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Setzen wir Xi = M3 N so folgt sofort aus (16') wenn wir rechts jetzt
nur die Glieder mit XU\ g, < X nehmen, daf -

(24) X “2<0 X“Zw(anz

Xa<gT<X )
wo ¢ nur in 1 nund M, abhingt. Daraus folgt wieder ein Siehverfahren wo
jetzt die Anzahl der Menge p Gitter [, welche ausgenommen werden zu

‘ . L L "
craetzen ist durch Z —- und diese ist also < ¢, —
» I 123
Die zweite Bemerkung die wir machen wollen, ist folgende: Wir

haben stets angenommen, dag die I, ..., I'y die Bigenschaft haben. sollen,

dafl kein fg;, =p§,,(mod I') sein soll (wenn sie micht kongruent ¢

mod I' sind). Wir kinnen jetzi aligemein annehmen, dal ey ein festes &

gibt, so dalB hochstens k—1 solehe f§;, = §,, (mod I") gind. Dann kénnen

wir (b) anwenden und es ist stets My durch M (I, [, k) zu ersetzen und
zB. in (16) ist noch ein Faltor & rechts hinzuzufiigen.
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Correspondences in a finite field, 1*
by
L. Carvrrz (Durham, N.C.)

To the memory of ¥Yu. V. Linnik

1. Intreduction. It is well known that any function from a finite
tield, into itself can be represented by a polynomial with coefficients in
the field. More precisely, if the field is of order ¢, then the function iz
represented by a unique polynomial of degree less than g. Conversely, any
field with the property that any funetion from the field info ttself can be
represented by a polynomial with coefficients in the field, is necessarily
finite. If has been proved recently [1] that if a ring B (with identity)
has the property that any funetion fromm R into itself can be represented
by & generalized polynomial, then R iz isomorphic to the matric ring
(GF (), for some % == 1. By a generalized polynomial is meant a sum of
monomials of the type

Gy By 22 L. ey,

where a;¢ R, ¢; > 0 and % = 1 but arbitrary.
With every function from GF(g) into itseélf we may associate a seb
of numbers @y,..., 4 F, = GF(g) and a partition ([8], [4], [B])

(1.1) B, = Ayudyu ... U4,
where
(1.2) And; =@ (i #£7);

the sefs A; are non-vacuous and
(1.3) fiby) = o

For example, for the fumction f{z) =2%% we have k=2, a, =0,
ty =1,

(bie_ Ai) .

A, =40}, A, ={al aecF, a # 0}

* Supported in part by N8P grant GP-17031.
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We ghall generalize the above in the following way. Let

(1.4) . Agy Ayy ey Ay Boy By, ooy By
denote partitions of ¥,. If will be asswmed that
(1.5) Ayyeiey Aps Byy .oy By

are non-vacuons; however d,, By are not resfricted. It iz not difficult to
show that there exists a polymomial f(z, y)e F,[», y] with the following
property:

0 (O‘,EA be Dy AL i<E),

1 {otherwise).

(1.6) fla, by = [

‘We shall say that f(@, y) characterizes the correspondence I" induced
by the partitions (1.4). The intege;r k is called the rank of the correspond-
enee,

A polynomial Az, y)e F, [m, %7 is said to be admissible with respect
to the correspondence I induced by (1.4} provided hi{w, y) satisfies the
following condition:
=0 (aed;, beB;,1<Ci<hk),

(1.7) B, B) l
#0  {otherwise).

Clearly, if h(z, ¥) is admissible, then

fle,y) = (Alz, y))**
satisties (1.6).

It should be neted that in (1.7) the nonzero values taken on by h(xz, y)
are quite arbitrary. Move precisely, ii(a, b), in the lower line, may depend
on the parficular pair a, b and not merely on the set in which they lis.

As an example, the polynomial

‘ Ch(@,y) =2ty
- 1s admissible. We have & = 2,
=B,=0, 4,=B, = {0}, A2=Bszq\{0}-
JAs & second example, the polynomial
' h{z,y) =1 —af lye
is also admissible: In this instance, k& =1,
AnzBuz{O}r A1=BI=FR:\{O}'

Ag a sn:aple example of a polynomlal that 1s not admissible (for any
- pamtltmns (1.4)), we cite h{z, y) =

icm
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A basie problem is to characterize and enumerate zll admissible
polynomials. This is clearly a difficult problem. Consider for example the
case of corvespondences of rank % = ¢g. Then each of the sets 4,,...,.4,;
B,, ..., B, consists of a single element, while 4,, B, are vacuous. An a:dmm-
gible polynomial is evidently h(x, ) = y —p(x), where ¢{z) denotes some
permatation polynomial. N

If f{), g(x) are arbitrary polynomials over I, it is not difficult to
show that

(1.8) h(z,y) = fla)—g(y)

iz admisgible. Conversely given an arhitrary cori‘espondence of rank
# ¢—1, we shall show that there exisfs an admissible polynomial of the
form (1.8). For rank g —1, however, such an admissible form may not exist
when 4, = @, B,  &; this is indeed the only exceptional case.

