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1. Introduction and notation. Let f be a quadratic form with integer
ooefficients, in any number # of variables. Then by ¢(f), the class-number
of f, is meant the number of elasses in the genus of f. I showed in [1] that
under certain transformations the clags-number does not increase. The
results of 17, which were used in [2] to show that ¢(f) > 1 for every posi-
tive-definite f with # > 11, will hére be improved, so as to malke possible
some further applications explained in §§ 8, 11 below. :

The transformations will be defined in a slightly different way, so that
we shall have two alternative ways of dealing with the prime number 2.
The effect of the transformations on the arithmetic properties of the form,
and. the cases in which they leave the elass-number unaltered, will be in-
vestigated more fully than in [1]. The present paper is independent of {1].

Ttalic letters, with or without accenfs and subseripts, denote integers,
o always prime, except f,g, b, used for quadratic forms (always with
integer coefficients). Latin capitals, except F, &, also used for quadratic
forms, denote sgunare matrices, I being an identity matrix. Small Latin
letter in bold type denote column vectors, with integer elements. An aceent
is used to denote transposifion of a matrix or vector. 4, is the standard
lattice in n-space, and its points arve regarded as column vectors; its.origin
is 0 = col{0, ..., 0}. MA, is the sub-lattice {Max: xed,} and md, (m=0)
means (ml).1,. '

The matrix A(f), = A'(f), of the quadratic form f is defined so that
we have the identities

11 fledy) = f(x) &' ANy -+, fl@) =@ A(fz.
The discriminant d = 4(f) is defined by
' 1) det A () it 2|,

(
(1.2) d(f): 3(—1ptdetA(f) i 21m.
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Tt is easily seen that 4'(f) = —A(f)(mod 2), giving det A(f) = 0(mod 2}
it 24 m, so d is always an integer. We suppose always d(f) # 0; that is,
f nop-singular. o

The symbols ~, ~, ~ denote equivalence over the rational integers,

ST
the real field, and the p-adic integers respectively; and f e~ f means f ~ f
and f~ f" for every prime p. So the class and genus of f are the sets
p -

{f's f~F} and {f': f~f}, respectively.

ANl quadratio equations oceurring in the paper are identities.

Now lot & be a binary relation between quadratic forms. We notice
first that if

f~r fag
(1.3) - f#g and g ~g’]=>1-esp. fay
e g~9g

then # defines, in an obvious way, & mapping from classes to classes.
This mapping may or may not be 1-1. We shall express it loosely by writ-
ing f #g with the understandmg that f, g are any representatives of their
classes.

We shall say that fis normalived under A if fRgZf implies |d(g)l
> a0, minimal under Z it &g implies gZ&f, and almost minimal under
& if fRgRh implies either gdf or k&g,

2. Transformations of quadratic forms. For m >0, ¢ =0 or 1, and
n-ary f we consider the x4, satisfying the two congruences

(2.1) CA( f):l: = 0 (mod m),

(2.2) 2°f(x) = 0 (mod m).

It is clear from (1.1) that

(2.3) T {21) = (2.2) incase 8 =1 or 24 m.

In case ¢ = 0, (1.1) shows that {2.1) and (2.2) are/ together equivalent
to f{x +#) = f(z} (mod m} for every ze A,. From this remark and (2.3),
(2.4) , Alm, e, f) = {2 ®e 4, (2.1), (2.2)}

i g sub-lattice of A,. Clearly A(m, &, f') = A(m, e, f) if f’ is identically
eongruent to f modulo m. And if det? = +1 and f'(x) = f(I%), then
A(m, e, f') = T A(m, ¢, f). We choose M so that

(2.5) MA, = A(m, e, f),

and note that this remaing valid with M, in place of M if and only if
M, = MT for some T with detT == 11. Moreover, sinee each column of M
satisties (2.1), we have m|d(f)M, whence by transposition m | M’ A( kil
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Now we define o form g by

(2.6) g(y) = 2°m™' f(My),

Tt is elear that g has integer GOeffl(}lGIl'[}S and d(g) # 0 since the obvious
A(m, &, f} o md, implies det M = 0. We define f—(m, ¢)g to mean that
there exists M such that (2.5) and (2.6) hold. From the remarks following
(2.5) and (2.6), (1.3) holds with—{m, ) for £. So we may regard—(im, ¢)
a8 a clags-to-elags mapping; it is the m-mapping of {1]if ¢ = 0.

Again using the obvious MA, = md,, we see that N —mM ™" has.
integer elements and so we may write (2.5), (2.6) as '

A(g) = 2m™ M A(fHM.

= {x: xed,, N = 0 (mod m)},

(2.8) fle) = 27w g(Nae), MN =ml.

In the foregoing, we have worked in the ring Z of rational integers,
bub the whole argument goes through in the ring Z, of p-adic infegers
(p any prime), with Z embedded in the natural way. Suppose we do so, with
torms f, g having coefficients in Z,, matrices and vectors having elements
in Z,, and detT a p-adic unit. We obtain a mapping of clagses under s

satisfying (1.3) with e for ~. Back to Z by specializing, and we have

~ (for all p,m, e

(29)  fofy [imieg, and  f(my e =050

The case p 4 m of (2.9) follows also from the first of
(2.10) e

(m,e)g = gy 2mf for ptm, and g~f;

these are clear from (2.6), (2.8). Using (2.9) and the second half of (2.10),

e see that
(2.11) f=fr.

