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On a paper by A. Baker on the approximation
of rational powers of ¢

by

Eurr MAELER {Canberya)

In an important paper of 1965 (Canadian Journal of Mathematics, 17,
pp- 616-626), A. Baker for the first time established lower bounds fot prod-
ucts of the form

(L) |y @y oo B (@ By o By + o 5 )
and B —ul S B — Yl

Here #,, B,, ..., B, are distinct rational powers of e, with E, = 1 in the
gecond expression; the x's are disfinct integers not zero, while the y’s are
integers where ¥ > 0, and %> 2. These lower bounds invelve positive
congtants depending only on % and the A’s and are not given explicitly.
The method depends on an ingenions generalization of that by C. L. Siegel
in his clagsical paper in the Abhandlungen der Preussischen Akademie der
‘Wissenschaften of 1929, No. 1.

I try in the présent paper to carry Baker's investigations a little
further by establishing lower bounds for the expressions (I) which are com-
pletely explicit and do not involve any unknown constants; the results
are contained in the Theorems 1 and 2 and their corollaries. It is highly
probable that better estimates can be proved if explicit formulae for Balker’s
approximation polynomialy are wsed. Such formulae have been obtained
recently by A. van der Poorten at the University of New South Wales.

1. This paper makes use of the following well known theorem.
Lemma 1. Let

() (B=1,2,, M;§=1,2,.., ),
where M < N, be a matriz of integers, and let

N .
G =yl (1=1,2,.., M),

j=1
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Then there exist integers ®,, ..., &y not all zere such that

v ,
Egﬁmj':() Jor i=1,2,..., M,
i=1 .

MAx (2, ..., ley) < (G ... Gy V-0,

Proof. Put
G = [(Gl GM)II{N_M)]J

wheve [s] ag usual denotes the integral part of s. There are then (@+1)¥
distinet vectors a = (@, ..., ay) with integral components Dyg vy By

satistying
0§WJ§G (.’l'=1721' ,N)
With each. such vector  associate a second integral veetory = (g, ..., Yar)
where
Zg” @ (1=1,2,..., M).
gml :
Further define for ea.eh suffix ¢ == 1, 2, ..., M two non-negative integers
n; and p; by
N
no= > lgal, ZE.%;I (6 =1,2,..., M).
HJ:’,;:,-=<1CI g?;>10
Then evidently
G = n+p;

(i =1,2,..., M)
and for all vectors ¥, '

—wmELy, < +p,6 (=1, 2,...,. M.

This means that each coraponent y; has at most 2,6 +p,6 +1 = G,6 +
+1 possibilitiés, hence that the vector 4 has at most (G G41) .. (GG 1)
pOSSlbllltleS But

(G+H1)Y = (G +1)M (G 1 (G-—I—l)MG1 o Gy

> (@G 1) ... (GG +1).

Hence there are more distinet vectors @ than there are distinet vec-
- tory y. It follows that a certain pair of digtinet @-vectors, ' and ®&'’ say,
generate the same vector y. This implies that their difference @ = @' — "
is not itselt the zero vectox, but generates the zero vector y = (0,..., ).
Since the components «,, ..., oy of @ evidently lie between —@ and +@,
the vector x hag the a.sserted properties.

1)N M
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2. Let ay, ..., @, where k2> 2, be finitely many distinet integers,
and let @ be a positive integer satistying
(aa Bisvney a;k).z 1;
let further ‘
A = max(ja|, ..., |al}) and B =4+4a,
so that
A=1, Bxzeg
Tt
El = gal-{a, , Eic == g%
Then Hy, ..., B, are distinet positive numbers, and hence the exponential
Junetions '

2 2
B, ..., BE

are linearly independent over the field of rational functions of =.
Next denote by 74,...,7,, E variable positive integers, and pnt

¥ o= MAX(Fy, .0, T), o =min(ry, ..., 7)),

M =Tt E—ER, w=r+..+r+k=m+R
It will be assumed that -
ESRE<r+ ... +r,+k~1, hence that I<<m<ri+... +r,<kr.

