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Reduction of an arbitrary diophantine equation to one
in 13 unknowns

by

Yurt MaTirasevié (Leningrad) and Juria RoBmsow (Berkeley, Calif.)

A dicphantine equation is & polynomial equation in some parameters
G1y ...y @, a0d gome unknowns 2, ..., 2,. That is, an equation of the form

(1) Plagy oonytyy 2y .0y 8) =0

where P i3 2 polynomial with integer coefficients (# and » are particular
natural numbers). Both parameters and unknowns will be restricted to
the natural numbers N = {0, 1, ...}. The distinetion hetween parameters
and unknowns will be clear if we consider Mordell’s equation

(2) § =o' +a.

Here # and y are unknowns and o i8 & parameter. The problem is to find
the values of the parameter a for which (2) has a solution for the mnknowns
% and y. A trivial problem would result if « and a wers unknowns and y

" the parameter. (For every 4, we can find » and ¢ satisfying (2).) Thus,

it is eonvenient to think of P as a polynomial in 2, ..., s with coeffi-
clents which are polynomials in ay, ..., 6, with infeger coefficients. We
then write P(z,...,2,) and speak of a,,...,a, as the parameiers of P
and #,..., 7 a3 the variables of P. _

Given & polynomial P, we shall construet another polynomial P such
that

(3) Bty cons Oy 2oy enny %) =0

for some #,,...,#, if and only if

(4) ﬁ(all veny By bye,d,e,f, ¢, k,.i,j,k,l,'ma,%) =0

for sowe b,¢,d,¢ef, 9, 04,4, &y 1, m, 0.

‘We say that (3) is a diophantine definition with » 11 unknowns of
the relation among a,, ..., @, which holds if and only if (3) has a solution,
while (4) is a diophantine definition of the same relation with 13 wnknowns.
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We shall also speak of the equation P = 0 being reduced to the equation
P = 0. Two equations with the same parameters are equivalent if they
are solvable for exactly the same values of the parameters.

In 1970, it was shown that every recursively enumerable relation
has a diophantine definition [7]. From this and the existence of a uni-
versal recursively enumerable relation, it follows that for some § and v,
there is a polynomial ¥ of degree 6 in #,, ..., 2, such that

v

Uty My Bgyeaay @) =0

for some 2, ..., 2, if and only i #e@,, where D, Dy, ... 18 a list of all
diophantine sets, i.e. sets which have a diophantine definition. By the
use of pairing funetions, this result can be extended to the case of any
number of parameters leaving ¢ and » unchanged. Hence every diophan-
tine equation iz equivalent to an equation with the same parameters
of degree & in »--1 unknowns. Before 1970, the existence of such a »
was widely disbelieved. '

Our proof that the number of unknowns needed for a diophantine
definition is << 13 is virtually self-contained, using only familiar or easily
proved facts from elementary number theory.

Skolem [11] showed that every diophantine equation is equivalent
to an equation of total degree 4. To see this we can replace (1) by an
equation of the form A = B where 4 and B are polynomials with pos-
itive integer coefficients. We then make up a system of equations 4, = B,

of the forms a-+f =y and a-§ = v where each «, §, y is either a natural

numbper, a parameler or variable of P, or a new variable introduced to
represent an expression in the stepwise caleulation of 4 and B, making
sure to represent A and B by the same variable. Then P = 0 for some
Zgy .y %, if and-only it }(4;-B;)* =0 has a solution. Since 4,—B; i3
of at most the seeond degree, the resulting equation will be of at most
the fourth degree. Skolem’s reduction increages the nwrmaber of unknowns
according t¢ the number of steps needed to caloulate P. Neither his result

vor ours shows that both the degree (with respeect o the unknowns) -

and the number of unknowns ecan be bhounded 51multaneously, although
thig is clear from the existence of T.

Now a diophantine equation F(a, 4, ..
ey »ooy 4, if and only if

.y %,) =0 has a golution for

(g +1} (L —F2(ug, ..., 1)) ~1 = &

has a solution for u,, ..., s, (see Putnam’ [9]). Thus, our theorem shows
that every diophantine set 1§ the non-negative part of the range on N of &
polynomial with 14 variables.
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_ On the other hand, if we counsider the range on N of a polynomial
with positive coefficients, we cannot put & bound on the number of varia-

bles needed as the following example of R. M. Robinson shows. Let

I = ] + 2o I 4o} -

Then F assumes the values 0,1, ..., 2% —1 and no other values less than
27, We shall show that for » sufficiently large, the range (on W) of F
is not the same as the range of any polynomial with positive coefficients
and fewer variables.

Suppose ¢ is a polynomial with positive integer coefficients in k—1
variables with the same range as #. The & must assume some value less
than 2% with some variable # > 1. We may assume that when the other
variables are fixed then & depends on x and hence has the form

SIS

H{z) = e @ 1+ . ez te
., 6., are not all zero and H{(2)< 2% Bub then,

9?0 < H(gk) < (gk)k—-lH(p) < 2 :)J'c2 221

where ¢, ..

for n = k. Hence @ assumes some value g with 2% <{ g < 2" while F does
not which contradiets the assumption that ¥ and & have the same range.

Nevertheless for any » and &, the range of the corresponding F is the

non-negative part of the range of a polynomial & in 14 variables with
integer coefficients.

We Dbelieve that the minimum number of unknowns necessary is
less than 13, possibly as small ag 3, but new methods will be needed to
obtain the optivaum rvesult. Im & companion paper [12] written with
Martin Davis, we give a direct construection of & universal polynomial as
well as applications of this paper to the theory of diophantine equations.

Notation. Lower-case Latin letters will stand for natural numbers;
upper-ease Latin letters will stand for integers or particular polynomials
with integer coefficients; lower case Greek letters will be used in various
ways with their range given at the time or clear from the context. We’
will use the following notation for familiar relations of number theory:

oy for ‘z divides y'; # | y for ‘x is prime to 3’ [o] for the greatest integer

< o where ¢ is real; (¢ for the nearest integer to ¢ — we consider (o}
is undefined if ¢ iz an integer plus & half; Rem (s, y) for ‘the remainder
when o is divided by ¥'; and x = []for ‘@ is & square’.
The paper i organized in two parts as follows:
Part I. Definition of the exponential function.
1. The Relation-combining Theorem.
9. Lueas sequences and Pell equations.
3. Definition of the nth solution of a Pell equation.
4. The exponential funciion.
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Part I, Reducfion to 13 unknowns.

. The ocode.

. Diophantine equation with coded unknowns.

. Beduction to the positiveness of a polynomial.
. Reduction to binomial coefficients.

. Reduction to & partial binomial expansion.

10. Definition of a partial binomial expansion. .

11. Completion of the proof. -

Seotion 4 is not needed for the rest of the paper but containg & diophan-
tine definftion with just & unknowns cof the relatfon y = =™ We might
say that the eost of “polynomializing exponentiation” is not more than &
unknowns, It also provides a good introduction o the gimilar but more
complicated Seetion 10, Part I is not used in Parf 1T until Seetion 9 where
the two lemmas of exponential size from Section 2 are needed. Thus,
a reader familiar with some account of the negative solution to Hilbert’s
tenth problem (any of the expository articles by Davis [3], Manin [6],
Matijasevid [B], ete. or the original papers by Davig, Putnam, and Robin-
son [4], Matijasevid [7], and Robinson [10]) may wish to- begin with
Part IT and return to Part 1 as needed.

Uonstruction of P. We define a polynomial ¢ with parameters
@1y ..., @, and variables b, ¢, ¢ such that P(z,...,2,) =0 has a solution
if and only if there are b and ¢ such that @ (b, ¢, t) > 0 for all . § iz com-
pletely defined by the 14 *formulas in Sections 5,6, and 7.

Next we consider an arbitrary polynomial @ in one variable with
positive leading coetficient. We find a polynomial @ with 11 variables
and the same parameters ag § such thabt @(#) > 0 for all ¢ if and only if
@ = 0 has a solution. We apply this result to Q(b, ¢, t), treating b and ¢
as parameters, and let P be the corresponding @. There are 24 #*-formulas
in Sections 1,2, 3, 8, 9, and 10 which eompletely define P given (.

