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Prooi. We shall prove somewhat more. Let I = logk —y.
By Theorem. 7 to make y(7, k) = 0 we must have

p(&) = —logk, =2 =r/k
or, by (17},
(26)

But by (19)

ep(l+2) =1—=zlogh. _

w+2) = —pzt 3 E(n)( -2

Therefore (26) becomes

(27) B =L (2 + L (B) P — ).

Taking onty the first term the theorem follows. Solving (27} by iteration
we find '

(28) 2 = L7 - L(2) L™ 4 £(3) I~ [2{0(2)) — £(4)1 L5 —
| —[BE(2) 2(8) +L(5)] L0 — ...
As an illustration we fake & = 100. The terms of (28) become
-2483 —.0252 +.0046 2-.0041 —.0025 = .2202.
By a,ctl;a;l computation we find
(22, 100) = .00204268,
v(23,100) = —.00056747.
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On the distribution of additive arithmetic funetions
by

GAnor MarnAsz (Budapest)

Dedicated to the memory
of Yu. V. Linnik

Let g(n) be a real valued addifive arithmetic function (i.e. g(fnm)
= g(m)+g(»n)if (m,n) = 1). The distribution of values of such functions
has been extensively investigated. As a new direction, Erdds, Ruzsa and

Sarkozi [1] proposed to estimate

’ ' def
(1) max N(a,z)= max 2‘1
— =T LS00 =0 0D nega
g(n)=a

for general additive functions. They found bounds c» in various cases,
often giving the best possible value of ¢. If, however, g{n) = w(n), the num-

ber of prime divisors of n, then this quantity is about const and

Vloglogw
they conjectured (oral communication) that this order of magnitude can.'r{ot
be exceeded in any case, provided that g(p) 0 for each prime p. .The aim
of this paper is to prove this conjecture in the following more precise form.

THEOREM. Let g(n) be an arbitrary real valued additive funciion and put

. Bla) §'1
&) = ——

psE »

p(n)#0

Then there is a universal constant ¢, such that

]
N{a, z) = 1< 6—=—= .
(@2 ”gm V)
- fni=a

The result is sharp even in this more general form: The bound is
attained if g(p) = 0 ox 1and 3 1/p = F(w)as s seen from [21and [3]where

=T
a(m)=1

much more detailed information is given in this special case. (For refer-
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‘shees to earlier works on the “local distribution” of additive functions see
721) It can be shown that at least in a certain weaker sense this example
is extremal even as far as the best value of ¢, is concerned. To this and
other generalizations we intend to return elsewhere.

Gys Opy ... Will denote positive universal congfants and the same is
_true of constants involved in the symbol G( ).

Proof. We think @ large but fixed throughout. In ovder o simplify
- gome detail, we begin by observing ‘rha.t g(n) can be assumed to have
integer values only.

To see this, let » be the maximal number of linearly independent
values g(n) (n < ) over the rationals. Weé can then find r real numbers
#; such that for each w < @ there iz a unique representation

gin) = D)y (1<)

with integers k;(n). We can further find integers b; (¢ =1, ...,
with

7) such that

Go(m) = M hi(m)b

i=1

(n< )

go(p) # 0, whenever g(p) 7 0 for p < . With the definition

9’0(”) = Z 9'0

%klﬁn .
PhLE

we arrive ab an integral valued additive function with the same ¥(x)
as for g(n). For n < x this definition is in accordance With the earlier one
and this means that whenever g(n) takes a valie a = Za ¥, for n < @,
¥
Jo(m) takes 3 a;b; so that (1) is majorized by the cmrespondmg quantity
{1

for g,(n) and our statement follows.
Preserving the notation g(m), we consider, following Selberg [5] as
we did in [2] and [3],
2 emg(n)

nEL

M(w) = M(u, m}
giving for integral 4

o om C
1 ‘ . 1
N (a, 1) :Ef M{u)e“‘““dug—ggf | M ()] du.
1} L]
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Now, f(n) = ¢™™ is, for each u, a multiplicative function (ie. f(mn)
= f(m)f(n) for (m, n) = 1) and we are led to inveskigate the mean values
of such functions. In [4] we developed an analytic method that gives the
desired bound in terms of the simple quantity

1R i
m{w, T) = m{w, T', 4) = min >j L Reflpip™”

i Ll P
N 1—cos —1l
— min Z cos {ug (p) —slogp)
M e P
as
|3 () < eywesp {—Lom(u, TV},
e.g. with T = logw. For the proof see Lemms later; now we use it in the

intiegral to be estimated.
For this purpose we first try to bhound the size of the set

8 = 8(m, T) = {u: m(u, T) < m}.