The present paper may be eonsidered an introduction to the study
of correspondences. We shall, in particular, determing the number of cor-
respondences in F,. The number of correspondences of rank 7 is equal to

1.9) EUS (g 41, k+1))2,

where §(g+1,%k-+1) is a Stirling number of the second kind. We also
obtain a generating function for correspondence types which suggests
a counection with partitions of bipartites (Theorem 7.2). A rather compli-
cated generating function for the number of admissible polynomials is
obtained (Theorem 7.3). However we are unable fo find a simple charac-
terization of admissible polynomials. We hope to return to these and re-
lated questions as well as certain generalizations in. later papers.

2. Preliminaries, We shall require the following
LM 23, Let A denote an arbitrary non-vacuous subset of F . The
polynomial

(2.1) = M m—-a)q !
: aed ’
satisfies
9.9 7.(a) {ae.d),
L. &) =
(2.2) af (ag A).
The proof is immediate.
Let
(2.3) Agy Ay ooy dys Byy Byy oo, By,

denote partitions of F,, where
Ayy ooy i By ooy By

are non-vacuous, while 4,, B, are arbitrary.
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TumorRsa 2.2, There ewisls a polymomial f(@,y)e F (o, y] such that

: 0 e d;, be B, 1§k
(2.4 Jaypy =] (e tnPe B ASI< ),
1 (otherwise).

Proof. Put

g(w,y) = Y Ly (#) L, (9),

‘where L, (#), Ly(y} are defined by (2.1). Then clearly

1 (aedy,beB;,1<j<h),

@, 0) =
9(a,0) 0  (otherwise).

Hence the polynomial

fla,4) = L—g(z, y)
satisties (2.4),

We shall say that f{z,y) characterizes the correspondence defined
by the partitions (2.3). Also a polynomial h{w, y) Je Fy[2, ] is admissible
(with respect to the correspondence defined by the pa.rtltlons (2.3)) pro-
vided that
=0 (6ed;,beB;,1<ji<h),

2.5 o _
=8 (@ 9) 40  (otherwise).

We state a few properties of admissible polynomials that follow im-
mediately from the definition. In the first place, if k(z, y) is admissible
(relative to (2.8)), then clearly

flo, ) =

characterizes the correspondence. '
If #(», y) is admissible and g{z, ¥) never va,mshes, then Az, ¥)g{z, ¥)
iz also admissible.
If &{z, y) is admissible and ¢(2), v(y) are permutation polynomials
such that each 4; is carried into itself by ¢() and each By is carried into
- Iteelf by wiy), then the polynemial

Tn(@, 3} = hip(a), p(y)

( (@, y))e

iz also admissible.

It h(w,y) is admissible and @(z) is a polynomial that vanishes only
for # = 0, then the polynomial : :

hy(@, ¥) = plh(z, 1)
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iz also admissible. In paxrticular

_ hy(@, y) = (h 1’4)) (r==1,2,38,...)
is admissible.

It should be pointed out that we shall use the terms function and
polynomial interchangeably. Thus, if f{w), g(2) are polynomials, the state-

ment; f(fr:) == g(®) is short for
flo) = g(#) (moda? —z),

A gimilar remark applies to polynomials in several variables: the stabe-
ment f{#, v) = g(#,y) is short for
fle,y) = g2, y) (moda’—w, y*—a).

A convenient form for the polynomial eharacterizing a correspondence
is given by the iollowing theorem.

TarorEM 2.3, Put

(2.6) (@) = [|(@—a), wily) = [[y—0),
ued beB;
so that ‘
(2.7) ”%(m =at—z, [Twln) =9~
i=0 i=0
Then
k
- BB Y~y o
(2.8) J@;9) —1—2 @ ) OO

Conversely, if o;(@), v;(¥),5 = 0,1,..., k are any polynomials satisfying

(2.7} and

degpy(w} >0, degy(y)>0  (j=1,2,...,%),

then the partitions defined by (2.6) and (2 3) give a correspondence with char-
asteristie  polymomial (2.8).

3. Some examples. It is helpful to look. at some examples of both
admissible and non-admissible polynomials.

(i) Xf g(2) i3 an arbitrary polynomial, then k(z, ) = g(#) —yis admis—
sible. Let ¢y, ..., ¢ denote the range of g(x) and pub
A; ={a] fla) = ¢} (=1,..., k).