‘We wish to thank R. M. Robinson for several ideas and suggestions
made during the course of this work (some of these have been superseded
and others ineorporated) and to thank Craig Smorynski who read the
manuseript and made helpful comments.
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PART I
Definttion of the exponential function

1. The Relation-combining Theorem. Certain combinations of relations
ean be defined more cheaply than by defining each separately by an equa-
tion and then combining the equations. For example; let -D and F be
integers. Then D > 0 and E = 0 both hold if and only if DE? =1+4a
for some natural number x. The direct method of combining the equa-
tions D =1+-2 and B* = 144 gives (D —1—z)*--(B*~1—¥)* = 0 which
has two unknowns. The Relation-combining Theorem will permit us to
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pave 2 unknowns in the definition of the exponential funection and 7
unknowns in the reduction of an arbitrary diophantine equation.

We will need a bound on the absolute values of the complex zeros
of a polynomial #(2) = ¢,2"+...+ 2@, where the ¢’s are complex
numbers and |p,| > 1. Suppose F{z) = 0 and |z| = 1. Then

a1

7 < gt < ) Il 151
=0

g1

s0 [z|<< 14 > . In particular, if the ¢; are integers t.hén all zeros of
i=9¢
a—1
F(z) will lie in a circle of radius 1+ 3 ¢}.
: _ i=0
THEOREM 1. Suppose Ay, ..., A, are integers. Then 4, =[,..., 4,
= [ ¢f and only if

- Ty( Ay eny Ay, X) =0

y Ay, Jor some inleger X

where _
(2) Tyl Auy ooy Ay X) = XL VA 2 VA, W ... VA WY,

a
(3) . Wo=1+) 4%
I=1

and the product in (2) extends over all combinations of signs.'

Proof. Clearly, (1) has a solution if all the A’s are squares. On the
other hand, we will show by induetion on ¢ that (1) implies that all the
A’s are squares. Obvious for ¢ = 1. Buppose ifistrueforg = j.If 4, ; = 7,
then of ;, ((Ayy.oey 4y, X) = 0 for some integer X if and only if J;(4,, ...

.y 45, ¥) = 0 for some integer ¥. Hence the assertion holds for g = § 1.
Suppose 4;., # [ and some factor & of J;,,{4,,...,4;,,, X} i5 0 for
X. Let p be a prime which divides 4, , to an odd power and & be the

- eonjugate of £ with respect to yp. Then

E—F=0=12(VA4, W +L.)
where ... stands for similar terms of lower degree in W. But this is impos-
i
sible because W =1+ X [VA,.
il
Remark. Actually (1) has a solution with X a natural number
whenever it has an integer solution. In Theorem 3, we will make use
of the faet that in this theorem we ask for integer solutions of (1).
TEEOREM 2. Let F(X) = F,X°+... +F, X+ 7, where I, # 0. There
is a polynomial H such that of 7, | B and B £ 0 then

BIG, D>0, IX) =0
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for some integer X if end only if
H(B*z+C*%) =0

for some natural number ®.

Proof. Choose F so large that all the integer zeros of F are greater
than —~F. Let Q(Y) = F(Y —F—0?) then the integer zeros of &(Y)
are all greater than 0% Let H(Z) = J°G(Z/J). Then the zeros of H(Z)
are J times the zeros of G(¥) If J | F, (¥, iz the leading ecoefficient
of G{¥)) then the integer zeros of H(Z) eorrespond to integer zeros of
@(Y) sinee the remaining rational zeros of G(Y) have denominators
which divide F,. Also if J > 0 the integer zeros of H(Z) will all be pos-
itive; otherwise they will all he negative. Now let J = B*(2DF:—1).
Then J > 0 if and only if D > 0. (Obviouwsly, J #0.)

Suppose H(Biz+(2) = 0. Then D > 0 gince B2x{-0? is positive.
Also B|C since B2y -4-C% ig a multiple of J and hence of B% By the argu-
ment above, F(X) == 0 for some integer X. On the other hand, suppose
B|0, D>0, and F(X) = 0. Then H(B*s-+(0? =0 has a solution if

B(2DF. —1)(X +F 0% = Bp (2

has. Tt does, since the left side is a multiple of B* and greater than O
Notice that we cannot apply Theorem 2 again since H (B*T'+(?) =0
will always have an integer solution for 7' if B|C and F(X) =0.
TrrorEM 3. (The Relation-combining Theorem.) For every g there
8 a pol ynomial M, with inleger coefficients such that for all fmtegers Ay, ...
nB,0,D wzth B £ the conditions

A, =1, Teed
all hold if and only if

A, =0, BIG, D>0

M4y, ..., 4y, B,C, D,n) =0

for some natural number n.

Proof. Let F(X) = J (4,,..., 4, X) of Theorem 1. Then o = 2°
and F, = 1. Hence the hypothesis of Theorem 2 ig satisfied so we can
take for M, the corresponding polymomial H(B®*n 4{?), _

In order to constrnet M, explicitly we need to choose .F' and then
carry ouf the steps in the proof of Theorem 2. From the factored form
of J, given by (2), we see that all integer zeros of J, are greater than — W%
Henece we can put F = W2 Also J = B2(2D—1). Therefore

*  M,(Ay, ..., 4, B, 0, D, n
= H B 02 —B(2D —1){Ct + WLV A, + VA, W ... £V A, W 1)

S
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where the product is over all sets of signs and
o : : W =1+ Z A3

will sabisfy Theorem 3. Notme that the parameters of M, are 4., ...

y Agy B, C, D and the only variable is n. (W is nzed only as an abbre-
watlon for the sum.)

2. Luecas sequences and Pell equations. A Lucas sequence i a sequence
of mtegers generated by

(1) X,=4, X,=B, X,,=0X,, DX,

~ where A4, B, C, and D are integers. For exainple, if 4 =0, B =1, ¢ = 3,

D = —2 then X, = 2".-1,

The ultimate tool in both the definition of exponentiation and the
reduction to 13 unknowns is a diophantine definition of the nth term
of & special type of Luecas sequences. In this section, we give some ele-
mentary facts about Lucas sequences and their relation to Pell equations.

A diophantine equation of the form

(2) ‘ —dy? =1

where d i3 a parameter is called -a Peil equatlon The basie resmlt about
golutions of Pell equations is:

If d>0 and not a square then (2) hag infinitely many solotions in
natural mmbers; if d is a positive square, then the only solution is @ = 1
and ¥ = 0; if d = 0, then the solutions are # =1 and y =0,1,.

We shall be concerned with a special type of Pell equa.tlon — those
of the form

(3) w—(a—1)y* =1 for a>0.

In this case, let the solutions in order of the size of 4 be

=g, ({n), Y= pu(n).
In particular, x;(n) =1 and y,(n) = n,
There are two convenient ways of generating the solutions of (3): as
Lucas sequences and algebraically in terms of the powers of the unit

m-l—l/tsr.?-w

Recurrence equations. Tor a >0, _
(4) %a(0) =1, Za(L) = @y ga(n+2) = 2“"%&(”‘}‘]_-)_%5(”)7
(B)  wa(0) =0, 3,(1) =1, p({n+2)=2a y,(n+1)—p,n).

Algebraic characterization. For a > 1,

(6) (a—l-l/azml)*"‘ = s (1) (m)Var—1.
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For the proof of these results, see any elementary number theory
book which treats the Pell equation. With this background, we can easily
derive the properties of y and y which will be needed. The reader may
also wish to consult the derivations in expository articles on Hilberts
tenth problem. '

Tor every >0 and b > ¢, there are infinitely many # such that
bly,(n) since 2?—(a*—1)b%y® =1 has infinitely many solufions.

Algo for a> 0, n < p,(n) by the definition of y,(n) and the fact

that (3) has infinitely many solutions.

Congruence rule. For a >0 and 5> 0, if ¢ = b (mod m) then
%) = 1(n),  va(n) = yp(n) (mod m).

This is clear since x,(n) and y,(n) for fixed n are polynomials in & by

(4) and (5). The special ease of the congruence rule which we use over

and over is obtained when b.=1 and m = a1 80
Pa{n) = n (mod a—1).
Bounds on y. For a >0,
(20—1)" < g, (n+1) < (2a)"

‘To check this, note that u,(1) =1 and y,{2) = 2a. Since p,(n-+1) is
obtained from (%) by multiplying by 2¢ and subiracting something,
the upper limit is verified by induction. Similarly, the lower limit can
be cheeled sinee p,(n-+1) is obtained by multiplying by 20 and subtract-
ing something less than p,(n), le. multiplying by something greater
than 2¢—1.