Since the following three expressiong will oceur frequently, the follow-
ing abbreviations will be used,

. E(E—1) m(m—1) w1
ot *
= S A R =—.
i 2z " g R
3. With each pair of suffices (4,4) satisfying 1<<4é< bk, §>= 0 asso-

ciate two coefficients p, a.nd. p{#, ) related by the eqllatlon

Both coefficients are assumed equal to zero whenever ( 4y 3) does not belong
to the sot & of all pairs {4, j) satisfying 1<i<<h, r—m<j<r.
With these coefficients form now the % polynomi&ls

Pz mf*Z‘pz;——= p(%,J)

(6=1,2,...,k
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and the entire fanction

;P ) B

say with the power series

7 —"thh,

where the coefficients f, are defined by

E b

M wh= 3 (ol k=012,

t=1 j=

Denote by G, the sum of the absolute values of the coetficients of all
the py in this equation. Thus

kE D

G = 22 (h) a7 af = 2“%[ “+ )
1=1j=1{ g
and therefore ,
(2) G <EB* (h=10,1,2,..),

whenee, in particular,
(3) Gy...G, < E"B™.

4. Apply now Lemmsa 1 to the system of m homogeneous linear
equations

fr=0 (h=20,1,...,m—1)

for the » unknowns py; for which (¢, §) lies in 8. In the notation of the lemma,
M = m and N = n, while the maxima @& satisfy the inequalities (2) and
(3). Bince n —m = R, the lemma shows that .

There epist integers py; not all zero, but equal to zero whenever (4,§)
does not lie in 8, such theat .

()  fi=0 for 0<h<m—l; wmax|pyl < (F"B)E
)

Next, in the sum defining P,(2),
7! r\ .
7= (e

where it suffices to allow j fo run over the interval r —r;

!

% § < v and therefore

(r—g) =S ny!
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Rince

DVE

it follows then from (4) that also

(8) N ICRO]

i=0

LK2E B (G =1,2,.., k).

From their construction, the p(<, §) likewise are integers, and they vanish
whenever (T,7) does not lie in 8.

From (1), (2}, (4}, and the definition of &, 1, i finally follows that
(6) al < B(Bja(E"B™E for hm

5. By construction, not all the polynomials P,(z) vanish jdentically.
Denote by 4y, ..., 4x, where 1 < K < k, all the distinet suffices ¢ for which
P;(2) # 0. Then, by what was said in § 2 about the exponential functions
B, ..., %, the K functions .

§:(2) =Py () B, ..., gg(®) = —Pi_K( VB

are linearly independent over the complex number field so that the Wronski
determinant

91{2) 9:(%) e gx(2) ;

G A v gl
WE =lg't) e . il

95 (2) g 2) gE (=) ]

doos not vanish identically.
Let now D be the differential operator

_d
T odr

By the definition of B; and by & well known symbolic relation,

76) = (5] (1 55) = B0+ o 249,

Put tlierefore -
(7) P 1.j( )
go that

g9 (2) =

F— Acla Ar:ithmetica XEXVII.

(D+(afa)fPite) (4 =1,2,...

=Py B (1=1,2,..,K; ] =0,1,2,..).
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It follows that
W(z) = (B By, ... By w(z)

where w{z) denotes the new determinant

Ly o(2) Fipol®) P2
w(e) = Pi1,1(z} 1)1'2,1(3) PiK,l(z)
Pz'l,r@l (2) Pa'z,zc—l(z)' coo Lo r1(2)

which naturally also is net idenfically zero.

In this determinant w (2) multiply, for? =1, 2, ..., K, the Ith column
by the factor £7, and afterwards add-the 2nd, 3rd, ..., Kth new columns
to the first new column. This leads to the formula

F(z) Py 0(2) Py o(7)
w(z') B = T () Py 1 (2) | P ()
FE ) Py g(#) - Pigeal?)
bhecange *
P (e ZP,z,j (j=0,1,2,..).

