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The greatest prime factor of o"—b"
. oy
0. L. Bromwart {Cambridge)

1. Introductiors. Tt was conjectured by Erdis (see p. 218 of [4])
in 1965 that 22" —1)/n tends to infinity with «, where P(m) denotes
the greatest prime factor of m. The elementary result that P (a” — ") = n4-1
when # > 2 and @ > b > ¢, was first proved by Zsigmondy [8] in 1892
and the result was rediscovered by Birkhoff and Vandiver [3] in 1904.
It was improved by Schinzel [6]in 1962 ; he showed that P{a” — ™) = 2n 4 1
if ab iy a gquare or twice a square, provided that one excludes the cases
n =4, 6,12 when ¢ = 2 and b = 1. In the present paper we shall obtain
some further results in this context; in particular we shall prove that

(1) ' P(a" — ") fm->co

ag » rung through the sequence of primes, and, in fact, more generally,
a8 # runs through a certain set of integers of density 1 which includes
the primes.

For any integer n > 0 and relatively prime integers a; b with ¢ > & > 0,

- we denote by @,(a, b) the nth cyclotomic polynomial, that is

(2) © @@, 0) = [ la-0),
. =
. (Z,n)=1 :

where § ig a primitive nth root of unity. We shall write, for brevity,
P, = P{d,(a, b))
Our main theorem iy then as follows:
TemorenM L. For any x with 0< x< 1/log2 and any integer n (> 2)
with ot most xloglogn distinet prime factors, we have

(3) - P,jn > fin)

where f is a fumction, sirietly inereasing amd unbounded, which ocan be
specified explicitly in terms of a, b and x only. ‘
. It will be observed that, since almost all integers n have (1 -+ o(1))x
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»loglogn distinet prime factors (see p. 3 56 of [57), the density of the set
of integers covered by Theorem 1 is 1. Actually to demonstrate that
P, /n—o00 ag n runs through all integers excluding & set of density zero
is relatively easy; in fact it follows from [3] or [R] that &, (4, b) has a prime
factor of the form %n -1 for all > 6 whence, for any f as in Theorem 1,
(3} holds for every n such that kn -1 is composite for &k =1, 2, ..., f(n),
and, by the prime mumber theorem, these n have density 1 if f(n)
== g (logn)("). However, this clemly does not ‘yield the characterigation of
the integers as deseribed in onr theorem.

The gize of f relative to % will be explicitly determined m the case
when » i3 a prime or twice a prime:

Tarorim 2. There enists an effectively computable number €, dapending
only on a and b, such that

P, > %p(log;p}”" P, > p(logp)**

for all primes p > C. _

' The proofs of both Theorems 1 and 2 depend on. the theory of Baker
on linear forms in the logarithms of rational nwmbers; for Theorem 1
we require the most recent resnlt of Baker [2] on the subject, while for
Theorem 2 we utilize [1].

To show that Theorem 1 implies that (1) holds for all integers # as

specified in the enunciation, whence, in particular, for the primes, we
use the equation

w at—b* = [] 0ula, )

dln
which follows directly from (2); this plainly gives
) Pla*—b") = P,.
Similarly we deduce that
| Pi{a" —5")(a” =) fn-sco

for a,ny factor » of m with ¢ 5% 4, and on replacing # by 2» and taking
7 =n, we see that

Pla® - 5" /w,w:»oo
2 » rung through all infegers ag wbove I‘mthermow in view of Theorem 2,
we have
P(a? — %) > 4p(logp)™,  P(a”-b7) > p(logp)

(") T am grateful to Professor Erdés for pointing ﬁhis out. To obtain the

estimate o{logn) one should note that, by [31, the prime factors of @, (a, b) specified
above ave distinet for different w. In fact a slightly weaker estimate follows direetly
from theorems on primes in arithmetie progressions.
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for all sutficiently large primes p, and clearly the lower hound for these
is effective.

2. Preliminaries. Pirst we record the two results of Baker mentioned
in § 1 which are required in the proofs of Theorems 1 and 2. We shall
denote by ay, ..., a, positive rationals and we shall suppose that, for
each j, the numerator and denominator of e; do not exceed A4; (= 4).
Further we denote by by, ..., b, rational integers with absolute values atb
most B (2 4), and we write, for hrevity, ’

A == by loga; ...+ b, loga, .
We have
Lmvma 1. If A o 0 then |A| > B2 where

2 =logd,...log4d,

and O = C(n) is an cffectively compulable number depending only on n.
Lgwma 2, If A =0 then

(5) log || > —max{dB, (420t §=11gg 4)emtiiy

where A == maxd, end & is any awumber satisfying 0 < 51

Lernoma 1 is the main theorem of [21; Lemma 2 is given by [1].

We need algo a lemma on the prime decomposition of &, = &, (a, b)
implied by the work of Birkhoff and Vandiver [3]; the flI‘St version of
this result was apparently obtained by Sylvester [7]. Tt is

Tomwia 3. The prime P(n) can divide @, to al most the first power.
AL other prime factors of ®, are comgruent to 1(modn).