Addition equations, For a > 0,
(7) Ka(B=m) = y.(n) xa(m) I (0 — L), (n) p,{m),
- (8) Yo M) = 2y (1)} (M) -+ () g (M)
Trivial for & = 1. The proof for & > 1 is immediate from the algshraic
characterization of y and y together with the fact that (a-+Va®—1)"
= a—Vat~1. In particular,
(9) ' Ka(2n} = 2y,(n)* -1,
10y _ ] Wa(?*'n) = 2%&('”)"/"&(”)'

In general, wo will be interested in the y-sequence rather than the
z-sequence. For 4 >0,

(@—1)y*+1 = O

if and only if y = p,(n) for some n.
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Next we prove two lemmas which are nsed in the next seetion in
the. definition of ¢, (B) = C.

FIrgr $TRP-DOWN LEMMA. For a > 0, if y.(m) |y (n) then ,(m){n.

FProof. For convenience, we will drop the subseript a threughout.
Trivial for m = 0. For m > 0 by the addition equation for v,

wim+k) = y(m)pk) (mod y;(m)) . .
But by (3), x(m)_Ly(m). Hence w(m)|p(m+k) if and only if p(m)|yp(k).

T 0< k< m, then 0 p(k)< p(m) and p(m){y(k). Hence p(m)|y{n)
if and only if m|n. Now

(x(m) +p(mVar—1)F = y(lm) +-p({km)V a2 —1

TUsing the binomial expansion and taking the irrational part, we obtain

plihm) = Z (k_)x(m)kﬂiw(m)i(aa__1)(1'——1)/2.

<k dodd 7
Hence

w(fin) = Ty (m)" 2 (m) {mod p(m)?}.

Since y(m) | w{m), we conclude that if y(m)?|y(km) then p(m)lk. The
lemma follows.

Remark. This lemma also follows from the classical laws of appari-
tion and repetition of primes in Tueas sequences bheginning with 0,1, ...
Wa call it a step-down lemma sinee the conclusion is obtained from the
hypothesis by reducing the power of w(m) by 1 and replacing »(n) by

its index n. Thus a particular divisibility eondition on (%) implies a cor-

responding divisibility condition on =.

SECOND STEP-DOWN LEMMA. For a>1 and » >0, if y.() E%(i)
(mod g, (n)) then j =i or j = —i (mod 2n). ‘

Proof. Here again we omit the subseript ¢. From the addition equa-
tions (8), (9), and (10},

w(2n-tm) = F p(m) (mod y(n)).

Hence
p{dn tm) = —yp(2ntm). = Ly(m) (mod 2(m))-
Hence v (mod k(n)) has a period of length 4n. For m < m, we have (mod
X(”)):
pim) = y(m),

p(2n—m) = p(m),

p{2n-+m) = —y(m),

p{4n —m) = —yp(m).

34 — Acta Arithmetica XX VIL
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In order to prdve the lemma, we need to show that

(11) - p(m) 2 rp(m){mod x(n)) for m<m <n

It would be sufficient to show that

(12) g () < dx,(n)  for =m0

This is true for a > 2, since
dyp, (0 < (88 —1)pa(nf +1 = ga(n)*

Thus the absolutely least residue of p (mod x(n)) is 0 at 0, increases to
a masimum of p(n) at », decreases to a minimum of —y(n) at 3n, and
increases tc 0 ab 4n.

For a = 2, {11) holds but not (12). However we can easily check
that

—a(n) > pa(n— n >0,

32a(0) 2 12(n) 1) for

sinee the recurrence equations yield

2us(n) — g2 (n) = (01} 2 0

and
Aal{m) —paln) —

Remark. From the relation in the hypothesis among the terms of
Liucas sequences, we obtain almost the same relation among the corre-
sponding indices. Hence we also call this a step-down lemma. It should
he compared with Lemma 6 used to define the Fibonacel sequence in [7]
a8 well as similar lemmas used by Kosovskii [5], Cudnovekii [1], and
Davis [2] in their definitions of the nth solution of the special Pell equa-
tion. All of the definitions used the first step-down lemma.

. Next we will prove two lemmas which can be used to force ons un-
known to be exponentially larger than another Thege lemmas will be
nsed only in Section 9.

FIRST LEMMA OF BXPONENTIAL SIZE. There is o polynomial U with
integer coefficients such that

(13) - _ Uz, y) =

palm—1) = ga(n—1) > 0.

implies that y > a® and furthermore, for every @ and m > 0, there is ¢ y satis- -

fying {13) such that m|y +1.

Proof. By the basic result on Pell equations, for every 4 > 1 and
m >0 there are infinitely many # satisfying

(@~1)(@--1)"m (2 +1)+1 = O

icm

Beduction of an arbitrary diophaniine eguaiion 531

We can pubt y+1 = m(241). Hence there are infinitely many solutions
for v of

(14) (F—1){@—1P(y+1) +1 =D

such that m|y-+1. Also (d—1){y+1) is wy(ew) for some w by (I4) and

w = (d—1)(y +1) (mod d—1) by the congruence rule. Since (d—1)(y +1)
# 0, w i3 a positive multiple of d—1 and wa{w) = wu(d—1). Hence

(d—1)(y-+1) = (2d—1)*"2 for d>>2. If we put d = #+3, then
(+2)(y +1) = (2045
80 :
y > x"
Thus, we can take
*¥(15) U@, y) = ((z+37 —1{z 12 (y+1) +1

to satisfy the lemma.

SECOND LEMMA OF EXPONENTIAL 81z8. There is o polynomial V with

inleger coefficients such thot
(16) Vie,y,m) =0

implies y > #° and furthermore, for every m there ewists y satisfying (16)
in every residue class (mod m +1).
Proof. Consider the equation

(17) ({@(m41)+1P~1)@ (g +17 +1 =0
where ‘d > 1. Now by the congruence rule,
Yo (@(BF1)) = A(k+1) (mod d(m 1))
so there is a y satisfying (17) and such that
d(y+1) = d(k-+1) {mod d(m+1)),

ie. ¥ =k (mod m+1). Algo if y satisfies (17), then d(y+1) = Pamr1)+1 (W)
for some w = d{y+1) {mod d(m+1)). Since d{y+1)> 0, we must have
w0 80 Pgumin41{¥) Z Yamine1(d): Hence

dly +1) = Bd(m+1) +1)7*
and so
= (2d4+1)%

T we put d = w+3, we will have 5 > o* as required. Thus, we can take
“(18) - V(w,y, m) = (((m+1){w+3)+1p ~1}(z+3)*(y +1)* +1.

Bemark. Notice that the second lemma does not include the first
gince ¥ iz a function of m while U is not.
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2. Definition of the nth solution of a Pell equation. In this section,
we will give a diophantine definition of the relation y,(B) = 0 for 4 >1,
B> ¢, and ¢ > 0. The definition is more economical with respect to the
number of unknowns (three) than the previously known definitions given
by Kosovekii [5], Codnovskii [1], and Davis [2].

Let «f be the following system of conditions:
Al DPI =0, FIH-C, B,
FA2 D= (4P 41,
A3 B =20+1)D(e+1)0,
AL F o= (A1),
AF G = A4F(F-A),
A6, H = B-}2jC,
AT T = (-1)H*+1. .
" The parameters of o/ are ¢, 4, B, ¢ and the unknowns are 1, j, D, F,
B, G, H, 1. We ghall say that & can be satisfied if there are natural num-
bers 4,7 and integers D, E, F,@, H,I such that AL,..., A7 hold. Of
course whether .« can be satisfied depends on the values of the para- ;
meters e, 4, B, ¢ and hence & defines a relation among them. i
TaEoREM 4. Suppose A >1, B> 0, € > 0. Then y4(B) = C if and
only if s/ ecan be satisfied. [Furthermore, A3 and Ad imply e+1 1 F.| i
Remarks, We can write & as a system with only two unknowns :
¢ and j since we can eliminate D, #, ¥, @, H, I in order by means of
A%, ..., A7. To see this is possible, notice that the letters on the right
side of an equation of . are either parameters, unknowns defined by
earlier equations, 4, or j. We have had to put in the extraneous condi- |
tions about ¢ in order to apply the theorem later. In Section 11, we will j
need 0 combine the condition F|H —C of Al with another divisibility
condition with divisor ¢--1 which we can do provided e+1 | F. If we
only want to define ¢ ,(B) = 0, we can put ¢ = 0 throughout. The reagon
we use integer parameters 4, B, ¢ and then suppose they are positive i
is again for applications of the theorem. In general, 4, B, ¢, will he assigned
values which are polynomials (with integer coefficients) in parameters
and unknowns. We must check in each cage that the hypothesis eoncern-
ing 4, B, ¢ iy satisfied before substituting o for y,(B) == ¢ in another
system as well ag be sure that the set of unknowns of « is disjoint from ;
the set of unkunowns in the other system.
Proof. Suppose 4 >1, B> 0,0 > 0, and Al,..., AT hold. We see !
immediately that in fact D,...,I are all positive. (¥ > A since F J
= (A1) (4 -1)F2+1 and A > 1) We will fivgt show that D, ¥, and
I are co-prime and hence each is a square by Al. We obtain in turn

(1) B=0, F=1, =1, I=1 (modD)
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by A3, Ai, AB, AT respectively. Next we get

(2) G=4, H=(C, I=D (modh, _

the first two congruences by AB, Al respectively and then use them
to obtain the third. Then both F | D and I D by (1), and I | F since

I =D (mod F) and F | D. Hence D, F, and I are all aquares so there
are p, ¢, v such thaf

O =yy(p)y, D= ZA(P)Q:
E=yp4q), F=yu(q,
. H = yg(r), I = ga(r).