3. Repeated transformation, easy cases. For m, & a5 in § 2 and ¢, 5 satis-
fying the same conditions, that is, ¢ > 0,7 =0or1, we investigate the
product of —(m, &) and —(g, ). That is, we seek to ehmmate g from

fr(m,elg, and fl->(m,e)y >g=79.

(3-1) f=(m, &g,

Choosing M so that (2.53) snd (2.6) hold, we substitute ¢, #, g, ¥ for m,
s, [, 2 in (2.1), (2.2), and then substitute for g, A(g)irom (2.8). So we see
that (g, n, g) is the seb of ye 4, satistying the eongruences

g4, n)h.

(3.2) P M A My =0, 2w f(My) =0 (mod g).
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Now h(z) = 2"¢~"g(Rz), where RA, = A(q,n, g), which with (2.6) gives

(3.3) | h(e) = 2" m~1g 7 f(Pa),
where P, = ME, sotisfies
(3.4) - PA; ={My: ye 4, (3.2)}.

In the easy case s, 4, 1 =1, 2, 0, we use m|M" A(f), and (3.2) reduces
to m|f(My). So, by (2.6) and (3.4), P4, is the intersection of Aim, 1, fi
and the set of & with m|f(x). This gives P4, = A(m, 0, f), which with
(3.3) gives f—(m, 0)h. So we have '

{3.5) —{m, 0) = —=(m, 1).—+(2, 0}.

Next, take ¢ = m,n = & Then (3.2) is casily seen o be satisfied by
Yy = Nz, where N = m™'M, {or every ze A,. So if we define
(3.6) : AP, &, fY = {My: ye A(m, ¢, 9}
we have A®(m, &, f) o ml,. (In (3.6), g is defined by (2.6) for M chosen —
the choice is clearly immaterial — to satisfy (2.5).) So we see that
(3.7) F{m, e)g—(m, &)k = h{z) = £m 2f(Pz),

flw) = 47°h{Qx), PQ =mI, PA,=Am,e,f).

Now we take m and g to be coprime, and note that detM is prime

%0 ¢, becanse M., o smA, implies (det M)im™ So we may simplify (3.2)

by omitting the factors m™, M'. If we then put = for My, (3.2) reduces
o ‘

(3.8) . PA(fle =0, 2M'f(x) = 0(modg);

and we see that PoA, = WA,N (3.8) = A(m, s, f)n (3.8), From (2.1},
(2.2), and g.c.d.(m, ¢) =1 it follows easily that

(3.9) Almy e, find(q, e, f) = A(my, &, f)

for ‘either value of e; and by (2.3) we see that (8.9) remaing valid with
A{m,1—e,f) for A(m,e,f) if 24m, and similarly if 21q. We may
moreover omit the factors 2° in (3.8) if 214¢; and then we have
(3.8} = Alg, 5, f). From these remarks we see that PA, = A{mg, £, 1)
{ = max(s, ). Now, by (3.3) and {2.6), we find : 7 ’

{3.10) - ->(m, e). =g, 0) = (g, 0).—>(m, &) = —(mq, &)
if g.c.d.(sz*_m,‘ q) =1.

4, Monotonicity of the class-number. The caze & =0 of the following

theorem is included in {1] (Theorem 1), but the following proof, valid
also for ¢ = 1, is simpler. :

icm
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TuroREM 1. The class-number does not increase under any of the
tramsformations of § 2; that is, f—{(m, &)y tmplies e(g) <e(f).
Proof. We shall first show that

(4.1)  f->{m,e)g and g¢go~g =" —>(m, g lor somef ~f

From g o ¢ it follows, see, e.g. [3] (p. 68, Theorem 41), for any ¢ > 0,
that some g ~ g is identically congruent to g* modulo g. Using this re-
sult, with 2m®q for g, we may suppose without loss of generality thatb
g = ¢ (mnod 2m?g) (identically). Now we choose M so that (2.5) and (2.8)
hold, and. define ' by :

(4.2) fl(@) = 27 m=y (N,

with ¥ =mM™ ag in (2.8); whenee clearly f' is identically eong'ruent‘

to f module mq. Now by the remark following (2.4) we have

Alm, e, f) = dlmy e, f) = MA,.
It follows thatb _
fr—(m, 8)2°m™ 2" m ™ g (N My) = m™ g (my).= ¢'.

We notice that f, 7, ¢, ¢’ ave all equivalent over the real field, by (4.2),
(2.8) and g =~g'. So f~f'; and it is easily seen that d(f) = d(f’). Now
there is a g > 0 (which we could take to be [d(f)|) so that these condi-
tions and f = f(modgq) (identically) imply f ~j'. For this see [3], loc.
cit. So by chooging ¢ suitably we have (4.1).

" 'We now restriet the mapping —(m, &) to the set of classes consti-
tuting the genus of f. The image set of clagses is included in the genus

. of g, by (2.11); (4.1) gives the converse inclusion, and the theorem follows.

The next theorem is almost a corollary of Theorem 1.

THROREM 2. Suppose that either ¢ =1 or 21 m, and that f—(m,s)g.
Then ¢'{g) < ¢'(f), where ¢ (f) is the number of classes; in the genus of f,
that do not contain disjoint forms. B

Proof. Suppose first that f is digjoint, and by renumbering the var-
iables that f is of the shape

{4.3) FACTERI AR S ACETRITE A M A A g 2
Define gy, gz, up to equivalence, by fi-(m,&)g;, i = 1,2; and let gbe
the form

Gi(Yys oo Ui+ G2 Wgrs os ?J':ll)-

Because of the conditions on s, m, we may appeal o {2.3), digregard (2.2},
and break up (2.1) into two congruences, one involving &, ..., &, the
other @, y ..., @y. f—(m, s)g follows easily, on satisfying (2.5) with M
of the shape diag([M,, M,], M, k by &k, M, n—k by n—k.