F,=A,udyu...ud, where

Then 4, is vacuous, while
ke

Bﬂ'r;{wj} (j:—“-l,..‘.,k), _BﬂﬂFq\jL{Bﬁ'
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(ii) The polynomial hiw,y) = #?—y* is admissible. This is obvions
if g is even. For g odd the sets 4;, B; are given by

4, = {0}7 A, = {:tl}:
By = {0}, By = {1}, ...
Ay =8By =08.
(iii) The polynomial k(x,y) = xy is not admissible for any partitions
(2.3). More generally, the pelynomial k(z,y) =o"¢° (722 1,5 = 1) 18 not
admissible for any partitions (2.3). :

(iv) Let h(z, y) denote a polynomial that never vanishes. Then %(x, )
iz admissible. In thiz case the rank k — 0 and 4, = B, = F_.

(v) The polynomiat h(z, y) = 1 —a? " y* ' iz admissible.
(vi) The polynomial k{zm, y) = ¥ ' —¢?! is admissible.
These two examples have already been cited in the Introduction.

3

(vii) Let k(x,y) be admissible for the ecorrespondence defined by the
partitions : R

(3.1) Agy Ay, ooy Aps Boy By, .o, By
Let glay, by) = 0 for some a,e Ad;, by e By but gla,h) 0 obtherwise.

Then h(z,y)g(z,y) is admissible for the same correspondence. More
generally let g{a, b) # 0 except possibly when

(3.2)  aed;, beB;, je{l,2,.., k.

- (vill) Let A{x, ¥) be admissible for (3.1) and let g{a, b) vanish only
a5 in (3.2). Then the polynomials

(3.3) (@, y)g (2, 1)}

run through all the adinissible polynomials defining the given correspond-
ence. However the polynomials {3.3) need not be distinet.

4. Normal forms. As is evident from the above examples, in general
there are numerous admissible polynomials for a given correspondence.
The following theorem describes a normal form that is usually available.

TrrorEM 4.1. Let the partitions

(4£.1) Au;'A-Ij---:A-Iai-BoyBlw'-’Bk

define a correspondence I'. If k<< q—1, there exists an admisiible polyno-
mial of the form, :
(4.2) - h(myy) =f(®) -g(y),

where f(x) ¢ Fg'(m), g{ute ¥, [y].

icm
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Proof. Choose k+2 distinet numbers aq, ay, @, ..., aye F,. Since
k< g—1, this is clearly possible. Next construct the polynomials f(z),
¢(¥) such that

(o) l“n (6e Ay),
0] =

a;,  (cedy; 1< R,
#(@) =\a(; ce By),

{
a._.,- (Gij,lgj;{k).
(

Then cleaxly h(w, y) as defined by (4.2) ig admissible relative to the parti-
tions (4.1).

TrmoREM 4.2, Lel the partitions
(4.3) Ay, Ay By, B

define a correspondence I' (so thut each of the sets contwins a single element
of F,). Then there exisls an admissidle polynomial of the form

(4.4) hizyy) = flo)—g(y)

where f(2), g(y) are permutation polynomials. In partiwlm we may take
gly) =y or flo) =
Proof. The elements of ¥, may be numbered. so that
4;={a}, B—{ (<j<q)

Let ¢y, €y, ..., ¢, denote an arbitrary numbering of the elements
of ¥, . Define f(#), g(¥) by means of

fla) =¢, g(b) =¢ (1<j<y.

a

(BExplicitly we have
g . . .
floy = 3 el —(w—a)}, s
@
g = X g{l—(y—b)})
J=1

Then clearly the polyrniomial k(z, y) defined by (4.4) iy admissible for the
correspondence.

In particular if we take ¢; = b; it is clear that g(y) = y and (4.4) be-
COILes

(4.5) ka, y) = fla)—y.

Alternatively we may take ¢; = a; and then we have

(4.6) , hlw, y) =z —g(y).
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TauorEM 4.3. Lef the pariitions

(4.7) Agy Az, ooy Ags; Byy Byy oo By

define o correspondence I' of vank q—1. Then, if either A, or B, is vacuous
there emists an admissible polynomial of the form

(4.8) bz, y) = flo)—g(y).

Proof. 1. Assume B, vacuous, 4, not vacuous. Number the elements
of F :

7°

H

Fy, = {ag, @1y .y g 4}

¢(y) such that

#y  (cedg),

a4 (ce Ay 1<j<g—1),

glo) = a; (ce By, 1<j<g—1).

Construet polynomials f(x),

f(c):[

Then h(z, y) as defined by (4.8) is admissible for {4.7).
2. Let 4, and B, both be vacuous. Let [ _; denote g—1

distinet numbers of . Construet polynomials _f(w), g(y) such that
lf(c) =a; (ced;, 1< 1),
gle) =a;  (ee By, 1<j < ¢—1).
Then h{z, y) as defined by (4.8) is admisgible.