In other words, uwe S{m, =T depenﬁiﬁg on %

with

) means that there is a ¢

4 1--cos —l
Z (ug (p) —tlogp) <m
i ] . P
Tgking into account thatb

1—ecosa = 28in?(a/2) and sm”(jal) (Z isma1) stm 0,

i=1] i=1 i=1

. . L
we see that we §{k?m, kL) if w = 3 u; with 4;¢ S(m, T), the ¢ corresponding
k i=1

to « can be chosen as 't with the t, corresponding to u,. We shall prove
Cog=1

for the sake of completeness that every real number w can be represenhed
in this form provided that

(2) k18(m, T)| > 2.
(]...] stands for the measure inside. (0, 2x).) For such a %k we have thus
proved that for every real 4 there exists a [# << kT with
1 —1l
) >1 1 —cos{ug (p) —tlogp) < Fm
P P o

%T) satisfying this inequality let us
First we are going.

From among the pairs (u,?) (|} <
choose one with maximal [t]. We denote it by (g, fa)s
to prove |f,| “large”.

10 — Acta Arithmetica XX VIL
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Considering our quantity with ¢ =0,

2

1 o 1—cosfug(p)) 1
E?{J E_Tom_ ZE_E(m).

0 pxm DE
Hp)F#o
Henee there must be & «' with
1 coslu’
Py g @) - .

dd
s P

Now, by the trigonometric inequality woe have already used,

Blg) < ) 1 cos| Gosﬁi—w——utg ()

<3 y 1~ cos(w' g(p)—

tlogp) 1 — eos(tlogp)
a3 Lo,

' ;E'w" ' ? pa »
Here
' 1 08 tlogp) :
(1) _S_,’ < ¢,log (2 + Y loga),
= .
. cadiiz) __ o
a8 we shall show later and for | < ———— (g, == 1[4¢,)
logz
1 —cos {4’ —tl
Y (u'g(p) —tlogp) > 1 7(a)
s,

T . r
This means that (3) cannot be satisfied for such a ¢ with © = %' if we assume
that

{B) kim < LE ()

and for the value ¢ that we know exists satisfying (3) (with v = #’) neces-
sarily
604E(n:) ___2 Lty
i >

>
_ logz ~ logm -
(since we can assmne E{x) =

¢s, otherwige our theorem i3 frivial) and
1, heing maximatl,

GCSE(!E)
ol >

logz '
Now we manipulate with (2u,, 2¢,). Singe (3) holds for the pair (%, ),
by the much nsed inequality we have

2 1— o8 (2u,g(p) —2t,logp)
J ‘

< 4k2m.
p<z

icm
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On the other hand, we know that to 2w, there exighs a{ =1, ([t1| kI
with

>’1 1 —c0s(2u,g(p) —t;logp) < 7°m
) p o

rs

8

and from ﬁhe last two lines, again by the trigonometrie inequality,

SH 1 -—cos(i,logp)

L P

< 10k%m

With f, = 2t,—1t,. Here [t| < [ty|, using the maximality of %y, so that |2,
= [t > %7 jlogx. We shall show that an earlier inequality is sharp:

7 1—cos(tlogp)
(®) NI 5

=

log(|t,|logz) = o 05 B (),

provided that e.g. [l,] < T* which is fulfilled if

“(7) 3ET < T2,

Thus we geti
s 0B () < 10%im

Tf the condition (5) fails, this holds aubomatically. Choose & in compliance
with (2) a8 & = [2=/]S]]+1 implying

4\ }/ m
10— m Si<e .
(am) o BIsY B
It remains to dispose of condition (7) that with our definition of % takes
the form )

eyl () <

Cy
= /—_ = Toga .