On mulfiplying in this determinant the successive rows by the factors 1,
2,2, ..., 257, respactively, we finally arrive at the equation

F(z) P, 40) Py al#)
oF () ePsl® . 2Pys(2)
(8) zK(K—l)t'g'w (2‘,) Efl —- LR (ﬂ) 22 P¢2,z(z) e P'EK,Z(z)

................

G R () EP ko (?)

ZTCMJ 'P’I:I:,K—-I (z)

6. By (7), all the Py(z) are polynomials in 2 at most of degree r, and
hence a(2) is & polynomial in 2 at most of degree Kr. On the other hand,
In the determinant (8), all elements of the first column have at 2 = 0
& zero ab least of order m, While, for 1=2,3,..., K, all elements
of the 1th column have at ¢ = 0 a'zero at least of order') — 7y , respectively.
Hence w(z) itself has at 2 = 0 a zero of order not less than
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- Bince w(z) s= 0 is at most of degree Kr, it follows that we can write

w(g) = &"I1(z)
where [I(z) # 0 is & polynomial in 2 at most of degree s = Kr— w. Natb-
urally, s cannot be negative.

Let us for the moment, without loss of generality, assume that r = 713
this assumption can always be satisfied by a suitable renumbering of the
pairs of integers (ay, 1), ..., (@, 72). Let us further from mow on always
assume that
(A) v RE —k+1.

The first assumption insures that, in explicit form,

E
X
(9) s = Ky — (T+Zﬁ+kﬁ ) y(r M
- D= Sl KED
=2 Te=d
The hypothesis (A) implies that
K =kF.

For if K < k-1, then there exists a suffix 7 in the interval 2<Igk

such that

I

E
,2 Tig— s —
=2

fe=2

~R—k k-1,

and henece it follows from (9) that s < —1 which is absurd.
Sinee then K = %, and since by our nofation we may take i, =1,

we obtain
X 1]
Sry= I,
=4

& :
80 that the relation (9) Ieads to the following result.

Luvnra 2. Assume that the condition (A) is salisfied. Then none of the
polynomials :

Py(2), ..., Pyl2), (), I (2)

vanishes identically. Here w(z) is the delerminant

Py (2) Pyy(z) Pro(2)
w(z) Py (7) Py (2) Py (2) s
Py (2) Py pa(?) Py pa(®)
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and
w(e) = 2°II{z)
where T1(z) is a polynomial ot most of degree
s =R-4+E*—F.

7. The polynomials Py(2) have been defined by the equations (7).
These equations show that they have rational coefficients, hence that the
values Py (1) are rational numbers. In terms of these polynomials, the de-
rivatives

F(ﬂ Z.Pﬁ (2) E’E

f=s1

(.? =0,1,2,...)

are linear forms in the % exponential funetions X%, ..., H5.
By Lemma 2, the determinant 40 (#) of the first & of these linear forms
iy not idenfically mero and hag at 2 =1 & zero at most of order

$ = R+k“—%. Let it in fact have a zero of the exact order o o that
(10) w(l) =w'(1) = ... =w" V(1) = 0, w1) £ 0, where 0 <o<s.

On solving the fivst % linear forma

FP(z) = ZPﬂ(z (G =0,1,..., k1)
zael
for B}, we obtain equations of the form
k—1 . .
DB = D gy FP() (5 =1,2,..., k)
J=0

where the g, (2) are cofactors of the determinant w(z) and hence are again
polynomials in z 'with Fational eoefficients.
Differentiate these & equations o fimes. Then

I3 ko1 :
Z(h) 10 (2) {a/a)y~" B = S QAN (i =1,2,.., 1)
Rl =0

whetre also the @, (2) are polynomials in ¢ with rational coefficients.
Here finally put z = 1. Then, by (10),

Ieto—1

DB = 3 Q1) TN (1)

F=0

(t=1,2,...,k).
The k--¢ expressions

FOY = Z‘Pﬁ, (1

im]

(1=0,1,...,k4o—1)

(11) BIN(1) = 3Py (LB,
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on the right-hand sides of these equations are linear forms in Ej, ..., I,
with rational coefficients, and these % + o linear forms ocam, by w®{1)
# 0, be solved for each of the Z,.