TeroREM 4.4. Let f{z), ¢(y) be arbitrary polynomials with coefficients
in F,. Then '

h(z,y) = flw)—gly)
a}}s admissible for some correspondence in F,.

Proof. Tet A denote the fa.nge of f(#) and B the range of g(y). Put
C=A4nB = {ty, ..., ¢,}.

Define _
4; ={a] fla) =6}  (I<j<R),
B; = {b] g(b) = ¢} ALi<h),
i ke
Ao =FNU4y, By = FAUSB;.

Then clearly h(x,y) is admissible for the correspondence defined by the
partitions

(4.9) Ay, Ay, .y Ay; By, By, ..., B,

icm
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We may now state

ToworEM 4.5. Given the correspondence defined by the pariitions (4.9).
An admissible polynomial of the form

(4.10) _ h(@, ) = fla)—g(y)

exists if and only if
(i) & o= ¢—1, or
(i) 5 =g¢~—1, 4y or By, = 0.
Thus, for a given correspondence, there usﬁa.lly exists an admissible
polynomial of the form (4.10). To illustrate the exceptional case put
8

Iy == {ay =0, @y, tyy ...

Ay = By = {a;}

y @ga}s
(4.11) (0j<g)

In this correspondence it is clear that every nonzero element of ¥, remains
nnchanged. By Theorem 2.3, we have

Flo g = 1= 3 {1 —(o— a1 —(y —a)-)
Fual
D i—(a—a) 1 —(y—a)"}.
aeF’q,a-,&n‘
Sinee
Dl—(a—a Nyt

asl"q.

= -—Z(m—a)g—l—f(y—

a)aul + 2 (z— @)Yy — )=
=141 = (=g =1 =Ty,
it follows that- '

(4.12) Hlo,y) = (1—a" )1 —9" D+ {e—y)".

Henee we have the following supplement to Theoram 4.5.

TaEoREM 4.6. In the exceptional case of Theorem 4.5, that is, k = ¢—1,
Ay #0,By 6, the choracieristic polynomial is given by

(413)  flo,9) = {1—g (@} {1 —p* (1)} + {plo) ~p(m)} T,

where g(x), wly) denole, arbilrary permautation. polynomials.
In the normal form

bz, ) =flo)—g(y),
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the pelynomials f(x}, g(¥) are obviously not unique sinece we may add
the same constant to each. However thers are usually additional possipil-
ities. This ig elear, for exampls, from the proof of Theorem 4.2 since the
numbers ¢, &, - .., ¢, ¢an be permutated. Let ¢,, 6,, ..., ¢, denote some fixed
ordering and let ¢, e, ..., ¢, denote a permutation of these pumbers.
Ags in the proof of Theorem 4.1, define f(z), g{») by means of

(4.14) Ha) =0, gty = (A<j<g).

Also define f'(x), ¢'(y) by means of

(4.15) Flad =c, g®) =06 (1<j<g

Then clearly the polynomial ’
(4.16) W{w, y) = (@) —g'(y)

iz admissible for the ‘correspondance defined by (4.3). Moreover if ¢(z)
is the permutation polynomial defined by ‘

(4.17) ple) =¢ (1<j<h),
then we have '
(4.18) o) =o(f@), ¢ =elg)-

Conversely, given that f(x)—g(y) and f'(z) —¢'(y) are . admissible
for (4.3), then (4.18) holds for some ¢. We may state

TaworEM 4.7. Let f(x)—g(y) be admissible for the correspondence
defined by

Ay, dg3 By, ., B
Then all admissible polynomials of the form [ () — g’ {y) are given by (4.18),
where (x) is & permulation polynomial. "

Remark. For other correspondences this theorem -does not yield

- adl admisgible polynomials of the preseribed form. Let by =k k41, B2
according as mone, one or both of the sets Ay, By are non-vacuous. If
k; = ¢, Theorem 4.7 applies without change. If however &, < ¢, ¢(x)
need not be a permutation but is any function that carries an ordersd seb
of &, numbers into another such get.

5. Admissible polynomials. Let a correspondence be defined by means
of the partitions ' '

(5.1} Agy Ay,y ..oy Ays By, By, .., By,
where ' '
{6.2) [A;] = my, 1B = m, (0 =0,1,...,%).

icm
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Two polynomials hy(z, y), he(x, ¥) are squivalent provided they are
admisgible for some correspondence. Thus the totality of admigsible poly-
nomials breaks up into a number of equivalence classes. The following
theorems are immediate. _

TomoREM B.1. The number of equivalence classes of admissible polyno-
mials over B, is equal to the number of correspondences in F,.