The foregoing argument works also for every f ~ f that is equiva-

PR S S
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Jent to a digjoint form. So we may exciude classes of such §° from the map-
ping of Theorem 1; and with this farther restriction the image set still
containg a1l elasses that do not contain disjoint forms. The theorem follows.

5. The case of equality in Theorem 1, We shall prove:

TueorEM 3. Suppose that f—{m,e)g and f'—{(m, &)y. Choose & so
that g—(m, e)h and M, M., N, N,, P, P,, @, @y so that (2.5)—(2.8), (3.7) hold
as they stand and also with f', M,, N,, P, Q,, for f, M, N, P, @¢. Then each
of the following is a necessary and sufficient condition for f ~ f':

(i) g has an automorph N such thet

{831} : M8y = 0(modn) = M,y = 0{modm);
(ii) & has an automorph U such that
(5.2) PUz = 0{modm) < P2 = §{modm);
and these comizité?ns are equavalent vespectively to
87'NA, = Ny, U'Q4, =@, 4,.

Proof. The 8 of (i) has to have det8 == 41, sinee ¢(8y) = gly)
gives (detS)ﬂd(g) = d(g) # 0. Similarly, det T = 1. With this we see
thab

M8y = 0(modm) @-Mﬂysm!l e (MS) (87N A,) < ye8 NA,.

Treating the other three congruences in (o 1), (5.2) similarly, the last asser-
tion follows.

Now assume (i) satisfied; S~ 'NA, = Ny, implies 87N = N, T,
for some T with detT = +1. Now (2.8) and ¢(y) = g(Sy) give f(x)
= 2'm~ (N, Ty, f’ () = 2°m~"g(Nyx). These give f'{Ta) = f(x), f ~f".
If we assume (i) we ean argue similarly; so each of (i), (ii) is sufficient.

We may now assumef ~f  and choose 7 50 thatf (x) = f(Tx),
detT = 41. As remarked in §2, after (2.4), thiz gives A(m, e, ')
=T A{m, e, ), that is, M, 4, = T MA,. So for some § with detS
= =1 we have M, =T 'MS, whence we have (5.1). Similarly, we find
U with detU = +1 satisfying (5 2). From (2.6), f' (=) =f(Tx), and
My =T7M8 we have 27°mg(y) = f(MSy) = f( My), from which g(z)
= g(Sy) follows and so (i) is neeessmy, as 18 (ii), by a similar argument.

. As an example of the application of Theorem 3, take m = 3, ¢ = 0,
and f econgruent (identically) to —92% +2% 4-3(«2 + ... +a2)(mod 27). Then
we have f—>- 3, 0)g—(3, 0}h, with g = —3¢? +3y;+y3 . 2 (mod 9)
and b = —& +z‘* ~,—3{32-§— . +24)(mod 3). This easily seen that E—=>(3,0)g,
and so three applications of Theorem 1 give e(f) = ¢(g) = e(h). We exam-
ine the possibilities for f* with f*-+(3, 0)g and f ~ . :

‘It there exists an integer v smch that 2%7-%%k(m,...m;)
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We appeal to Theorem 3; and it is simpler to work with (ii) rather
than (i) and o regard f{a) = h(Qw) as h(2) with the condition Pz =0
(mod 3) on 2 Here § = diag(3,1,...,1], P = 307, s0 Pz = 0is equiva-
lent to # = 0(mod 3). We see that P,z = 0({mod 3) must be consigtent
with 2(#} = 1 but not with A{2) = —1(mod 3), else f* =~ f iz obviously false.
This gives ns P2 =0 =2 = 0 =Pz =0(mod 3). So (i) holds with
7 = I and Theorem 3 gives f' ~f.

The argument above depends entirely on the generic properties of
f; g h. So it gives us that if f; ~f ~F, and f, fi—(3, 0)g, (~g), then
fi ~fi- From this we see that o(f) = ¢(g) = ¢(h). And this wounld still
hold for the same g- and A-genera but with fin a different genus, = —af+
+9g2 4 ... {mod 27).

" Now suppose we begin with f = 92} 422 +3(2} -+ ...} (mod 27). Pro-
ceeding in the same way, we find that Pz = 0(mod 3) iz equivalent to
one of 2 =0, g = 0(mod 3). 8o f ~f" if & hag an antomorph U thab
interchanges thege two congruences; ¢(f) = ¢(g) = ¢(h) only if every
k' =~k has such an automorph.

6. Repeated transformation, the general case. We consider chains
(6.1) fioi=lmgy &)fsy i =1,..,k.
‘We define f—-I to mean that for some % = 0 there exitfs a chain (6.1)
with fy ~f and f, ~ F; and f « F to mean f—F—f. Repeated applica-

tion of Theorem 1 shows that f—F and f— F imply o(F) < o(f), = o(f).
respectively. Next, f—F (# for Gaussian) means the same as f-»F except

for the restrietion
(6.2) g, =1 for every even ;.

and fF means f_F—f. These two relations are of interest in connection
with Theorem 2.

It follows atb once from (3.10), lengthening the chain (6.1) by factoriz-
ing the mappings, that we can impose the restrietion
(6.3) each 2%m, ig a power of some prime p,,
whence g =0 if m,; is odd, without affecting any of the foregoing defi-
nitions. Further, we define s and “ for each prime p, like -+ and +, but
with the condition (6.3) and each p; = p. Finally, —> and > ave defined
like — and <, but with every & = 1.