It follows that there exist % distinet suffices J = J(1), J(2),...,
J(k) in the interval 0 J < k+s—1 = RI-E —1 for which the cor-
responding linear forms

J=1,2,..., k)
i=l ,
in By, ..., H, are linearly independent. Hence the determinont of these

forms

D=1, ... .. ...
(FLomd) - Praw(l)
i8 distinct from rzero.
8. The new polynomials
#Py(r) = (aD+ &Y Plz) (i = 1,2, s By =0,1,2,..)

are again at most of degree 7, but have integral rathet than rational coef-
ficients, say

Py Zp[h,@,j}zh (i=1,2,...,k7=0,1,2,..).

From
Piz) = D'pli, e
he=D

it follows that o’Py(2) has the explicit form

W Py(z) = ZE()M’ (i, WR(A—1) ... (h—1+1)

he=0 =0
ok =0,1,2,..).
Here :

g

(fl) dlaf < B and  B(h—1)...(h—1+1) < B <o,

-

=(

so that
Zip[h i, §1 < (rBY )jw )

h=0
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and therefore, by (5),

(12) - D Iphy 4,411 < (rBY 2 (1 B

h=p

(¢ =1,2,..,kj=0,1,2,..).
Put mow ‘
g = a‘J(j)Pi,J(j)(l) (4,5 =1,2,..., k).

Then all the numbers gy are integers, and by § 7 thelr determinant

does not vanish.
Sinee none of the suffices J(j) exceeds B+%*—1, we deduce imme-
diately from the estimate (12) that

(13) lggl< Ol (4,7 =1,2,.., %)
where ¢, denotes the expression
(14) 01 Y (?,B)R-{-Ic“—l (kmBm*)R‘ .
9. In analogy to the integers g, put
Ly = a’OF9I 1y (5 =1,2,..., k),
g0 that L, is the linear form
Ly = gy B+ o+ gy By,

in B, ..., Il,. An upper estimate for |L,| is obtained as follows.
The hypothesis

(A) ro R4+ k1

implies that
=t ., Fry k=R 2 (R E L k- R
= (k—1) R+ (k—-2)I" + %,

hence, by &> 2, that

(15) m > R T 1.

From
' 7 e o zh
(@ =r D i

li=m,

(i=1,2,..., k)

icm
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it follows further that
i

0} %
e = \fh(h [

=mn1

Here we proved already the estimate

(6) |fal <
Hence it follows that _ “

k(Ba)* (k™ B™®  for

s R 1 .
7 i 9 1 ¢ 7.9% DmE\ R*
o PA(1Y] < o't h;mk(B/a) (k™ B™) T
Here substitute & = m+1 in the 1nf1n1te series; the right-hand side
agsumes then the form

ajkT' M m* 3 (B/a)z
(m—j) (B/) (kB Z m—7j+1){(m-j-42) ..

(m—j+1)

where for j < m the infinite series satisfies the inequality

o

Z’ < GE"E.
=0
Finally let j run over the suffices J(1); ..., J (k). These suffices do
not exceed R+ %*—1, hence by (15) are less than m. Thus we obtain the
estimate

arR+k"—1 B,’ak,rg
(T B R j=1,2,..., k).
o YrooU=1,2,.4k)

Agsume now a.galn, just ag in § 6, that v, is the la.rgest of the integers
Fiyeeey gy thus that # =». By (16),

7’2! . 7"],;1 . Bl RA-I*—1- . R*

ke @ -+ K ¢ Yo P

(m—R—&* —1)1 S )

[Lyred ool <
Here, by (13), :
gt —l-m o q
Further
0<m—R—F —1 = (1,4 ... +-7)~2R+E" —%k—1)
and w4+ ...