TuRoREM 5.2. Two admissible polynomials hy(, ), k2, ¥) are equiva-
Tent if and only if

(hl(ma ?f))qwj. = (hz(m: f'/))q—l-
THEOREM 5.3, Lt by (2, ), Ty (2, y) be equivalent admissible polynomials.
Then theve ewist polyromials g(m, y) that take on arbilvary values for
acdA;, beB; (j=1,2,...,k

but are uniquely determined elsewhere and such Fhat

Ry, y) = glw, yiha(a, y)

The number of such g(wx, y) is equal to
4
(5.3) 7, e= ij%
. : J=1

where my, n; are defined by (5.2).
We have observed in ths Introduction that the nonzero values of an
admissible polynomial are otherwise arbitrary. Hence we have
| THEOREM §.4. The number of admissible polynomials for the correspond-
ence defined by (5.1) and (5.2) is equal fo

=
(5.4) (q—1)%, & =¢'— > mmn,.
J=1

The polynomial f(z, y) defined by
0 (aed;,beB;, 1<i<sk),

(5.5) Hla, b) = 1 (otherwise)

is gaid to characierice the correspondence defined by (5.1). It is evidently
uniquely determined by the correspondence and may be called the charac-
teristic polynomial of the correspondence. .

THROREM 5.5. Let f(w,y) denote the characteristic polynomial of the
correspondence defined by (5.1). A polynomial h(z,y) is admissible for the
correspondence if and only if

(5.6) . (b, W) = fle, 4)-
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THROREM 5.6. If (2, ¥), k{2, y) are equivalent admﬂusszble 'polynommls
for some correspondence P I;‘hm

{(5.7) hiz, y) = hy(w, ¥) ha(m, y)

is also admissible and is in the same equivalence class. Thus the polynomials
in o fived equivalence class comstitule a commutative group with respect
to multiplication as defined by (5.7); the identity element is the characteristic
polynowial,

Theorem 4.7 suggests the following question. When are two adimissible
polynomials of the type f(#)—g(y) equivalent? The question is answersd
first for the special case of correspondences of rank ¢. However by the
remark following Theorem 4.7, the general case is covered by the fellowing
result.

TeROREM 5.7. Given the correspondence I' defined by
(5.8 Aoy Ay, .oy 445 By, Byy ..., By,

Let &y =k, k-+1 or k+2 according as none, one or both of the sels are non-
VACUOUS. Assume ky < g. Then two admissible - polynomials  f(x) —g(y
T (@) —g'(y) are equivalent if and only if

(5.9) fl@) =e(f@), g =vlgw),

where @(x) denotes any function that carries om ordered set of ].cl numbers
into another such set.

Admissible polynomials, ¢ = 2
rank partitions polynomials
0 Ay =By =F, 1
4, =B, = F, ' )
Ay =By =1{0}, 4, = B, — {1} oy +1
Ay =B, = {0}, A = By = {1} my +2+1
Ay =By = {1}, 4, = B, = {0} Ty + 4+
! 4y =By = {1}, 4, = B, = {0} oy + 54y
4y = {0}, 4, = {1}, B =F, . ‘ - w1
Ay = (1}, 4 = {0}, B, = T, "
Ay = Fy, By = (0}, B, = {1} y+1
Ay = F,, By = {1}, B, = {0} ' Yy
9 Ay =By = {0}, dy =B, = {1} oty
Ay =By = {0}, 4, =B, = {1} gyt
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6. Rank. It is clear from the definition that the rank of a correspondenee
may take on any value betwesn O and ¢, irclusive. We shall defermine
the number of correspondences of a given rank in the next section. We
begin the present section by examining some special cases.

In the first place, for rank & = 0, it is clear that we have the unique
gorrespondence defined by

(6.1) Ay =B, =T,
We may state the following theorem.

- THnOREM 6.1. The admissible polynomials for the unigue correspond-
enee of rank 0 are the polynomials h(z, y) that never vanish. The number of
such polynomials is

(6.2) ‘ (7—1)7.
T'he characteristio polynomial for this correspondence is

{6.3). flo, y) =1
Consider next the correspondence defined by
(6.4) 4, =B, = T,
so that & = 1. If ig evident from the proof of Theorsm 2.2 that in this
case the characteristic polynomial iy f(w,y) = 0. We have therefore
TurorEM 6.2, The characteristic polynomial for the corrsspondence
defined by (6.4) is given by
(6.3) | Hoyy) = 0.
Henee this ¢s also the only admissible polynomial for the correspondence.