Now @ was chosen in such a way that wg(r) acts ag a bridge between
r and B on one hand and between r and p on the other, allowing us to
conclude that p =B and € = »,(B). Indeed, & =1 (mod 20) by A3,
A4, A5 so that H = yg(r) =r (mod 20} by the congruence rtule and
H = B (mod 20) by A6 so :

(3) r = B {mod 20).

On the other hand, ¢ = 4 (mod F) by A3 so that H = yu(r) = v, (1)
(mod ¥) by the congruence rule and H == € {mod F) by Al. Hence

(4). walr) = v (p) (mod x,(q)

since € =y (p) and F = y,(¢ Now C*ly,(g) by A3 so by the first
step-down lemma, ¢'|gq. Hence by (4) and the second step-down lemma,

(5) r = p (mod 20).

By (3) and (5), we have B = +£p{mod 2C). Also B<LC by Al and p
<y {p) =0 50 B =p and y,(B) = C as required. _

We still need to show that if 9,(B)=C and A>1,B>0,0>0
then we can choose natural numbers 4,9 and integers D, ..., I satisfying
. Put D =y, (B) ther D will satisfy A2. Choose g >0 so that
2D(e--1}(* |y (g). This is possible sinee J} > 0, ¢ > 0, and we can always
choose a solution v of a Pell equation to be a multiple of any positve
integer. (see Section 2). Put B == y,{g) and choose ¢ satisfying A3. Let #
and & be given by A4 and A5. Put H = ¢u(B). Since A2, ..., Al have
already been satisfied, & =1 (mod 20). Henee yy(B) = B {mod 2¢) and
we(B) = B, s0 we can choose § satisfying A6. Let I be given by A7. Finally,
D, F, and I are all squares by the hypothesis and the choice of B and
H; G =4 (modF) so H = ye(B) = y,(B) (mod ¥); and B 0. Hence

- Al is satizfied and the theorem is proved.

CoROLLARY. There 18 a polynomiol Z such that if A > 1, B> 0, ¢ >0
them v, (B) = O if and only if there are 4,7, and k such Ihat Z(A, B, 0,
iy k) =0 ‘
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Proof. Take Z to be the polynomial obtained from
M,(DFL,F,H—C, 0 —B+1, k)

by putting ¢ — 0 and eliminating D, ..., I by A2,..., A7. Here M, is
the polynomial satisfying the Relation-combining Theorem for one square
condition. Since F > 0 by A4 and the hypothesis, we can apply the Rela-
tion-combining Theorem to see that Z = 0 has a solution if and only
if o can be satizfied. Hence the corollary follows from the theorem.

4, The exponential fimetion. In this section, we will show that the
relation y = w" ean be defined by a diophantine equation in 5 unknowns.
We do not use the exponential funection in Part,IT bub it seems worth-
while to give the definition — both as an introduction to Section 10 and
for its own sake. ‘

Consider the case # > 0 and % > 0. The bounds on y given in Secbion
2 yield

pa(B) ~(24)5' ag  A-»oo.
Hence o
(1) =2 g™ a8 Moo
Pu(n-+1}
Let
(1
(@) _ Yo ( ).
_ vyr(n-+1)
We wish to find a lower bound M, such that for M > M,,
(3) : ey =4

To make the necessary estimates, we will use the elementary ine-
qualities '
(i) (l—af>l—ga>0 for 0
(ii) L (l—a)'<<142¢ for 0
Then for M = n,

(2May® 1\ n \7* 7
(4) o< (2M—1)ﬂ = & (1_—2"*1[2.”) x<_mn(1~2—M) éafﬂ(l-{—wu)

< a<1fg;
<

o< .

(2Ma—1)* m“(

(3) °Z ~Guy

— 1 )ngw"‘(1- i )
My 2Mz
Hence if M is so large that '
’ - na®

5

1
6 il
{6 <22
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then |#°—p|< 4 and {p) =" Also if M > n, then

(7 o > o
by (5). It 4 = (g, that is
(8) le—y)P< i,

‘then y =& provided M > 4n(y-+1).

We have used two terms of Lucas seguences in obtaining y. This
would lead to a definition of exponentiation with nine unknowns. Nexs
we will show that only one term of a Lucas sequence is necessary. '

Let & be the following system:

BO O = ypy(B),
El (M-I 41 =[O,
O’ 2
E2 (_i}m —y) < %, ayn > 0,
(or  (L*—4(C0—Ly)*)wyn > 0 since L > ¢ by E3, B,
B3 M = dn(y+1)4+o+2,
Bis L =a-+14+(M-1),

B A = My,
E6 B =n+41,
E7T ¢ =Fk+B.

The parameters of & are »,y, % and the variabley are k1, M, L,
4, B, 0.

LEMMA. 2> 0, 0> 0, and y = a" if and only if & can be satisfied.
[E2, ES, E5,'E6, and BT imply 4 >1, B >0, 0>0.]
' Remark. We repeat for emphasis one remark after Theorem 4,
Whether & can be satisfied depends on the values of the parameters
3, y, » and our assertion is that & can be satistied exactly when y = 2"
and %, ¥, n are all positive. The values of the unknowns %, T must be natural
numbers while those of M, L, 4, B, must be integers. Furthermore

"we could use E3, ..., B7 to eliminate M, L, 4, B, in turn and obtain

a system with the same parameters and with only two variables & and 1
Proof.. Suppose RO, ..., B7 hold. E2 implies >0, y> 0, and
n > 0. Also L > 0 by E3 and E4 so there is an integer L' such that
I = ypy(n+1+L (M 1))

by El1, B4, and the congruence rule. Also L' > 0 since M —1>n+1 by
3. We will ficst show that L’ = 0 by contradietion. For L' >0, -

Yo (1 11) Vare (1 11) (2 Mz
WM(”*Fl-{—L’(M-—l)) = (1M 1) = (EM-I)M'P“fl
o (2.M)" "

<<

vof !

= M-+ @I L
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provided 28/ —1 >s and M > 2n+41. Both of these conditions on M
follow from T3. Here we used the fact that n > 0 8o (2 —1)*" > 2-(24),

" Thus if I/ > 0 then y = 0 by the first part of B2 contradicting the second
part. Hence L' =0 and L = yyu(n-+1). Then by H2, ¥ = (o> which
is 2" by the argument above.

On the other hand, suppose y = " @ > 0, and » > 0. Then we
will show that & can be satistied. Let M, 4, B, ¢ be given by B3, E5,
6, B0, Then B < ( (see Section 2) s0 we can choose % qatlsfymg 7.

« Let L =y (n+1) then B1 holds and L = a4l (mod #'—1) by the
congruence rule. Also n+1< M1 so we can choose ! satisfying B4,
Finally, E2 holds since ¥ == 2" = {¢> by the argument above.

Next we eliminate v from &. Let # bhe the system consigting of #1, ..,

. B7, A1, ..., A7, The parameters of & are o, y, » and the variables
are %,j,]u,l A B ¢,D, 8 FGH,IL M We ha.ve put ¢ = 0 for this
application of Theorem 4,

LryvMa. % >0, >0, and y = & if and only if F can be satisfied.

Proof. Suppose # is satisfied. Then 4 > 1, B> 0, ¢ > 0 by the
preceding lemma. Hence by Theorem 4, EO holds and y = 2% 2> 0,
and # > 0. On the other hand, suppose ¥y = &® = > 0, and »n > 0. Notice
that the sets of unknowns in & and & are disjoint. We can choose %, l,
M, L, A, B, 0 so that & is satisfied. Then ¢ = p,(B) by E0 and 4 > 1,
B >0, 0 >0 by the first lemma. Hence by Theorem 4, we can choose
4,1, D, B, F,@& H, I so that o is satistied. Therefore # can be satisfied.