By repea.tec’l nse of (2.6), the end points fi, fk of the chain (6.1)
are related by an identity of the shape
(6.4)  fulaw) =29 (my o) fy(Vae), et Vi(m, .. omy)".
1 =2, and
V =T, T having integer elements and detT = 41, then we shall say

12 — Acta Arithmetica XXVIL




178 G. L. Watson

that the chain (6.1) is closed; if so, fy ~f, and fy = fyfor i =1,...,k
(6.1) mayv be called a %-chain if it satisfies (6.2), a p-chain If it satisfies
(6.3) with all p; = p. We notice that if we keep the same my, £, k bus
replace f,.-by a form f, identically congruent o f, modulo m, ... m,, and
the other f; by suitably chosen forms f;, then we have a new chain satis-
fying (6.4) with f,, fi for f,, fi and with the same m,, ¢, V. So this chain
ig cloged if and only if (6.1} is so.

Now suppose that (6.3) holds and that, for some 4 <<k, p; 7 Pypq.
Then we may interchange —(my, &) and —(my,,, &.,) by (3.10), replac-
ing f; by some suitable f;, but, see (3.9}, not altering fy, fi, or ¥. So again
we have a new chain that is closed if and only if the old one is so. Further,
suppose that by such interchanges we obtain a chain which is & union
of p-chaing with distinet p (placed end to end); it is easily seen that the
griginal chain Is closed if and only if each of these p-chains is g0, For -we
have for each p-chain an identity of the shape (6.4) with the numerical fac-
tor and |det V) each a power of p; and on eliminating the unwanted f; from
these identities we get (6.4) without any cancellation. '

Using the case k =1 of (6.4), see again (2.6}, we see that if (6.3)
holds then _ '

(6.5) A(£)1a(fis) is & power of p,.

Now, sec the definitions at the end of § 1, we state and prove:

’ Tomoren 4. (i) f is normalized under —if and only if it is so under e for
every p. ’ _

{il) (i) above remains valid with ‘minimal’ in place of ‘normalized’.

(iil) f 4s almost minimal under — if and only if it is almost minimal
under vy for some prime g, and minimal under s for every p £ q.

(iv) (1)—(iii) above all remain velid with T Jor —, —.

Proof. Suppose first that f is normalized under —; that is, that
every closed chain (6.1) with f, ~f ~ f, satisfies |d(f,)| = |4(f)] for ¢ =1,
<«., k—1. Because of (6.5), this remains true for any p if we restrict (6.1)
t0 be a p-chain, so f is normalized nnder - » and we have the ‘only if’
of {i). Proof of the ‘if’ is similar but simpler; and (ii)—{iv) are proved in
the same way. '

‘When the chain (6.1) is a union of p-chains it ean be abbreviated,
for some Ik, and with f® =f, /% =7, to
(6.6) Fe 7 O i =1, p oy for i #7.

TraeorEM b. (i) f—F if and only if there exisis a chain of the shupe (6.6),
with O ~f and fO ~T; and if so, F—~f if and only if

(6.7) f“’—; o0 i=1,..,1
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(ii} (i) above remains valid with = for — and = for = when P, =2,
Proof. As for Theorem 4. ‘
7. The relation — » P > 2. In this section p is a fixed odd prime, so,

for any f, there are integers a;, ¢; such that

n

(7.1) fro Dlasptidy,  pt 200,
ge=1
We define
(7.2) w = u(f, ), v = o(f, p} = min, max(e, ..., 6,).
Then if is well known that % and » are invariant under - We next write
(7.3) ' f=(p", 0} Fp;

the form F, so defined (up fo equivalence) may be called the p-adie re-
ciprocal of f ‘We note that, for any w =0,

(7.4) F(5", 0 = gy gam"”*%'w%-

In proving (7.4) we may by (2.9), without loss of generality, suppose f
equal to the disjoint form on the right of (7.1). Then by treating this disjo-
int form as in the proof of Theorem 2 the case % = 2 reduces to the case
# = 1, which is easy, see (2.1)-{2.6}. It follows at once from (7.4) that

o(g, o) —ulg, p) < o(f, p)—u(f, p).

So the non-negative p-adic invariant »—u is non-increasing under e
that is,

(1.5) = = o(F, p)—u(F, p) < (], p) —uif, p)

In particular, with the g of (7.4) for F, equality holds in (7.5) 11° a.nd only
if either w<{u or w=o
In these two cases we can improve (7.4) to

p¥f if  w<u,
PR, i w=ze
Tor the first of these, note that f is identically 0 modulo p* and so (2.1),
with m == p*, is vacuous and we may take M = I in {2.6). For the second,
suppose w > v by (7.3), then (2.1] implies p* "|x, a8 is easily seen from
(7.1); and if we put = ¥ "#'in (2.1) and ea.nee] P77 we see that (2.1)

holds if and only if ze A(p*, 0,f). So; looking at (2.6), we have ¢
~ PV E (p¥ %) = p* " F,. We next prove

(7.7) Fy= (2% 0)f,

(7.6) =", 009 =g~

whenee by (7.3) f<1—3> Fp.
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By using (7.4) twice over, and noting that [v—|v—ell = |¢/, we find
a chain e

