We include scime of these results:

Funetion Exact Value Agymptotic Value
1,(90) 56634173 [9366780
#,(90) 1149288434 1132188000
1,(90) 26649644186 32278070000
1,(90) 703921667714 12542¢:1.000000
o (125) 3207086 3258254

1(128) 27314955 27842340
s (125) 240371878 237917760
144(125) 2178385203 2033046000

The exact values were computed using algorithmg of D. H. Lehmer |

[7]. The agreement for the w,(n) seemsy somewhat better than for the
. (n). However, all estimates of ¢, and ¢; differ by at least four in the
second significant digit for » = 90. The resulfis for t,(n) differ by more
than five in the first significant digit. This does not appear to be due to
errors in calculating or deriving the asymptotic expression. We can determine
additional terms in the expression, but have not. In any case the method
iz sound, and we hope to publish soon 2 generalization of this work to
partitions with summands taken from a given set of inbegers subject
to certain conditions.

Added in proof: }_',‘ C“z’ = (1 —2"%) ¢ (i--1}, hence the residne in (3.4) is f—1x/12

) and onc obtaing in Theorem 3.2

A1) = e V1O 1),
2v3

‘This of course lmproves the Corellary to Theorem 3.2, Wa point out that #he
distribution is Gaussion as stated by Erdis and Lehnor.
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