Notice that the condition B < ¢ in Al is implied by B7 and hence
can be dropped from #. Thus.# consists of two square conditions DRI = [
and (M*—1) L*-+1 = [J; one divisibility condition F|H —('; one inequality
ayn{lr-—-4(C —Ly)* > 0; and 11 equations. Hence we are in position
to use the Relation-combining Theorem to obtain our final result.

TaeoreM b. There is o polynomial Z with integer coefficients such
that y =a" if and only if Z(@,y,n,4,5,k l,m) =0 for some nafural
nimbers 4, §, &, 1, m.

Proof. Let Z (@, y,n, 4,4, %, I, m) be the polynomial obgained from

40~Iy, )

by putting ¢ = 0 and ellmmatmg M,L,A,BC D EF&H,Iin order
according to E3, ..., E7, A2,
structed after the proof of the Relatlon-comblmng Theorem in Section 1.
So Z; = 0 for some 4, §, k, I, m if and only if # can be satigfied. Therefore

" Zy =0 can be satisfied 1f and only if y = a* >0, and » > 0. Fma,lly,
let '

My(DFI, (M2—1)I2 41, F, H—C, ayn (L2 —

Z(% Y, 7, *i'sj.’ k: Z.: ") =Zl-(n+(y

=13 z+y -+ (n—1 ).

oy AT Here M, is the polynomm] con- .

icm
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Then Z = 0 if and only if @ >0, >0, 4 =% or n =0 and y =13
or & =0, ¥y =0, and » > 0. Hence Z satisfies the theorem.

PART II
Reduction to 13 unknowns

5. The code. The first shep in our reduction of an arbitrary diophantine
equation with unknowns #,,...,#, to one with 13 unknowns is o put
a movable ceiling on the gize of & solution. Thus, P(z,, ..., 2,) == 0 has
a solution if and only if it hay a solution with 2, < b for some b, This
permits s to code &g, ..., & as digits in the (b 4-1)-ary expansion of a single
number. However we will need move flexibility so we leb ay, ..., o, be
particular positive integers with

(1) O< a0<...<av
and choose B so that B =041, A number whose B-ary expansion has
the form :
#
(2) - L+ 3 u B

Fu=i}
with w; =z b will be called a code with bound b.

Tvery integer has a unique symmetric expansion in powers of an
odd number B == 24%--1 > 1 with integer coefficients whose absolute
values are = ». Now it turng out that for a suitable choice for the «’s
there are particular numbers § and 2 together with o polynemial 4 such
that if ¢ is the code with bound b corresponding to #,, ..., %, then AP (g, ...

., %,) 18 the coefficient of B in the symmetric B-ary expansion of 4 (B, ¢).
Thus, P{2q, ..., 2,) = 0 has a solution if and only if there is a bound &
and a eode ¢ with bound b such that the coefficient of B’ in the symmetric
expansion of A (B, ¢) iz 0. This means that we can deal with just b and ¢
no matter how many unknowns the original equation has.

The first problem is fo express the condition that ¢ is a code with
bound b without referring to the digits of ¢. Tet ¢ = ¢y B-+...+¢,B?
be the usual B-ary expansion of ¢. Then

Rem (o, BY) = ¢4+ ¢, B 4.4, B
I is easy to-give conditions on these partial sums for ¢ to be a code with
bound b, 'We give here redundant conditions in order to make the next
step of the proof meore direet, Namely, lot
Gy 0< Remfe, BY) < 2,
U; 0< Remu(o, BY) << (b-+-1)BY%-2, § =1, ...,7,

Oopr 0< o< (b-1)B",
then Gy, ..., C,,, hold if and only if ¢ is a code with bound b. Here U,
implies ¢ ==1 since g, > 0. For 4« », U, insures that the expansion hag
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icm
the proper gap before B% while G, insures that the coetficient of B™ |
is < b. Conversely, if ¢ is a code with bound b, then Coy -y Cyrq hold. ‘[
From Cgy...,C,.,, we obtain another characterization of codes: ¢
is a code with bound b if and only if there is an integer in each of the
open intervals

e—2 ¢
To=\g% o)

¢—(h4-1)B%-1 ¢
I’&‘= Bu,i b Bu,i

), to== 1y,

I c~(brl—1)Ba” ¢ |
Rl T (0+1)B"”+1 ? (C—]—I)Bnﬁl

The proof of the equivalence with Cy,..., 0, is immediate. In
fact, ; if and only if there is an integer in I;, is clear for 4 =0,..., v
Also since I, is included in (—1, +1), the only possible integer in Loy
is 0. Hence there is an integer in T, if and only if O,.,.

Next we need to express the condition that the coefficient of B is-
0 in the symmetri¢ expangion of an integer A where B = 2u-+1> 1.
If the coefficient of Bf ig 0, then there is an integer T such. that

|A—TBY < u(l+B+... +B ),
i.e. '
(4) |4 —TB#1| < 1B _

On the other hand, the symmetric exp_ansioﬁ of X for. | X| < }B® contains |
only powers of B less than B. We can see this since there are B numbers
with such representations and Bf values of X satisfying | X| < $.B°. Hence

(4) is also a sufficient condition. Therefore the coefficient of B is 0 in the

symmetric expangion of A if and only if there is an integer in the open
interval :

24 —B 24 +B
2pi 7 B '

6. Diophantine equation with coded vnknowns. We now return to the
given equation Pz, ..., %) = 0. We will apply the regults of the last
section to find conditiong on b and ¢ so that ¢ will be the code with bound
b of a solution of P = 0. Without loss of generality we may assume that
P containg some unknowns. Let

“(5) L

*(1) § = degree of P in zy,...,%,.
Thus 6 is greater than 0. Leb

*(2) a = (841, i =0,...,9.

e
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The o's are strictly increasing positive integers as required in the last
gection. Pub

v

(3) ¢ =1+ 2 2, B+,

i=0
Then . .
(4) O = Do g4 . oy Bt OO 0T

where the summation extends over all natural numbers 4y, ...,%, with
fg-F..o -4, < 6 and

81
foltg ! (B =By iy~ —3)!

*(5) Ciy.t, =

We will continue to use >* to indicate a sum with this range. The exponent
of B corresponding to 4y, ..., %, 18 4,4, ... % written to the base §-1.
Hence each power of B in the sum comes in exactly once, with the largest
exponent being §(8--1). Furthermore since all the multinomial coeffi-
cients divide 4!, there are P; . so that

#® : i i
o) SUP(Zgy s ) = ) Piyt Gigud, 7 e %

Here P, . are integer multiples of the original coefficients of P.
Now define

(M) A(B, C) = CD(B)

where 3

*(8) D(B) = BOHI oy 3P, BOTITI S e

1t . . '

(9) Bx1+ Y P s,

then the absolute value of Y™ in (8) is less than RO+
' D(B) > 0.

Using (4) to eliminate ¢ from (7), we obtain an expansion of A in powers
of B with coefficients which ave polynomials in g, ..., 2, and which may
be positive or negative. Thus, let
' O+ PR
(10) AB, Oy =
gD
We could write out 4, explicitly given 2 but thiz will not be necessary.
However we will use the fact thatb

Ay 2y oy 2B

- (11) Agarpsi(Zey ver 8) = O1P (20, ..y ).

This follows by direct caleulation from (4), ..., (20).
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Wa will also need a bound on the absolute value of A, under the
rastriction that all the 2’s are <L b. It is easily checked that

8) < L) (14 3P )

fm Byy ---y 8 < b, using (4) and (8).

We fu'e now ready to go from the algebraic identity (10) to the sym-
metric B-ary expansion of 4 provided B is sufficiently large and odd.
Let

*(12) B = 281(1+8) 1+ 38 )+

and e be a code with bound b. Since (9) holds, D(B) > ¢. Suppose ¢is a code
for iy, ..., u,. Then the digits in the symmetric B-ary expansion of
A(B,¢) are 4;(uq,...,w,). Indeed, 4,(zy,...,2) is the coefficient of B’
in the algebraic expansion of 4(B, C) when ¢ has the algebraic form of
a code for z;,..., #,. Hence there is an expansion of 4 (B, ¢) into powers
of B with A;(u,,...,%,) a8 coeificients. Also B is so large that

v W) < B2

|4;(z05 ...,

[A; (g, -

and hence the A4, ('u[,, -y U%,} are the coefficients in the symmetric B-ary
expansion of 4(B,c). Therefore by (11), we have shown that P(z,, ...
.y %) =0 hag a soiution if and only if there is 2 bound b and a code ¢
with bound b so that the cocfficient of BCt* in the symmetric B-ary
expansion of A(R,¢) iz 0. .
Using the results of the last section, we see that P(z,,...,2,) =0
has a solution if and only if there is an integer (or natural number) in
each of the intervals I,,...,I,., where .