However, our inequality ig trivial otherwise at least for m = 1, E{x) being
< loglogx. We have thus. proved

P
¥ 1§{m, THi < cw]/—————E(m) for m3z=1.
Dividing the range of integration in
1 - 6 = | :
——»J | M (u)| da < -“2_ f exp{— m(w, T} du

27

L [4
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by the sets {u: 0<u<2m, 2 1< m(u, <2 -1} (I=1,2,..)
and observing that this set is contained in §(2'—1, T), we get for the right
hand side the npper bound.

GnmyeXP{ —(2 1)} GIBVE(QJ) ﬂcr”i—

VE {m) ’
what we had to prove.
Ag tio the measure-theoretic result used, we prove it by induction in

the following form: Let & be a closed set on the real line, periodic with
period 27, symmetric with respect to the origin and S; be the set of points
%

representable as u == 2 u; with u,e 8. Then either §, i3 the whole

=1
line or i8;| > %|8|. (As before, |...| i the measure in an interval of length
2=; all these sety are easily seen to be cloged, periodic and symumetric.)
Suppose that 3, is not the whole line and let {s;} be a sequence with
limy, = ve 8, but #,¢8,. The latter implies that the two sets v,—8
=o;+ § (meaning reflection and translation) and §,_, are digjoint and
" letfing {— oo, by a well-known continuity property of the Lebesgue-meas-
ure, ' :
|(% -+ 8)N8,_,| = 0.
On the other hand, pe 8, means v == w —u" (Wel_,u"e -8 =2F§)
and translation by «" gives [{u'+8)(w'’ + 8,_;)| = 0 and so
(- 8)0 (87 + B = [0 8] [0 4 Byl = (81 +185]
= 8]+ (k— —1)18| = &8I,

using the mductlve hypothesis. But obviously both %'+ 8 and u'' +8,_,
are contained in §, and the proof is completed.
Now we prove (4) and (6) introducing the Riemann zeta funchion

. bd 1
o= > ==T] L _ g i _ g
< 1
n=}% n 1_._.;
P

. 1 : '
With § = a+it, ¢ =1+ Toza’ although (4) is elementary. (For full de-

tail concerning the simple elemeﬁtary steps that follow see (6) and (7) -

in [2]; here some hints will suffice.)
We drop terms with %> 2, ma.klng an error O(1) in the exponent
Dropping alzo terms with p > @, k = 1, we make the same error since
1
e = 1 =14
( . ) (e + 10}151} Vs

P>
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(dividing the range by #° (I = 1,...} and using 21 /p=0(1)) and

YL DY
also when replaeing ¢ by 1 in the remaining terms p < », & = 1, owing to

Sl -ow =1,

= P loga
. i 319
(usmgl—p—— < {o—1)logp and S‘ O(logz)). Therefors we can
13'{.‘12

express our guantity as

1—cos(tlo

“7~'—£~—§1ﬂ = log{(e)—log|l(o-+-it)] - O(1}.
<z P
For [{] < 1, by the first order pole at s = 1, this is
o—1 14t
tog "= 1 0(1)  log(2+ litoga) + 0(1)

and for 1< [¢| < T? = logz

log

+ Ofloglog )} = loglogx -+ o(loglogm)

by the well-known estimation (see these e.g. in {6]) and our statements
follow in any case.

Lizyvwa. Let f{n) be a wmultiplicative function with |f(n)] <1 and set

n(f, T) = mf, T, 0) = min S 2R @r

_ T P
Then
| D fim ] < epwexp{—fmif, T}
nE<T
e.g. with T 1

= log®. (z can be replaced by the sharp factor 1 but we do
noti need it here.) : 4 '

Proof. Thig ig the proof of Satz 1’ in [4] with straightforward modi-
fications and we shall rely on our paper [4].