4+ <k,
hence

(e Rm B 1)1 3= (14 .o ) (Jor)EREET
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Also
Pyl !
CEETA I |
because the reciprocal of this fraction is an integer. Tt follows then that

(17) 1Ly, .

<l (1=1,2,...,k
where (, denotes the expression
(18) 0y = heBla Ry Rtte—i=t g (pm gt B

The results 50 proved in this and the preceding section may be com-
bined into the following lemma.

Levma 3. Let the notation be as in §$2 and assume in addition that
P =0, and roz BRAE w70+1

Then there exist kb Ulinearly independent linear forms

Ly = gyt ... |

oty (G=1,2,..., k)

with integral coefficients g, such that

19yl < 015'"1,!

[Lyre!l ol <Gy

(6,5 =1,2,..., 8),
(Jg=21,2,..., k),
where Oy and O, are defined by (14) and (18), respectively.
10, Lemma 3 will now be applied to the study of a general linear form.

Denote by

L == m1E1+ e ”'f—mkEk

a linear form in %, ..., B, with integral coefficients not all zero, and put

Wy =11 ;=0 and = ifz 20 (j=1,2,..,5%,

and

® == Max (3, ..., [B,]) = max(|zy, ..., |2,}).

‘Wae shall now chooge the pammetefs P1y -eay 7y, Bo of Lemma 3 as fanetions
of @, ..., %, by the following construstion.
Put,

*

0 = 0(r) = k?r((log B){logr)*?,
and define & function f(r) of the pogitive integer r by

f{r) = e 31,

icm
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A well known form -of Sterling’s formula states that

1
0 plr) <<

7! = V2rr e, where o

It follows that

logfm = logr—21*{(log B) (logn)*® —1 +0(s),

where o(r) denotes the expression

© logy  log2 ¥
g +0gw+@()_

o) = O oy
Here, for r = 2, it is easily verified that
0<<o(r =1,
hence that
(19)

ogf( )

logr —2k2((log B) (logr)}*? 1 < ~—~-— < logr —2k* ((logB) logr)2.

The definition of f(») and this inequality show immediately that

(20) f)y =1; fin<l it 2<r< B
It iz also obvious that
(21) Clr—)< C(r) i r>2.

By definition, » is a positive integer. There exists therefore a smallest
positive integer » such that

flry>a,
and this integer necessarily has the further properties
(22) fle—-V) Ko< (1),
so that by (21} also
(23) (r—-D! < Mg rl,

Define similarly the integers 7,,..., 7. by the inequalities

(24) (=< <! (j=1,2,...,k).
Then by (23) and (24) and in agreement with the hypothesis of § 2,
P = INAX(Fy, ..., Fy).

Wl’shout loss of generality, let from now on

& == |m11 = [ ]
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be the largest of the integers |#i|, ..., l#y|. The formulae (23) and (24)
imply then that also

¥y

is the largest of the inbegers r,, ..., 7, in agreement with the previous
assumption.

By (22}, f(r) 18 greater than # > 1. Hence, by (20) necessarily
(25) r= B 1. |

11. Having fixed 7, 71, ..., r;, in this manner, define now R by

' log B\"*
26 B o=}
=9 [ )
g0 that
it B 1/2 12
for ( —-Clg—) < R<kr logB
logr _ logr

By (25) and & 3 3 this choice implies that

R B
<l <L,

and since r(logr)~"2 is an increasing function of » when (25) holds, it also
follows from B =2 that

X 4
B:m 2 dic 4 ]‘.14

= >

97 >
S 2k © ok T ok

> max(k, k7).

Henee the condition ,
ESRESry+ o0 Fr4+k—1
of § 2 is certainly satisfied. It further follows that
R4+T —k-+1 < 2R,
The former hypothesis
(A) vy BT — k41
does then certainly hold if
=2k (j=1,2,..., k.