*13) - f = (841)",
+(14) A = A(B,0) = ¢D(B),

a; are given by (2), B by (12), and D{(B) by (8). (An integer in an open
interval of length <1 with right end-point > 0 iy necessarily a natural
number.) Note that B and I)(B) are polynomials in b with coefficients
which are polynomials in the coefficients of P(z,,...,s,). Also at this
point, we are using »--5 unknowns to express the solvability of P = 0.
Namely, & and ¢ in the end-points of the infervals together with. #;, ..., %,

which are used for the natural number in the corresponding mterval,
ie. tel;. '

Now let

*- _ {Hi(bye) Py(b,0)
(13) = (e,-(-b-, o)’ Gilb, 0)

) for t=0,...,v}2;

iom
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where #,, I';, &; are polynomials determined by I, according to the defi-
nition in Section 5. Thus, P{z,,...,2) = 0 has a solution if and only
it there are b, ¢, #y, ..., £,,, such that

(16) Bi(bye) < t,6(b, )<< Fy(b,¢) for 4=0,..,»L2.

Remark. Since every I, is of length <1, we can transform this
system of inequalities into a system of equation in two unknowns by
using the greatext integoer function. Namely, P(z), ..., 8,) == 0 hag a golu-
tion if and only if there are & and e such that

B:(b, ) [F (D, r,) 1] .
ARSI T IR N bt e Al e e
[G’,;(b,ﬂ) | ] Gi(b: 0) for i =0,

7. Reduction to the positiveness of a polynomial. We say a polynomial
in one variable ¢ is posifive if it In positive for all natural numbers 4 In
this section, we will show that the condition that each of the intervals I;
conbaing a natural number i3 equivalent to a particular pelynomial ¢
being positive,

Consider an open interval (o, v) where o and 7 are real numbers
such that 0 < 7o < 1. There i an integer in (o, 1) if and only if there

ceay Y2

. 18 no integer in the closed [v, o41], (i.e. each integer is on the same side

of 7 as of ¢+1). Henco there is an integer in (o, 7) if and only if
(T —)(T—a—1)> 0 '

for all integers 7. In fact, there ean be at most one value of T for which
(T—t) (T —0 1)< 0. N-une]y, T equal to the 1n1:egel in [v, ¢-+1] if

~there iy one. Now suppose there is another interval (o, 7 ) with 0 < ' — ¢’

< 1 such that [r o--17] and [, ¢’ +1] are digjoint. The two closed in-
tervals cannot contain the same integer. Hence there are integers in
both (o, z) and (¢, ¢} i and only if

(T =) (L = =LY (T =W T 6’ =1) > 0

for all integers T, since (F—r2)(T—o—1) and (F—z){T—g' —1) ave
never simunltaneously = 0.

Now suppose we ha.vo ) intervals {9y, 7;) where 0 < v; and 0 < 7; 0y
<1 for 4=0,..,¢~1. We can construct new intervals (of, ;)
so that the a(mres];)on(l.iug complementary closed intervals are disjoint
by translating the intervals to the vight, integral distances. Choose an
integer W go that o;-+L< W fpri = 0, ..., 02 and let

(1) op = o HiW,  wpo= W
Then [rg, oj-+1] is to the left of [vj, of.,--1] since

bl = oy AW L < (G D)W < 7+ (W = iy,
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Hence there is an integer in each of the intervals (o, 7;) if and only if

-1

(2) | H(T—'r;-)(_’l’ucr;—l) >0

for all integers T. Since 7, > 0 and the lengths of all the (open) intervals
are <1, an integer in (o;, 7;) is necessarily > 0. Also (2} holds for all
negative integers 7' since both 7; and o;+1 are > 0. Hence there is a
natural number in each of the intervals (o;, ;) if and only if

a1

(3) J[ == (t—o—1) >0
- i=0

for all natural numbers .

‘We now return to the intervals I, ..., I, defined in Section 6.
I we put I; =(o;,7;) then 0<% and 0<< z;—o,; 1. Hence for W
sufficiently large, there is & natural number in each of the intervals I, if

and only if
42
F; B, .
H(t— 7 —@W) (t- 5 W@W—1)> 0 for all ¢

Now we may take W =¢-+1 sinee ;< py<efor ¢ =0,...,741. (No
restriction is meeded for ¢ = »4-2.) Let
v+2
#(4) @b, 0,1) = [ [{(1—io—0)@—F)) (8 —ic—i—1)& —1;).
t=0 ;
We have shown that P(zgy ...y 2,) = 0 for some 2,,...,2, it and only if
there are b and ¢ such that §(b, ¢, ) > 0 for all ¢. The unknowns b and ¢
are the first two of the promised 13. They ¢an be congidered as para-
meters in what follows 8o we shall write @ (?) instead of @ (&, ¢, 1). It remains
to find a polynomial @ in 11 variables and the same parameters as @
. {that is @y, ..., a,, b, ¢) such that Q(?) > 0 for all ¢ if and only if @(, ...
cery ) = 0 for some %, ...,1,. In constructing @ from @, we ghall use
the fact that for all b and ¢, the leading coefficient of @(1) is
greater than 0.

8. Reduction to binemial coefficients. We wish to derive a Necessary
and gufficient condition that §{¢) > 0 for all natural numbers ¥. Binomial
coefficients will come in quite naturally. '

Tt
(1) ' Q) =Qo+Qut+...+Q,0", Q,>0,
(2) R=1+ Y@, §=R%, 1=RgS.
. 1==10

icm
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Then the real roots of §(f) = 0 are less than £ (see Section L. Q<0
then << B; if ¢ << B then |@(#)l < S; if t< § then Q)| < 7.

Buppose _ ,
(3) d—ul@(d)-+o  for some u,v< §.
Then
(4) . d—u|Q(u)+o,

gince d—u|@Q(d) —Q (w). Obviously for sufficiently large d, (4) can only
hold if @ (u)-+» = 0. Indeed, if d > 28--T' then Q(u) = —v. Conversely,
if @Q(u) = —v then (3) holds.

Thus for 4 =>284-1, we have shown that @(u) + —v if and only
if d—utQ(d)+v. Now we would like to combine the & conditions
(5) d—utQd(dy+v  for
into one diophantine condition. We are unable to do this directly bui
the following theorem will be adequate for our purpose.

THROREM 6. (A). If Q(t) > 0 for all ¢ end SU(S-+T)!{d--1, then

({01

(B). If &> St-+8 and

L R

then Q1) > 0 for all .

Remark. It will be clear in the next gection why we need this ﬁnsym—
metrical form of the theorem. We can combine the two parts to obtain
a8 a corollary: '

A necessary anmd sufficient condition for @ to be a j}ositive polynomial
18 that .

SUS I 1) | (QSUS+T)—1) +8 -1}
( k )J_((( S) )

U, 0 8,

where § and I' are defined by (L) and (2).

However we will need the theorem itself in order to make further
reductions,

Livwa, If SUS I d--1 and p is a prime which divides (g
» > 841, : ’

Proof. Notice that

- (42 o) 252

), then
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where the factors are all integers. Also

d+1
-+l

(8-+1)1 for w8,

Hence a prime divisor of (g) must be greater than 8§ 4-7.
Proof of (A). Suppose ¢ is a positive polynomial and §1{S4T)!|d -1,
If a prime p divides (g) then there is a ¥ less than § such that p|d—w

50 p|Q{d) —Q (u). Now if p|Q(d) +o for some v less than § then 9 |Q(u)+».
This is impossible by the lemma since p > § 41 and 0 < Q(u) +v < §-+1.

Hence p (Q(d) —gS _1).

Proof of (B), We shall suppose that 4> SPE--8 and @Q(uw) = —o
for some natural numbers % and o, and show that (7) cannot hold. Then
_ d—u|Q(d)+v.
and u, v << § by the choice of 8. Hence

d—u HQ(d)—i—S—l)

(@—u, 8Y) 8
Also
5
9 d—u 8
(d—u, 817

(5) =

and the left side is greater than 1 by hypothesis. Hence the right sides
. of (8) and: (9) have a common factor greater than 1 which contradicts (7).