There are of course additional correspondences of rank 1. In general
we hawve, for rank 1,
(6.6) Ayy A5 Byy By,
together wwith
my = Ay, ny =By,

Mg+ My = T+ 1y = ¢.

my >0, n;>0,

(6.7)

The number of correspondences defined by (6.6) and (6.7) is evidently
.
(6.8) 2 2 (m;) (m) — (2712
. my=1 mg=1

In general the characteristic and admissible polynomials for these
correspondences are not simple. However in certain cases simple results
are obtained, for example, agsume that

(69) Ay =B, ={0}, 4, =B, =F {0}

8 — Acta Arlthmetlea XXVIT
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We find that the characteristic polynomial for (6.9) is (see ex&mple (v)
of §3)
(6.10) flo,y) =1 —a® y?=1,

The admigsible polynomials for this correspoﬁdence are given by

(6.11) ol —a® (1 —y@ Y+ (T —a"" I)E —(y—a)) +

azl

A P XA

a#El

— (o —a)77"),

where a runs throngh the nonzero elements of ', and ¢,, ¢, ¢, are arbitrary
nonzaro nurnbers of I, Thus the number of admissible polynomials is
equal to

(6.12) (q—1ye

in agreement with (5.4).
Another gpecial case of rank 1 that may Be mentioned is

{6.13) Ay =By =F N[0}, A; =B, ={0}.
‘We now have the characteristic polynomial
(6.14) f(w,9) = a7y —at Ty

The admissible polynomials are given by
2 tep{l—(@—a) {1 — (y — by,

a,bsFQ

(6.15) Az, y) =

where summation is over all a, b eicept (0, 0) and the e,, are arbitrary
nonzero numbers of P Thus the number of admissible pO]ynomlELIS is
equal to

(6.16) (g—1)=1
in agreement with (5.4).
We remark that, for ¢ odd,
A L A

g0 that #*~! 44" is an admissible polynomial for (6.13). By Theorem 4.5,
an admissible polynomial of this kind, that is, f{«) 4 g(¥), cannot be found

for ¢ = 2. However for ¢ = 2,1 >1,let 4 denote any nuroher of F, except
0 or 1. Then :

a—1,,0—1
—& Ty,

(08 Rty (A
Since

A+ ARyt gyt

J—

AR+ A =
+E+ .+ 177

icm
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we get
(2 gyt = gl gt g gl

Hence 2%+ Ay? ! is admigsible for (6.13),
As for the correspondence defined by (6.9), it is easily verified, that
for ¢ odd, the polynomial

(6.17) B, y) =2 —at T —yrt

is admissible. Tndeed, since

(2_wq~ — gyt q—

Z zg—r—- mg l+yq—1)r

=i

-]

-1

=1 gq—r—l(mq Lt
1

)mq— Jg_l),

i
|l

we get for the characteristic polynomial
{617y Flao, y) = 1—aTiytt,

For ¢ = 2*, ¢ > 1, let a, § be numbers of F, such that ¢f 50, a+§ = 1.
Then

q—1

(140t it = 1 3 ety
=1 .

=1

=14 ) {a et By T (o B —d — et Ty T = 1ty

r=al

Therefore, with the indicated choice of a, f, the polynomial 1 4- aa?~ "+ fy? "
is admissible for (6.9). This iz again in agreement with Theorem 4.5.
It was stated in example (vi) of § 3 that the polynomial

{6.18) hiz,y) = g%t —py2t

iy admigsible. In this case we have the correspondence of rank 2 defined by
(6.19) Ay =By, =@, 4,=28,={0}, 4,=2DB,=F{0}.
The characteristie polyndmial for (6.19) is

(6.20) o, y) = a® gyt 290 Lytmt,

For rank % == ¢, we have 4, = B, = @ and the correspondence is
defined by -

(8.21) Ayy ey Agi Byy ooy By,
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where each of the sets contains a single element, As proved in Theorem
4.2 an admissible polynomial for this corrsspondence is furnighed by

(6.22) h(ws y) = @(@)—v(y),

where ¢(z), p(y) denote permutation polynomials. Of special interest
is the case of the identity correspondence, that is, '

(6.23) 4; = B;

Clearly ¢y is admissible and the characberistic 1)01yn0m1ml i8

(6.24) Fla,y) =(@—y) .

The geﬁeml admisgible polynomial is given by

(6.25) W, y) = D ogpfl—(o—a) {1 (y—b)),
azd .

where the summation is over all @, b« ¥y, a b and the ¢, , are arbitrary
nonzere numbers of F,. The number of admmmble polynomials is evidently

(6.26) (q_l)qz—;z

in agreement with Theorem 5.4.
To get the number of correspondences (8.21) we first distribute the
numbers of F, in the sets 4,,..., 4, in some ambltl ary but fixed manner.