_ That this set of inequalities iy in fact satisfied will now be proved. in-
directly. Assume there exists a suffix § for which

<< 2R,
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Then, by (26) and (27),

log B \'* 12
¢3<2R\<\27m‘( 08 +2 < 8L iggi ,
log . ‘ logr

whence

log B\# log B\

o8 ) log (SFW( ogB) )
r logr

Here, again by (25) and by k> 2,

logB\'® 3k
logr 25

logr;! < rylogy; < Skr( 1
0

_ 37{;( < 1.

Hence

loz B 12
logr;! < 375?‘( IC;gM ) -logr = 3kr((log B)(logr))**,

b=}
and so, once more by & = 2,
7yl < 620,
contrary to the definition (24) of r, because %] is at least 1.
We have thus proved that the definitions (22), (24), and (26) of r, ry,

- v.y 7y, and R, together with a notation such that » = || and hence also

¥ =y, satisty all the conditions of § 2 and of Lemma 3. We are then al-
lowed to apply this lemma.

12. This means that, in addition to the given linear form
=g+ ... +oB,
there exist the & linearly independent linear forms
L = gyt Fg5B (J=1,2,., k)
of the lemma which have integral coetficients sueh that
(28) lgal << Gyl (0] =I1,2,...,k),
!l <<Cy - (F=1,2,..., k).

The form L is then linearly independent of eertain k—1 of the forms L;.
To fix the ideas, assume that the & forms :
{29) L, Ly, ..., L,

are linearly independent. Flence their determinant

P T2 , = A say,
73 © G|
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does not vanish. This detetminant is an integer, and so
4= 1.
On golving the k forms (29), say for K,, we find that
L om ... o@,
T ts e ta] _ap,
L Gt - G
It follows that

(30) A6 — LM 4L, My ... + LM,

where M, M,, ..., M, denote the cofactors of the elements I y Ly iy Iy
in the first column of the determinant for A8, respectively.
By (28),

) < (B —1) 051yt oy
and sinee |ay| < Joyl,

% r

@& . -
13,1 < (B —3) 1 0F-2 0,y ! ... *”k!ZLT;ITJ" (G =2,8,..., k.
=2 :

The identity (30) implies therefore the inequality

(31) 1S U+7V,
where

5 I
(82) U =(h~L)1e”Ci ryt . p 1L,V = (k—1)le~alagi—2(, ‘7‘_;!__
‘ = P

Wo shall next establish upper estimates for U and V.
13. Since r; < r for all §, by (24), -

B
Ll BT @000 ) Z ]_w_;'L < (k—1)e™ 200
Ty
I=2
and therefore
U (b—1)lemwagp=tyh=t 2is0t g i T, V<< Kle— g2, =200 |
- Here, by the definitions (14) and (18),

Oy = (BRI B, Oy = kgBl (o )RR -1 Bm g gty R
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It follows that
(33) U Oyl ... o L), V<0,
where (5 and O, are defined by _
0, = (k—1)1e—o/a (QT(TB)R—FE‘—I(k.mBm*)R“)Ia—l ph—1 g2lE—1)Ctr)
and |
Oy = Tele™ /{2 (pBYEHE -1 fpm B Y2 g Bla (Jop 2R R Tl pm  m Bty R o—2011)

Hevre it is convenient to split off the factors of maximal size from ¢,
and ¢, and to write these expressions as

(34) 03 . O's 62[75—1)0(7),,.(!:—1)(13-—I)B(k—l)m"R*’ 04 — GG 8"'20(")1”]"(1?_”3(_"’“”"‘%"7
where the new fastors C; and C; are given by

05 — (k _1) 1 Gualicr.z{k—l)r k(k—l)mR* ,r(k—l)(k*+1}B(Ic—1)(R+k*—1)

-~ and

Oy = J Il gE-aviagle—2yr ]52R+(k—1)1;¢R*+k*—kﬂlka—l)k‘—k+1 BE-HE+H~Dtm

The next step consists in obtaining simple upper estimates for 2¢; and 20,
and hence also for 20; and 2C,.