In the following section, we will let Z = @(d)+8 —1. Note that Z
ig a polynomial in a,...,a,,5,¢ and d.

9. Reduction to a partial hinomial expansion. For n > 0, § > 0, and
o > nk

o[]Sy

=0

and

o [

To check this, write out the binomial expansion of (x+1)%,

1+...+(éfl)w5*1+(2)£s+( " )mﬂ+1+...~km“. _

&1

« Eeduction of an arbitrary diophantine equation h4b

‘Sinee @ > »f, the first s terms have coefficients < #~-1. Hence their sum

is legs than #° and (1) holds. Then (2) is an immediate consequence ginee
@ > (Z’) (We call the left side of (1) a pariial binomial 2TPANSION. )

Using (1) and (2), we will see that the conditions given in Theorem
6 can be replaced by a eombination of divisibility and square conditions
together with one relation of the form

X+
(3) | v - [ pa

where § ig defined in Section 8.
One tool which we use is the simple observation: If o == b (mod d) then

X o) = (o)

This follows since
ala~1)...(@—¢+1) =b{(b—1)... (b—¢-1) (mod d)

and we can divide both sides of the congruence by e!, provided we divide
the modulus by (d, ¢!).

In Theorem G, both (g) and (/g) come in. We can avoid defining

both binomial coefficients (or the corresponding partial binomial expan-
sions) from seratch, by using (3) where N is sufficiently large and X is
divisible by both N —d and ¥ —%. Then by (2) and (4), we hive

YV = (*:‘;,T) (mod X)),
7= (5] = (3] o (7 )

M _ (2 Sl
oo

By imposing other conditions on X, ¥, and N, we will obiain a defini-

tion of (d

V) and ghow that
&

d)

Z N

Y o (é) mod L
¢ 8

and
d ‘
(5]
which is sufficient o apply Theorem 6.

35 — Acta Arithmetlon ©XVIL



i

546 Yu. Matijasevit and Julia Robinson

Let & be the following system:
XY
86 Y :[( ;S) ],
81 U(ZS,d) =L
82 Vid(e+1)8, 1, d) = 7,
33 V(N-+8,g,6) =,
B4 e+lig¥+1,

4
#85 8 ={(1-+ ZQ%)?+15
4==0

¥
Q6 7 = 2 Qid’: +8 -1,

i=0
=87 N =Z4(e--1)],
38 X = g(N—-d)(N—-Z),
30 Y = e¢-+14+R(N —4d).
The parameters of & are @, ..., @, and the unknowns are d, ¢, i 0,
b, 8,Z, N, X, Y. Here U and V are the polynomial functions given in
. the lemmas on exponential size (see Section 2). .
TEmorEM 7. Suppose Q1) = Qo+@ut-+...+Q, "y >0, and Q,> 0.
Then Q(t) > 0 for all t if and only if & is satisfied for some d, e, f, g, b,
8,2 N, X, Y. [Also §1,...,80 imply that ¥ >0, X > 4N° N §>0.]
Remark. We could eliminate the unknowns 8§, Z, ¥, X, ¥ by means
of 85, ..., 39, For the purpose of this section, it would be sufficient for
X > N° Dbut later we will need X > 4N%.
Proof. Suppose & is satisfied. Then we will show that

(5) d> 8Pr4+8
and . '
. | d :

Hence by part (B) of Theorem‘ﬁ, Q1) >0 for all 1. _Notice’ that § and
Z are defined by 85 and 86 just as in Theorem 6. By §1, 82, 83, and the

lemmas on exponential size, we obtain v
(7) d > (2875 > §*54-8 = 8P +8,
(8) £ (@(e+1) 85 = (a(e+1) 8)%,
(9) g > (N85,

icm
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Now by (8), f> 0 and by (7), d is s0 large that Q(d) > 0 (see the lash sec-
tion). Hence '

(10) N>Z28>0

by 87, 86, 85 respectiﬁrely. Also by 87,

(11) N>dz>2

since f > d by (8) and (10). Fence

(12) _ Xzg>NVH8 > 4Ns

by_ 88, (10), and (11). Thus the second part of the theorem holds, Now
wging the argument at the beginning of this section,

N d Ne—a'
(13) yz( )E() d(«-—~—-—-—

8] =\ v —a), 59
by S0 and the fact that N —d|X by 88. Also T = ¢--1mod (N —d)
by 89, so

d N—d
14 == _—
e e+t = (g mea 5 )

Now N >d*+d and N >(e+1)85+d by (8) since N>f, d>2, and
d® > 2d. Tence

s Sl >'(”Z),

N—d
7 s e > 61,

8!

Therefore e¢—+1 = (S) by (14) and (15). Also ¢+1|¥—Z by 87, so

Y E(Zg) = (froa i)

e--1 . .Z'
(e+i,ﬁ'g-(ﬂ) -

80 (6) holds as vequired. Flence if & is satisfied then @ is a positive .
polynomiial. )

. On the other hand, suppose @ is a positive polynomial. Let § be
given by Sb and put :

Hence by 84,

» Wy-+1)+1
T = (1 + 2@5)
Al
a3 in the preceding section. By the first lemma on exponential size, we
choose 4 satisiying both

(16) : _ S!(S—}—.T)!ld—}l__
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v : d .

and 81. Let Z be given by 856 and put ¢ = (S) —1 g0 e+1 | 8! by the
: . o d

. lemma of Section 8 since all primes dividing ( S) are greater than §-+1

Also e+1j_(g) by part (A) of Theorem 6. Choose f satistying both

(17) ' ZAd(er1)f—d =1 (mod 81)

and 82. This is possible by the second lemma on exponential size and
the facts that 8!]d+1 and e 41 | 8L Let N be given by 87 then ¥ —d > 0

and ¥ —Z >0, since f>0 by 82 and e+l = (g) = d. Alao”

(18) N—a18!
by (17). Choose g satisfying both

(19) e+1ig(§) +1

and §3. This is possible by the second lemma on exponential size since

6-|-1_L(§)- Let X be given by 88. Then

(20) Xz g > (N8 > 4N®

by 83 since N—d > 0 and N—Z > 0. Let ¥ be given by S0. Then
My _{d\

(21) YE(S)=(S)=3.+1m0d(N—d).

The first congruence holds by the argument at the beginning of this
section since X > N® and N-—d|X. The second congruence holds by

(18). Also ¥ > (N) > (d) = ¢--1 since N > 4. Hence we can determine

8 S
h.satisfying 89. Forthermore
(22) | Y_E"(g) = (g) mod (e +1)

since e4-1 | 8! and e+1|N—Z 80 e¢--1|X. Hence by (19} and (22), 84
holds and the proof iz completed.

Going back to the original equation, P (2, ..., 2,) = 0, we have shown
that P = 0 has a solution if and only if there are b, ¢, d, ¢, f, g, b satislying
& where Q(1) is Q(b, ¢, ) defined in Section 7. (Here the unknowns §, Z,
N, X, ¥ have been eliminated from & by means of 85,...,89.) 30 is
the only condition not obviously diophantine. In the next section, we
will give a diophantine definition of that relation. ‘

icm
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10, Definition of a partial binomial expansion. The diophantine defi-
nition of ¥ = [(X+1)Y/X®] will be valid whenever ¥ >0, X > 4N%,
and & = 8 > 0. The definition is parallel to that of ¥ = &" in Section 4.
Let

Pz (N +1)
Par(N —8 + 1)z (8-41)
then by the bounds on p from Seetion 2, -

N
(2) a‘—%———-——(X;;:) a8

(1) - o=

Mo,

‘We wigh to find a lower bound M, for M sgo that for M > M,,

(X +1)7

<c>m[ be ] for X > 4N%.