(7.8) F=(9", 0) F—(p"°, 0)&F

with a ¢ for which Gr;f iz obvious, but & ~ fis needed for (7.7). Now

G ~ f is immediate in the special ease f = f,, f; being the right member
of (7.1). So by the arguments following (6.4) it follows from the wealker
hypothesis f = fo(modp™) (identically); and this hypothesis is easily
seen to involve mo loss of generality. Alternatively, (3.7), with m, e
=% 0, gives f = G((2) with |det@)! a power of p, s0 = 1 because of
fr; @, and again we have (7.7). From {7.6) and (7.7) it is easily seen that

(7.9) for of.
We now state and prove:
THroREM 6. For every odd prime p, with the notation above, we have:
(i) f “ Fif and tmly if either F mp’f or F =P " ¥, holds for some
integer ¥}
(ii) fis normalized under e if andonly ifu = O and ¢, + ... + ¢, < inw;
(iii) f4s minimal under 7 #f amd only if v —u = 0 or 1;
(iv). f is almost minimal under e if and only if either (a) v—u =2
or (b) v—u = 3 and none of the g; = u+1 or u-1-2;
{v) for every 1, f e B holds for some F which is minimal under rd
(vi) for ewery pair f, F as in (v) but with f not minimal, f — g—>F for
some almost minimal g;

(vii) if a, 8 are the numbers of even, 0dd ¢; in (1.1) then |a —B| i3 in-
variaht wnder re :

Proof. The “f’ of (i) iz clear from (7.7), (7.9) and the transitivity .

of
»
It s easy to see thaf the p-adie reciproecals of pf, ¥, are F,, p~f re-

- apectively, so the conditions to be proved necessary (for the ‘only if’ of

(i)} are unaltered by veplacing f by the g of either case of (7.8). On the
other hand we have '

(7.10) imply
For on going from f to g the exponent difference » —u undergoes a de-
crease which by (7.5) cannot be made good on further mappings, from g to
h and then to f. Constructing a p-chain from f to F and back to fy an easy
induction on its length completes the proof of ().

For (ii) we note that, by definition, f is normalized under - if Bﬂld

f~(2", 0)g shandu<w<o bt .

icm
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only if |4(f)| < |&(F)| for every F “ f meg (i), it evidently suffices to
take F == p~¥for Fy; then d{f)jd(F =p"™ or p°, with 5 = v —2e, ...+

+v—2¢,. This gives the result.

For the ‘only it’ of (iif), supposing v —u = 2, we choose w with u < w
< v, and then (7.10), with any &, say b = g, gives f—a h1—>f and so f is not
minimal. On the other hand, if v—u = 0 or 1, (7. 6) is a.lways applicable
and with (i) gives f—(p%, Nyg=f <> g for every w. From this the “f’ of
{iii) follows.

In the proot of (iv) we may by (iii} assume thabt v—u > 2, and then.
irom the definition in § 1 it follows easily that fis almogt m1mma1 under
= it and only if there exists no w for which f—(p™ , 0)¢g implies g7 I
and g not minimal under >+ Using (iii} this means that we cannot ha.ve

L<<vlg, p)—u(g, ») < v(f, p)—u(f, p). Using (7. 4), this pair of inequa-
lities can be expressed as

{7.11) 1< maXjw— e —min 1w —e;| << v —u.
@ £

‘Now w = w1 satisfies (7.11) if v—u >4, so supposing ﬁ—ugé’ and

noting that (7.11) implies w < w < v the proof of (iv) is easily completed.

(v} is trivial if f is minimal, and nearly so if f is almost minimal;
the construction for (iv) gives an induction onm » —w in the remaining
cage. (vi) follows easily from (v). For (vii) we look at (7.4) and note that

|w —e;] —lw—e;| = ¢;—¢;(mod 2).

8. The relations 7% » & - Torp =2 we have to replace (7.1) by

» [
(8.1) o > 20l 22 yyajm1 5%, 425) s

=1 j=1
where the 8; are binary forms with odd diseriminants, the e; are odd inte-
gers, and », 0 are non-negative integers with » 420 —n. If we write
(8.2) i=1,..0

then we can define u = u(f, 2) and » = »(f, 2) just as in (7.2). We define
tha 2-adic reciprocal of f, ¢f. (7.3), by '

(8.3) Fer(2P 1) T,

Carresponding to (7.4), and proved in the same way, we have

v 2 -
(8.4) f”“>(2w+2; Lg=yg ?Zzlw—eﬁa%m% + Ezlwﬂ_r’wlﬁj(my—m%n Lyy05) -
i=1 i=1

Coyajo1 = bpgy =1 —1  for

From this and (8.2) we see that we have

ti(g) = lw—&(f)]

as in § 7.
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" The form f may be called Gaussian if its product terms all have even
coetficients, or equivalently if 2|4 (f). Clearly, by (8.4},

(8.5) . f=(@"+, 1)g=214(g)-

This shows that we lose nothing by considering Gaunssian forms only,
for the rest of this section. For such forms it is easily seen that (7.5)—(7.9)
hold good with 2 for p, —+(2°1, 1) for —>(p¥, 0), 5 for —, and & for <.
We also have

THEROREM 7. For Gaussian forms, Theorem 6 remains velid for p = 2,
if e and < are replaced by 55,4 -

Prootf. Because of the remark following (8.4), we can argue just as
in the proof of Theorem 6. The restriction fo Gaussian f ensures #; 2> 1,
e=0,u20. )

Theorems 4-7 can be used to deduce what we need to know about— .
In particular, we have

TaroreM 8. Let f be an n-ary positive-definite gquadratic form with

integer eoefficients such that every class in the genus of f contains a disjoint '

form, (that i3, ¢'(f), defined in Theorem 2, is zevo). Then there exisis o squore-
free inleger g and n by n matrices B, O, each with integer elements, such that
¢ = qB™!, det Bidet O, and the Gaussmn form a'Bx satisfies all the con-
ditions imposed on f.