3. Proof of Theorem 1. We shall suppose throughout that n exceeds
a sufficiently large number which is effectively computable in terms
of a, b and » enly. Further we assume that « has at most xloglogn distinet
prime factors, where 0 < x< 1/log2. Let dy =1 and let d,,...,d, he
all the divisors of » with u(n/d,) # 0, ordered according to size. Then
there exigts an integer ¢ depending only on n such that

(6) dﬂ/a’sw}! = G(logn,)A,

where 4 == 1-—xlog2. In fact one can take s ay the smatlest integer = 1
such that d, =", which exists since d; ==, and then clearly d,
= nMd,_ ; but we have

(7) . ‘5&: 2x1nglngn — (10g,”‘)xlogz
and. (6) follows.

7 Acta Ariihmetles XXVI4
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We proceed now fo compare estimates for
1— (b/a)dﬂ‘}”("‘/dr),

First we have

%
max (R, B~ n1 )T,

where & = bja and since, for 4 sufficiently large,
{8) (L —a®)™ < 1Lt
and, furthermore, by (6), d;—cc a8 n—oco, We see that the above product

ig at mosh

13
(LY < 14 3 (),

T 1

Since also, for n suiflclently arge, %! <  and, by hypothesis, » << 1 /10g2
we deduce from (7) that the above sum does not exceed

2tz% < a¥logn.
Hence, on recalling that log(l+y) <<y for y > 0, we obfain
(9) Nog B| < (b/a)*logn.

Further we note that sinee (4, b) =1 we have B 1.
We now employ Lemma 1 to derive a lower bound for |logR|. We
shall need the following identity

— n (amd — bn/d)_u(d)

dIn

(10) @, {a, b)

which is eagily verified from (4). From (10) we have

&1

o [T sy,

=i

R = “*H(P

-1

where
' {
A
H o= Y d,puinfd,).

Y]
The product here can be expressed as & rational number with nuwmerator
and denominator not exceeding a®t-*+%—1 and, by (7) again, this is
at most a%-19%", Further, wo plainly have

n

|H| = Z'r £ nt,

gzl
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Furthermore, by Lemma 3, we can write

k
(11) D, (@, b) = po [ [ o},
i=1
where Py, ..., p, are distinet primes congruent to 1 {modn), hy, ..., b are

positive integers and p, == 1 or P(n). Clearly p,= » and the k's do not
exceed »® Thus on applying Lemma 1L with # = % --3 and with a4, ..., &,
given respectively by »., ..., Py, Po, & and the rational number referred
to above, we obtain

(12) . 110gRT - B—O’angn, ‘

where B == n?% ¢ = f,(k) for some positive function f, of & only and

Q =logp, ... logp,lognlog alog (afe—11En)

On combining (9) and (12) we get
d.log (a/b) —-10g10gn< JQlog _QlogB

But we can assume that p,, ..., p, are each less thrm n®, for othelwme
the theorem is certainly vmhd and thus

0 < 2% (logm)t*E (loga) d,_
Since d,_, << n and B = n?, it follows that
&, < fyllogu)rd,_,
or some positive function f, = fu(a, b, k). This ftogether with (6) gives
(logn)* < fyloglogn,

where 0 < A<c 1l and f, == fy(a, b, k). Plainly we can assume that f;, ay
a function of %, iz strietly increasing and unbounded, and as such, can
be extended to a function of the posilive reals. Hence employing the
inverge function of f,, we conclude that % > f(n) for some f as in the
enunciation of the theorem. Finally we recall that, for j = 1, p; = gyn-}-1
for some digtinet g, ..., ¢, snd so (3) holds, a8 reguired.

4. Proof of Theorem 2. We ghall assume that p is-a prime exceeding
a sufficiently large number effectively computable in terms of ¢ and b
only. We first establish the proposition for P,; the result for P,, follows
gimilarly. The proof depends on a comparison of estimates for

B = o [(a® — D7),
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Olearly B > 1 and, by (8},
(13) logR < (bjay"™™
Further, by (10) we have

B =077 (a—0)D,.

Thus, on appealing to (11) with # = p, we see that all the hypotheges
of Lemms 2 are satigfied with # = k-3 and with a4, ..., 4, given res-
pectively by 24, ..., Dps Po, ¢ o0d a—b; and if p is sufficiently large,
one can plainly take A = P,, B = p. Furthermore, one can assume that
P, << p% for otherwise the theorem is certainly wvalid:

Argning as at the end of the proof of Theorem. 1, it clearly suffices
to show that &> L({logp)%. We shall assume that this does not hold
and obtain a contradiction. Tt is then readily wverified that, on taking

5 = min{1, tlog{a/b)},
the second entry in the maximum on the right of (5) is at most
A4 438 (25—110gp)(2k-< -7)% < Gp”‘n‘ '

~where ¢ is an effectively computable number depending on e and b, and
here the number on the right is at most dp if p is sufficiently large, Hence
we conclude from (5) that

loglogR > —ép.

But, in view of the choice of 4, this contradicts (13) and the required
result follows. :
The asserted estimate for P,, follows similaxly by considering

B o= (0" 4 b")[a® = a ™ (a-+b)D,,.

In conelusion, I would like to express my gratitude to Dr. A. Baker
for his generous assistance in the preparation of this paper and X would
like to thank the Capada Council for their financial support while I was
engaged on this research.
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