~ First we egtimate the size of ¢ for M 2 N wsing the inequalities (i)
and (ii) of Section 4, '

(23X + 1))

(X +1)" (1 1 .)-N

TeMoY-SeMx -1 T X5 oM
(X 4-1)Y ( N\ (XD N
< — g 14 =
=\ 2M) S TS (”M)
and _
@M (X +1-1¥ (X +0¥ ( 1 N
= = 11—
(2MYW-S(2MX) X~ 2M(X +1)
Xy (1“ N )
= Txs 2M(X 41/
Now if
le~ol<i and eo—[e]l< 3}
then, <a> == [pl. For M = N,
(X +1)Y
i
N N
Lat ¥ = (o) s0 ¥ 1> %G%—E—;)—— Therefore, if M > 8N (¥ +1) then
(X+1% 1 (X -+ 1
e . .-"E<G‘<—"—“"—XS ‘I"z‘-
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Also

S-1 ;
(X +1)¥ (_X+1)N] (N) s SNTE WY
- = . < i<
x5 X8 2 )X X ¥ <%

provided X > 4¥° Hence Y = [(X +1)}¥/X5].
In defining o, we used three terms of Lucas sequences yyyx +:)(N +1),
Par (N —8-+1), and ypx(8+1). Just as in Section 4, we can define the
last two in terms of the firat.
Let & be the following system:
0 € =yy(B)
™ (M2-1)E24+1 =[],
T2 (M:X:-1)L341 = (1,

=0

0 : 1 :
R i u 272 __ _ 2
T3 (KL 17) < 5 (or B2~ 4(0—KLY)* > 0),

*=Pd M =8N (X-+T)|2,
5 K = N-—84+14-k({M-1),
*#T6 . L =841+ X 1),
*NT A = M(X 1),
- #T8 B = N1,
#*TQ § =m+B.
The parameters of Z
A4,B,0, K, T, M.

ToEorEM 8. Suppose X > 4NS, ¥ =0, and N2 8>0. Then ¥
= [(X+1)V X5 if and only if T is satisfied for some &, 1, m, 4, B, 0, I,
L, M. [Also the hypothesis on X, ¥, N, 8§ ftogether um&h T4, T7, T8, T9
m;plws that A >1, B> 0, ¢ > 0.]

Bemark. We can eliminate the integer unknowns M,K,L,AB, 0
in turn from 7 by T4, T5, T6, T7, T8, T9 so that & becomes 2 system
with unknowns %, I, m. The eqmvalenee of the two forms of T3 is clear
since K >0, L >0 by T4, T5, T6, and the hypothegis.

. Proof. The secorid part of the theorem is trivial. Suppose that
T0, ..., T9 hold. We will show. first that .

are X, ¥, ¥, 8 and the unknowns are k, I, m,

(3) K =y (N —841),
(4) L= e (8 +1).
Notice that by T4, ' '

(5) ‘ M>8NX 42

ginee ¥ > 0. Also K and I are positive, & = N —§+41 mod (M —1),

and L = §-+1mod (MX—1) by T5 and Té. Henee by T1, T2, and the
congruence rule,

E = yy(N— S+1+K'(M -1}, L =wMX(S+1+L'(MX—1))

icm
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for some integers K’ and L'. Since N —8 41 << M —1 and 8-+1< MX -1
by (8) both K’ and L’ are non-negative. We need to show that K’ = I
= 0. Now

(2M (X +1)) (2
(2M ~1)71 (4M (M —1) +1}¥

(X+10)¥ 1
M LS g

since 240 %1 =2X 41 and M —2N-—12= N. Hence bhoth

Yarex (N +1) 1

< Y +1) | 1
PN —8 41 =1

Yarx (8 41+ MX 1)

by the bounds on v in Section 2. Therefore, if either B or L' were = 1
then. T3, T0, T7, T8 would fmply ¥ = 0 contrary to hypothesis. Hence
(3) and (4) have been proved so T3 implies ¥ == {¢>. Then by T4, M

> 8N (XY +41) so
(X-[—l)N
YV = [____;5__]

by the argnment at the beginning of this section.

On the other hand, suppose ¥ = [(X+1)N/X5), X > 4N°, N =8
> 0. We must show that there are natural numbers %, I, m and integers
M, K, L, 4,B, 0 s that TO,..., T9 hold. Let M, 4, B, 0 be given by
T4, T7, T8, T0. Put K = pp (N —8-+1) and L = pyx(8+1). Then T1 and
T2 hold. Also there are & and I satisfying T5 and T6 by the congruence
rule and the facts that M —1 > N-8-+1 and MX -1 > 8+1 which

follow from the hypothesis and T4. Next ehoose m so that T) holds which

is possible since . (B) = Bfor 4 > 0. Finally, T3 holds since

: X+ 1 (X+0¥ ¢ l
0< ~%» "Y<7i"_’ X¥ KL

11. Completion of the proof. Let % be the system consisting of Al,
ey A7, 81, ..., 89, T1, ..., T9. The parameters of # are @, ..., ¢, and
the unknowns ave d, e f, ¢, b, 4,4,k L,m, A, B, C, D, B, F,G H,I,K,L,
M, N, 8, X, ¥, %

TorROREM 9. Let Q(t) = Q4 --Qyi+... -0, and @, > 0. Then @ (i) > 0
Jor all ¢ if and only if % can be satisfied.

Proof, Suppose % iz satistied. Then ¥ >0, X >4N% Nz 8> 0
by Theorem 7. Hence 4 >1, B> 0, ¢ >0 by Theorcm 8. Hence by
Theorem 4, T0 holds o by Theorem 8, 80 holds. Therefore ¢ is a pomwe
polynomml by Theorem. 7.

Oxn the other hand, suppose @ is & positive polynomial. Notice that-
the sets of unknowns in the three systems ., &, and 7 are disjoint.
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We can choose 4, ¢, f, 4, 1y 8, Z, N, X, ¥ so that & is satistied by Theorem
7. Hence ¥ _[X%wlN/Xb} ﬁﬂld Y >0, X>48° N2 8> 0. Then by
Theorem 8, we can choose k, 1, m, 4, B, 0, K, L, M so that & is satisfied
and A>1, B> 0, 0=>0. Thelefore O =, (B} g0 by Theorem 4 we
can find 4,4, D, B, F, @, H, I satisfying <.

We are now rea,dy to construet ¢ the polynomial described at the
end of Section 7.

TaeorEM 10. There is a polynomial @ with 11 wvariables d, e, f, ¢, b,
iy 4, ky I, my m and the same parameters os @ such that Q(t) > 0 for all ¢ if
and only if @ =0 for some dye,f, ¢, by 4,5, %, 1, m, n

Proof. First we modify % by replacing Sél: by
84 (e+1)Fi(e+1)(H—0)+F (Y +1), |
and omitting the second and third conditions in Al. This system’has
exactly the same solutions as #. Indeed, S4' implies both 84 and F'[H —0
since e+1 | ' by A3 and Ad. Conversely, S4 and F|H —0 imply 834"
Also B< ¢ by T9. Now we have a system congisting of six square
conditions A, 81, 82, 83, T1, and T2; one divisibility condition 34’; one
inequality; and 17 equations. Let M, be the polynomial constructed after
the proof of the Relation-combining Theorem in Section 1 corresponding
to 6 aquare conditions. Let ‘

*  O(d, e, g i 0k L ma)
= M,(DFI, U{28,d), V{d(e--1)8,f, d), V(N +8, g, e),
(M2—1)E2 41, (M2X2—1) 241, (e +1) P,
(e-+1)(H —0) +F(g¥ +1), K*L*— 4(0—KLY), n),

~ that is, § is the polynomial obtained from the right side by substituting
the coefficients of @ for 4, ..., @, and eliminating all the integer unkngwns
by means of the 17 equations. To see that this is possible, we carry out
the elimination in the following order 8,7, ¥, X, Y, M, K, L, 4, B,
0, D, B F, G H; I uging 85,...,89, T4,...,T9, A2, ..., A7. Here each
unknown is expressed in terms of earlier ones and @, ..., @,. By the
Relation-combining Theorem, & = 0 hag 2 solution if and only if % can
be satisfied. Hence § is a positive polynomial if chnd only if § =0 has
a solution by Theorem 9.
In Section 7, we showed that the given diophantine equation P(z, ...
%} = 0 has a solution if and only if there are b and ¢ such that ¢ (b, ¢, ?)
> 0 for all £. Here @ is the particular polynomial defined by the *-for-
mulas in Sections 5, 6, and 7. Fmally, let

A ‘P(a’IJ vty bye, d, e:fa_ga hyiyj,kylym,n) = @
where ¢ corresponds to Q(b, ¢, ). We thus obtain our final result:

Reduction of an erbilrary diophontine equation 853

TrurorEM 11. Given a polynomial P there is ¢ polynomial P such thai
Py e Guy Roy -0y &) = 0 for some 2y, ..., 2, if and only if

iﬁ(al,....,mmb,c,d,a,f,g,h,@',j,]’c,l,m,n) =0

for some by e, d, & f, 9, hy 4y, By b, my
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