We first assume f(n) to be completely multiplicative, ie. f(mn}
= f(m)f(n) for each pair (m, n). Denoting by 3 summation over integers
having all their prime divisors < », let

o) = o

) ”(1 +f(p) f

PET

. o ()
~on{3 S kp,w}.
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(This corresponds fo the F*(s) of [4].) Performing the same changes as
before in the case of the zeta function, we also get

—14f

- 7 fip)p - 1
(8) s) = exp{;%: o +0(1)} (0 =Tt

The well-known coefficient formula a.pplied to the series representa-
tion of F'(s) gives

BRw y 1 f yrE) | ¥ (s)
2 e | —— gm
(9 %f{n)logﬂlog " { - a pr | o di

1
for y < , choosing ¢ = 1—{———g—. By Sehwarz’s inequality

dt<l/f

: ‘ 1
Owing o (17) of [4] the first integral is O (——1-) = O(logz). As to the
G'"'

b (s) di [F(s)]®

[SISIE o ISISH

1,1

second, ‘
[P ()12 F ; 1
! 18'5!2 dt < n(i;X}F(S I1f2 f I |512 dt = 113.?;X}F(3)11/30 (W)
2 e psia
by (19) and (20) of [4] and
[Fls)r 1 H{s)|? 1 1
f ISIS/Z dt = Tl/z ISIZ dt = 1‘1,’2 0 (0._1)
(e} (=)
=T
by the formula in the middle of page 379 in [4]. Here, by (8)
Ee
Fs) = O(exp{ S’ @ p 1) O (logwexp| — T)})
e

1
i<

implying

fl |S(I5’)2! @ = O(logzexp{ —¥m({f,

T)}) + 0 (Vioga)
(a) :

= O(logawexp{ —im(f, T)}),

icm
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m(f, T) being at most 2Y1/p

IR

= 2logloga -+ O(1). Putting our estimates

into (9),

.Zf(n)logulog% = O (ylog@exp{—im(f, 1}

n<y
for ¥ < z." Applying this also with y/1-+4é and subtracting
Zf(%)lognl(w(l + 8+ Z lognrlog(1 +6))°

n<y #l+d<n=sy

= Ofylogzexp{—im(f, T}},

6] l : o T
ot e o[ DL

%) oytogn) (<),

nEY
The optimal choice & = exp{—z;m(f, T)} yields the bound
‘ ylogmexp { —5m(f, T)}
and by partial integration

log®
=0@m%em{smﬂ)ﬂ

This with 4 = @ ig the statement for complefely multiplicative functions.
In the general case, as is shown e.g. in [4] (pp. 368-370),

st = S~ (2)

din
where Z[h(d Jd¥ < ey (1) and f* (n) is completely mulbiplicative with f*(p)
= f(p (hence also m(f*, T) = m(f, T)). This implies
- N
S = M@

= dssr R/ d

—Lm(f, T))+O(Z|h l_)

dVie . ad>Va
= O (mexp| —i,m{f, )} +0{=")

and the proof is complete.

(3 In [4] with 1 in place of 3/4, but the same proof applies.
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On the difference
between consecutive prime numbers

by

8. Uenrvava (Okayama)

Yurit Viedimirovi€ Linnik in memoriam
-

Let p,, denote the nth prime number, and define

B — timint 2o Pn

ﬂ.—)m Og P n

The crude estimate B < 1 follows, as is easily seen, from the fact that
p, ~ wlogn (n—co), which is equivalent. to the prime number ftheorem.
The long-standing conjecture that states that B = 0, which is obviously
the case if there exist infinitely many pairs of primes p, ¢ with a fixed
non-zero difference, remaing still unproved. The bhest result on the size
of F that iz known so far is dve to G. Z. Pil’tjal [2], who showed that

(1) B < H2V2 —1) = 0.457106...
improving a previous result of B. Bombieri and H. Davenport [1],
E < }{2-+V3) = 0.466506... '

~ The purpose of the present article is fo make a further improvement
on these results. Indeed, we shall prove the following

TueoreM. (') We have

9—V¥3

= 0.454246. ..
16

(2)

A

An inspection of Pil*tjai’s paper [2] suggests a possibility of amelio- -
rating the estimate (1) for E by an alternative choice of the various para-
meters therewith coneerned. Our proof of (2) is thus a slight modification

(Yy After the present paper had been submitted the writer learned from a lkind
letter of Prof. A. Schinzel that M. N. Huxley obtained, by improving Pil’tjal’s a.rgument N
the inequality E < (4+7w)/16 = 0 446349, .., which supersedes {(2).