Proof. By Theorems 4-7, there exists a form F' with f_ F and F
_normalized and minimal under —- . Replacing f by 2f if necessary, and

wsing (8.5), B iz Gaussian, so B = A4 (F) has integer elements. ¢ = gB-1

also has infeger elementa it we define ¢ as the least common denominator
of the elements of B~'. By Theorem 4, F is normalized a,nd minimal under
e for every p > 2, and under . Usmg (ii) amd (iii) of Theorem 6, and
Theorem ,this gives 4 = 0,2 < 1, &, +... -+, << n, for each p. It follows
easily that g is square-free and detBide‘uC Repeated application of Theo-
rem 2 shows that ¢ (F) < ¢'(f), so ¢ (F) = 0 and this completes the proof.
I hope to use Theorem 3 later to prove the

CoNyRCTURE. For given n there exists a form f satisfying the hy;potheses
of Theorem 8 if and only if 2 < n<C 13,

I have proved this eonjecture for large » in an unpublished manus-
cript, using Siegel’s formula for the weight of a genus, and Theorem 8;
for 'Bx as in Theorem § the weight formula hecomes considerably simp-
lér than it is in general.

9. Statement of results on —. Clearly, for every f,

(9.1) f=(1,1)2f~(2,0)f, whence f<2F,
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for r 3= 0; and puflting in factors 2 to avold complication with non-Gaussian
forms we have trivially

(9.2) o o 8T =f — F.

We therefors have (using Theorem 7) a necessary and sufficient condition
for f « I if we can determine all the cases in which

{9.3) fH F g true but 2f <2 28 is false.

We write [a, b, ¢, ...] for a diagonal form with coefficients a, b, ¢,
.., and p, for the sum of the §, in (8.1) with»; =7, = 0,1, ... Then we
can abbreviate (8.1) to

(9.4) Fe [2%%ag, 2%ay, .. ]+ o -+ 29 Hy, + ..

It will sometimes be convenient to put in one or two 0% after 2%a,, or

- to put +2°y, after ... thereby indicating that v, is identically 0 for all

r > &, and possibly also for some or all of the + <s.
With this notation we give examples to show that (9.3) is possible,
Rach of them can, with = = 2 or 4, be written in the shape

(9-5) Jo=(m, 1) f1—(2,0) fo—>(m, 1) fa“* 0) fo,

(9.6)  fi-e(2m, 1) 2fy—(2m, 1) i, fe>(2my 1) 2o (2, 1) Sy

(9.7)  fipfialwayr,  2f;222f only i {7, i} =1{0,1} or {8, 3}.

BxaMPLE 1. Take m =2 and e =b=a¢ =0 =41 or a,b
= 41,F3, ¢, b =TF1, £3, and let fo, ..., f5s be

[a, 8] wo+2y, (&, b7 +dyy+ 2w,
[a, b’ ]2,y [0 D1 +2 90 +4.

It iy easy to verify (9.5) and (9.6), whence the first part of (9.7); and
we note that f, fy ave the 2-adic reciprocals of f,, f,. Using Theorem. 7,
if the second half of (9.7) is false then 2°f, —~ £y or fy, for some o which is
obviously 0. The first alternative gives u, = y, = 0. The second can
be excluded by choosing v, v, not to have the same number of variables.

BXAMPLE 2. m = 4, ay 0dd, a,, 4, each odd or 0, foroerfa =
[ty @y 205] 1o +2121 4y, [20y, 2a,, aaj + 8y +dapy +29y,
[“iy o, 2,1 +4dy 29, ‘H_Pz; (26, 244, a(s] +2y +-dapy By

It can be shown exactly as in Example 1 that this gives all we réquire,
except possibly fhe second half of {9.7), which, crudely, can fail only if
e and g, have equally many variables..

£ i e M

T i e e
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More genevally, with fo, ..., fa as In either of these examples, (9.3)
holds if there exist f', # such that

(9.8) of 22f, 2P el L, F =i f

THEOREM 2. {9.3) holds only if there exist f , T’ satisfying (9. 8) with
fos f2 08 in Examples 1 and 2

If may be noticed thatb 'bh@ conditions on a, &, a', b’ conld be weakened
to ab = 1(mod 4) and &', b* = +a, £b, with the + or — sign according
as ab =1 or —3(mod 8) and then by symmetry (interchanging w, and
) [, and f, can be interchanged in (9.8).

TaxoreM 10. To every f there corresponds an F such that f—F and F
is minimal under —. A form is minimal under — if and only if it is 2-adi-
eally equivalent {0 a mult@ple of one of the following:

(1) 9o +2us5

(i} the forms foy ..., fy of Example 1 above;

(iil) the foy ooey fo of Bmample 2, with ay = 0, a,a,; odd, and y, = 0;

(iv} the fo, - -, fa of Brample 2, with a; = ay = 0, 0, odd, and p; = 0.

In case (i), Po-+2w—(2, 0)29 1+, —(2, O)yo+2vy1, 80 o2y I8
normalized only if its discriminant does not exceed that of 24y 4-v,, that
is, only if y, has at least in variables. Similarly, the nermalized forms
can be picked out in cases {ii)—(iv).