Hence the number of corr espondences is the number of ways of distributing
the numbers of F, in the sets B,, , By, that i,

We have seen in § 4 that cmresPondences of rank & = g¢—1 Wlth
Ay #9,B, £ 0 are exceptional in that admissible polynomials of the
tyjpe fla)— ( ) do not exist. In particular if we put F,={a =0, a,
. Gay ey Gy} and take
{6.27) 4; =By ={a} (0<j<q),

we have seen that
(6.28) B, y) = (1—2T )1 — g7 ) + (m—y)e!

is admissible. It is easily verified that A(z,y) is indeed characteristie.
The general adinissible po]ynomla.l for {6.27) is given by

(6.29) ( ,2/) 230,0(1-—%1 1)(1—-@’-‘1“1.)T

q-1
+ X ey{l—(@—a)H1—

T

(y—a;)*""},

Oorregpondences in a fintle field, I 117

where the ¢; are arbitrary nonzero numbers of #,. Thus the total number
of admigsible polynomials is :

(8.30) ' (g~-1)r'-ah

in agreement with (5.4).
Finally we remark that the polynomial

(6.31) h(@,y) =(L—a"yto(d—yY)
is admisgible for the correspondence of rank 2 defined by (6.19).

7. Enumerations. Ag above we congider the partitions

(7.1) Aoy Ayyoiny Ay BoaBiy---;-Bk
and pub
(7-2) m; = |4, m; =|By (i=0,1,...,%),

where
(7.3) M= 0, n=0, m>0, n>0 (i =1,..., k)

and

(7.4) g=mMg+m+ ... +My =00+ ... +8.
The seti of integers

(7.5) (10gy Mgy ey Mg %0’“13'--:'"%)‘

gatisfying (7.3) and (7.4) are said to characterize a correspondence type
of rank %.

In order to enumerate correspondences and correspondence types,
it is eonvenient to consider the following more general problem. Let
4, B be finite sets, [4| = m, |[B| = n.-Consider the partitions of A and B:

(7.6) 4 =Adudv... vd;, B =B,uBuU...uUB,

‘where

(7.7)' m-=|A»l,n-=lB{| (0<i<h),
20, #yz=0, m; >0, 5, >0 (1<Kigk).

Changing the ]10133-131011, we put
mo==mt Ylie;  (mo>0),
(7.8) no=ng+ Djey

k:Zeﬁ.

The ¢; count the number of pairs (4, By} with |A,| =4, |B)] =j.

{19 2.0},
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Let N(m,n, k) denote the number of sets A;, B; satisfying (7.6)
-and (7.8); et T'(n, m, k) denote the number of solutions of the system
(7.8). Then clearly

(7.9) T(m,n, k) =21

and
m!n!

(7.10). Nm,n, k) = 2 mgd g [ Jog ! [ 1 @'%H(J 1y’

where in each case the summation is extended over all solutions of (7.8).
 We first construct a generating funetion for & (m, n, k):

. mm?!ﬂ-
(1.11) Pla,g,0) = ) Nmyn, k)—dh
] ey, k=0
To begin with, it is evident that
z‘."'ij yzj Gif i

Flo,y,8) =&

[Tes TN IT30%

ey
‘We have
It therefore follows that _ _
(7.12) | Fiz,y,2) = ¢ Vexp {{s(e” —1)(¢¥ —1)}}.
We recall that
‘k = »
(7.13) - (F—1) = k!g;ﬁ(n, B
where
| 1 v " .
(1.14) EECLE —,;,2 (1) 7

denotes a Btirling number of the second kind. Thus, by (7.12),
. T+ N il R R i
Fla,y,%) = ¢ Z-k—_!(e L1yker 1)
k=0
e R

| - | i~
— gty Zk!z" E Sim, B)S(n, ).

Te=0 CmA=D
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Comparing this with (7.11) we get

(7.15) N(m,n, k) "“2 }”( )() K8, k).

It follows from (7.13) that

] \ “ . * ] = ]
B — (j)S(j, By = (65— 1) (&5 1)
n=0 =0

= (B-+1)! 2 S(n, L+1)m+k'28(n B
A=k+1
so that

Z(?)S(j, k) = (k-1)8(n, %-+1) +8(n, &) = S(n+1, k+1),

j=t ‘
by the familiar recurrence for Sfirling numbers of the second kind.
Henece (7.15) becomes
(7.16) N(myn, k) =k 8(m+1, 5+1)8(n+1, k41).

Thus the number of sets 4;, B; satisfying (7.6) and (7.8), with %
fixed, has been evaluated in terms of Stirling numbers of the second kind.
If we define

(7.17) ' N(m,n) mZ‘N(fm,%,k),
P

50 that N(m,n) denotes the total number of sets 4,, B; satisfying (7.6)
and (7.8}, k = 0,1, 2, ..., then we have

) min(m,n) : :
(7.18) N(m,n) = > klS(m+1,k+1)8(n+1,%).

k=0
1t does not seent possible to ‘sum’ the geries on the right of (7.18).
Turning next to T (m, n, k), it is clear from (7.8) that

(7.19) T(m,n, k) = ZZ‘T r, 8, k),

r={ g=

where T'(r, s, k) denotes the number of solutions of the system

(7.20) ro= Mgy, &= Djey, & =Dley.