TaroREM 11. f ds almost minimal under — if and only if there ewist
Iy B suchthat f< f' ~ F and I is one of

(9.9) . [al+we+29;+dy,, wows 20, ond either a =0 or 4+ a;

(9.10) [r, b]+ypot2yst+dus, wow, =0, ab =1 or 2(mod 4);
{9,11) (8] +Fyo+89s;  woys #0, and either a =0 or 21a;
{6.12) T, D1+ wo +8vps,  wows £ 0, @b =1 or 2(mod 4);
(9.18)  [daltype+2y, oy #0, o dfa, =04 2a;
(9.14) [L, a]+1y,+2y, o= —1(mod4);

(9.15) [2a, 4514 po-+29;, ab = 1or 2(mod 4);

(9.16) (o, 40]+29 +4y,y, ab = 1(mod 4);

{9.17) [1, 0, 20] +2p;+4ypy,  2fad;

(9.18) 1, —1,2a, 2612y, +4y,, ab =1 (Inbd 4);
(919 . [a, 85] 2y 4y 8y, 2fab,  pyy = 0;

(9.20)  [1, —1,4a]42yc oy, +8y,  2fa, iy = 0;

(

9.21) - [1, —1,2a, 4b]+2p, +4y, +8y;,  21ab, oy =0,
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If f is not minimal, f- I, and F is minimal, then f? g & for some g which
is almost minimal under —».

18. Proof of Theorems 9-11. We need to normalize {8.1), and (9.4),
by making » as small as possible. To do so, note that, for odd o,

(10.1) [@y; @y, Gy] Y lay+ 6,4 01428,

with d{f) = —aya,a,{0; + a5+ a5). This gives us that we may suppose
no three of the ¢ equal, or more precisely

{10.2) O R, el ey, I i<r—2,m <0,

With this condition it is easily seen that

10.3) 21A(f)  and  f=(2, b=k by 4,
where ‘
(10.4) by =0, 2a07, or  doy(2m 4 @) - daal,

according &s the number of zero ¢;.is 0,1, or 2; and k, is derived from’

the right member of {8.1), or (9.4), by omlt’omg the ferms with odd coef-
ficients and dividing the others by 2. In the third ease of (10.4), if aa,
= —1(mod 4) we have k; = 20,d(6) odd; but if e;a, = 1(mod 4) then
by~ (@} + ay23), with the sign + or — according as -a,a, =1 or
~_3 {mod 8). ’

It will he convenient to pestpons the proof of Theorem 9.

Deducfion of Theorem 10 from Theorem 9. For given f,

suppose f—(m, e)g, m a power of 2. Then the possibilities for g up to
equivalence can be found by using (3.5) and (7.6); there are infinitely
many, but if we write ¢ = 27k, r = 0 and 2 2-adically primitive, then
there are only finitely many possibilities for 5.

In particular, taking f to be 2-adically equivalent to a form of one
of the shapes (i)~(iv), we find either A ~f or #;, see (7.3), or & equiva-
lent to one of the other two members of the quadruplet of Example 1

r 2 to which f belongs. In each case h—; fis clear, so f—2> g5hfif 9,
and fis minimal. So by (9.1) is 2"f, # = 0. This proves the ‘i’ of the theorem,

Now, starting with any f, o sufficiently long chain (6.1) with map-

pings —(2, 1), (2, 0) alternately gives f-g, for some g~ ¢', ' one of

(i}=(iv). This is easily verified, and using the ‘i’ it gives the first assertion
of the theorem. Specializing by taking f to be minimal, f—gimplies g,
and so Theorem 9 gives the ‘only if’.

Deduction of Theorem 11 from Theorems 9, 10. Let f be
one of the tormy that we have to prove almost minimal; whence by Theorem

10 we see that f is not minimal. Proceeding as in the first part of the proof
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above, we find that f—(m, e)g, m a power of 2, implies either 9 for

g minimal. Clearly this is also implied by f—g, and s0 fis almost minimal.
This gives the ‘if’. : '

For the ‘only if’ suppose f not minimal; then f— g for one of the g that
have been proved almost minimal. This is more subtle than the correspond-
ing argnment for the ‘only if? of Theoram 10; but I leave it to the reader
with the remark that it suffices to mse —(2,0) and -»(2¥*, 1), w < 3.
Now if f is almost minimal, g->f, f <7, and Theorem 9 gives ns the ‘only it’.

The argnment just uwsed will not prove the remaining assertion,
hecanse ¥ hias to depend only on f, not on g. We construct a chain under e

with each link irreversible:
(10.5) fi~1“§ff’;'>fi-1s i=1,...,k,
fo=TI1 fiy.-esfey all normalized, f, = F;

for given f, F satisfying f— ¥, minimal, f not so, whence k=1, and
the f, are pairwise inequivalent. If, for fixed f, ¥, & is bounded we choose
the chain (10.5) to make & maximal; then g = f;, gives f-» g ¥, g almost

minimal. So suppose %k unbounded. Since there are only finitely many
clagses with given d, 4{f) is unbounded. So, with u; = w(f;, 2) and »,
=2(f;, 2) a8 in (7.2), (8.2}, and %, = 0 by {10.5), v; isunbounded. It is however
easily seen from (3.5), {8.4), (10.3) that max(2, v—u) is non-increasing
under —. So we have a contradiction which completes the proof.

For Theorem 9 weo need some further preliminaries. We define

(10.6) ' e(f) = e,—e, '(= 0 if » = 0),
0.7 &'(hH) :max{ei—i-i——:rj: tr, <ol (=0if » — 0),
(10.8) ¢ (f) =r,—7  (=0if g =0).
¥rom (8.4) we see that |
(10.9)  f(2¥F, g =r{p) <»(f), e(p) <elf),
and it »(g) =»(f), then also &' (g) <e'(f), ¢ () < ¢ ()-
From (10.3), (10.-1) we have

(10.10)  2[A(F) and f+(2, 0)h=w(h) < »(f), (k) < e(f),
and. it »(h) = »(f), then e’ (k) < "' (f).
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Now congider the possibility

(]_0.11) 2|A(f)’ Z'l’fy_f“""(% O)hJ v(h) = v(f},
e(lt) = e(f}, &' (h) = e(f), e (k) =" ().

Straightforward caleulation shows that (10.11) impliss that the invariants
of f satisty

(10.12) » >0, ¢ =0, ¢, <1, r,<2(orp =0),
and if »z= 2 and e, = 0, then » =2 and a,4, = 1{mod 4).

Now, supposing fo I, we have & closed chain

(10.13) o f@;el*"‘(awﬁls Ei)fi’ =1, ey k: fk =fn:

with two of the f; = f, F regpectively. TFactorizing the mappings with
g = 0 by (3.5), and noting that e; = 1 implies 2|4 (f;), see {8.4), we may
suppose that

{10.14) & = 0 only if w;, = 0 and 214(f).

Looking af (10.9), (10.10) we see that the chain (10.13) cannot close unless
v, ¢ and ¢’ have the same values for all its f;. From the constancy of »
and Theorem. 7, we see easily that 2f; , £ 2f; whenever ¢; = 1; also, trivially
when f;_, = 2f;. Supposing therefore that 2f< 2F is false, one of the
mappings of the chain has to be —(2,0), with f;_, # 2f;. Choose such
a mapping with ¢'(f;)— ¢’ (f;_,) maximal, and so non-negative; and obvio-
nsly there is no loss of generality in supposing f;_, = f. Writing & for
£;, (10.11) holds, and (10.12) follows.

This leaves us just a few simple cases in whieh it is easy o find all |
the ¥ with f < ¥ and so complete the proof. It becomes still easier if we
assume that f; is the 2-adio reciprocal of f,., whenever s = 1; and that
assomption is easily justified.

11. Conclusion. For any f, with matrix 4, we have
f->(idetA|,1)g, where g(y) = y'(adjd)y,

whence using adj(adjd) = (det.A)"*A we see that f«g. Hence the result,
mentioned in § 6, that ferg=¢(f) = ¢(g) may be regarded as a generali-
zation of the classical result that equivalent formns have equivalent adjoints.
From a ‘family’ (union of classes) of forms pairwise related by« it is eagy
to pick out the normalized ones, that is, those with smallest |di. And
given any representative of the family, normalized or not, it is easy to
construct the whole family. Since feaf for every f and every a > 0, it
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is convenient to omit the imprimitive members of the family, leaving
g finite union of clasgzes. For these remarks see Theorems 4-9.

I now ontline an approach to the problem of finding, for given #, all
the n-ary positive-definite quadratic forms with elass-number 1. Suppose
#=92, since # =1 is trivial. Consider only normalized forms; this
shortens the labonr and makes it less difficult to present the result in
a reasonably concise form. With these preliminaries we may proceed by
three steps.

Step 1. Find all the (classes of) positive-definite #-ary forms #
with ¢(F) = 1, F minimal and normalized under —.

This seems hopelessly difficult for » =2, but I have done it for
n 3= 3. For o= 11 there are no possibilities; for n = 3, 4 see [41, [3].
For b < n< 10 see {6]. ‘

Step 2. Find all the positive g with ¢(g) = 1, ¢ normalized and almost
minjmal under —.

Theorem 4 (i) (with ¢ for f) shows that the arithmetie properties
of the g here considered are not much more complicated than those of the
F of Step 1, so the methods used for Step 1 are still available. It helps
further to note that there must be a minimal ¥ with g—F (see Theorems
B(i), 6(v), 10) and Theorem 1 gives ¢{F) =< ea(g), so e¢(¥) =1, and the
pogsibilities for F may be supposed known. They may be taken one by
one if convenient. For many F with ¢(#) = 1 we find no almost minirhal g
ab oll with ¢—F and e(g) = 1; but in any case we find an upper bound for
the ‘bad’ prime g of Theorem 4(iii), for which g is almost minimal under -

Step 3. Find all the positive f with ¢(f} = 1 that are normalized but
neither minimal nor almost minimal under —

As in Step 2 we choose F, minimal under -», so that f—F. Then,
Theorems 5(i), 6{vi), 11, we have f—g—7F, g almost minimal; and we may
choose g to be almost minimal under <+ for any prime ¢ for which f is not
minimal under e Theorem 1 shows that e(f) = 1implies e(g) = ¢(F) = 1;

so by Step 2 we have finitely many possibilities for g, f, and f minimal

under e for every p that is not among the possibilities for q.

In the references quoted above for Step 1 the notation and results
of [1] are used, and so should be related to those of this paper. In [1],
J is strongly primitive (8P), if, for every p and some 3= In, f has an
r-ary section f’ with p{d{f"). Further, f is square-free (SF) if it is p-adically
SFF for every p; and the definifion of o p-adically 8F form implies that
fis p-adically SF if and only if f—(p, 0)g—(p, 0)k implies b ~ f. See
13, p- 584, Lemma 6.

Now f is minimal and normalized under — if and only if it is SF and
SP. When f is minimal under — but not normalized, it is not necessarily
-BF (because, see Theorem 10, {9.4) may have a non-zero term 44,).
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