If we put
G(z,y,2) = Z T{m,mn, k)mmynzky
RN
(7.21) ) e "
G(w,y,2) = Z‘ I'(m,mn, k)mmyﬂzkz
M, I



120 L. Carlitz

it follows from (7.19) that
(7.22) G, 9,2) = (1—a)" (1 -9 (2,9, 2).
By (7.20) 'we have

Gl y,2) = > oy,

hi.erg

For fixed 4, j, we have

Z wieﬂy’.""ifze‘f'i — (1 . miyfz)—l .

e.,:j
It follows that
(7.23) Fla,y,2) = [[a—a'ye)
1,j=1
and therefore, by (5.22),
’ o

(7.24) Gl@,y,%) =(1—a) (11— [[(1—a'yie)

' . fi=1

By means of (7.23) we get an interesting combinatorial interpreta-
tion of 7'(m, n, k). Expanding each factor on the right of {7.23), it is clear

that 7"(m, n, k) is the number of pairs of positive integers (4,,J,) such
that

il—f“";g‘{" an +7:k =m,

(7.25) R .
Nt i = n.

Another way of putting it iz that T'(m, », k) is the nomber of partitions
of the bipartite (m, ) into & positive parts. In view of (7.19), it is clear
that T'(m, n, k) is equal to the number of pairs of positive integers {(%gy 4o)
such that :

(7.26) {z‘1+e‘a+ S m
Sitjet - ie<n
Next pub
(7.27} T(m,n) = > T(m,n, k).
k

Then (7 .24) becomes

(7.28)

D

T{m, nya™y" = H(l —afyhyl,

0 . i+7>0

L,

icm

- (7.30) N(m,n,k;A) _~=Z
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Hence T'(m, n) is equal to the numbel of pairs (4,, §,), 4,7, > 0, sach
that

By iy big 4 ... = ey

Jitietiat .= *y

or, if we prefer, the number of unrestricted partitions of the bipartite (m, n).
For references to partitions of multlpa.mte numbers see, for example,
[2], [6], [7], [8], [9], [10].
We now apply the above results to the enumeration of correspond-
ences and correspondence types. It suffices to take m —=n = ¢. We may
state the following theorems.

(7.29)

THEOREM 7.1, The number of correspondences in T, of rank & is equal to

BUS(g+1, k1)),

‘fwhere S{g+1, k+1) denotes a Stirling number of the second kind. The

total number of correspondences is equal to

Zk!(ﬂ(q—{—l, E+1)7.
k=0

TuEoREM 7.2. The number of correspondence types in F, of rank % is
equal to T'(q,q, k) where

); Ti{m, n, Y™y e = (L—a)~*(1—y)™? H (1—=@gyie)?
i, N k=0 %,7=1

Thus T(q, q, k) is equal to the number of pairs of posilive integers (i, j,)
such that

—E—ik\{; q,

li1+"&z+---
+j]c‘<'-g

Ji+get o
The total number of correspondence types is egdal to T(q, q), where
j T(m, na™y" = H (L—afyfy™.
m, a0 i+ >0
Thus T(g, q) is equal to the number of pairs (4,, j,), 4,+5, > 0, _such that
t1td i+ . = g,
l.’h"i“jz”]"js"%"‘ e = g

To get a generating function for the number of admissible polyno-
mials we put

m! n ! A5y

Tt (e [T T
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where the summation is over all solutions of (7.8). Also put

» &y
(7.31) Fla,y, 50 = 3 Nimn, ki) s
. m,n, k=0
Then, ex&eﬂy as in the proof of (7.12), we have
Cay ill
(7.32) Ple,y,2; 1) = ““"exp{ A‘l T /1”}
2
Put
o0 e .’Bm’l/"
(7.33) (Z@Tz‘r“) ~ kB! S’ Slmyn, by 2o
1,d=1 m,'n =0
80 that
7.34) 8{m, n, k; 1) = S{m, &) S(n, k).
Clearly
(7.35) N(m, , % ) ._IsTZ y( )() i) 71 %3 A).

' Applying Theorem 5.4 we get
THEOREM 7.3. The number of admissible polynommls of rank k s
equal to

w1 S s o

Uniortuna.tely the 8(m, n, k A) are mnot easily computed. However
we have

(7.36)

Stm,n, 03 4) =1
8(m,n, 1)) = A

(m,n >90),
(m>0,n>0),

S(m, n, 2; 4) _22( )( )ﬂﬂm-ﬂ(n-ﬂ) (m>1,n>1).

It follows from (7.36) that the number of admissible polynomials of rank
0 is (¢ —1)?; the number of rank 1 js \

g
D (g—1=

if=

P

in agreement with earlier results.
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