14. Firstly, by the definition (26) of R,

- loc B 12
R—lgm( g ) <R,
logw
while
Ie2y?
m < kr and therefore m"* < 5T

The second factors of ¢, and ¢, in (34) have therefore the upper bounds

-

(35) (=100 (e~ E-1) BT |
and

1,1
(36) ¢~200) H(B-1) Ble—DmeRs o~ 5+ Eg)g(,,’ -

To cdeal with the first factors C; and C;, we first note that
‘ 2—1)I< K, ®ERISE, (-1 +1) < B2,

-k —k+1< k2, R+E-1<2R
and ' '

e < B, B-aia o @B,
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" Therefore
2 3
205 < kk 6B2kr k.’c e 7,.?6 /2]32.'.112, - 6(2’7 sy,
and
2 2 3
20& < LR g2 B ke paR-H TP R* 1572 P /2B27cR+kr, = &8 SAY .
Here

k=2, logh<etk<k, Bz2, lgBLe¢'B<B,. 2-logB>1.

“Also, by (25),

r > BW s 00~ ¢, logr > 4k'logB > 21" > 32,

Therefore

((log B) (fogr)}2 = 2k*log B = ¥*,
whence

C(r) = Fr((log B) (logm)|¥ > E*r > k*BY > 28,
‘We also note that, for the values of r donsidered, the function

logr

Y
ig striefly decreasing and hence satisfies the inequality

logr  42'logB
7 . B:ﬁfc‘h

4K 28 57
gkt :g-f;ﬁ =27

Thus the-following npper estimates for the successive terms of C,
and €, are obtained.

o1 1
Otk e e . 96D,
(7)™ k-logh < e L2r T o92.00 27
2B 1 1
-1.0" . o-G6.
Oy 2B < g < s Sgiaw =¥
log2 log?2 1 1
Oy Tr-log?2 11
(1) kr-log2 < k{(logB) (logn)® = k-2ilogB - o - 16
log 1/2
| s (28 BY" oy,
O(r) 2R logh < logr 3 5 o1
B (g By(logn|® — ek-logr ~ 6de ~ 40°

icm
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2 ~.1
C(r) - B2 R*logh < k*r-logk

log B\
Imf( o8 ) -k2r{(log B)(logr)*®

logr
_ log%k < 1 <l<_\2~64;
fr-logB er-log2 oy
k2 Bk 1
A—1, 7 —_— 2—66,
Oy gloeh < Gaar =55, <27
[ k*logr  logr logr
=1, — ~59.
o) 2 logr < 2%y 2kr 4y 2
log B\'®
75'3k?( Ogg ) -logB 3-log B
ogr
C(r)y™*-2kr-log B 2 -
") o< k2r((log B) (logr))*? logr

3-logB 3 1
) STy
4k*log B 4k 16

brlogB 1{logB\"* 1
C(ry tkr-logB = ro2 = (og )

%2 ((log B)(logr))® — % \ logr

On adding these results it follows at once that
C,<10(r) and Cy< 1C0(r),

henee that |
20, < %" and

Therefore, by {34), (35), and (36),

20 < 7,

1 3 1
(37) 20, < 6(2k—;-§]5)0(-r)< 6(216-;)0@ < O
and
1 1 1
~t3 5o — =)
(38) 204<@ (* 2?1:) ! <€ 4 < 1.

By (33), these éstima.tes imply that _
| 20U < 0y . g L] and 2V < L.
(In fact, they imply the slightly stronger ineqjia,liﬁes
(39) 9T < N g, T|  and 2V < g0
i Sinece 2V < 1, it next follows from (31) that

2U‘> 1.

79
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This we ecombine with the upper bound for 2U just obtained, and we mul-
tiply both sides of the resulting inequality by the factor & = lw,j. We may
then again drop fhe hypothesis that vy = max(|®,], ..., ’]wk|)_ and so
obtain the following resulk.

TarorEM 1..Leét @y, ..., ay, where &k > 2, be distinet integers, and lel
o> 0 be an integer selisfying (@, ay, ..., ay) =1; let further x,, ..., @, be
integers not all zevo. Put

B = a+max(lay, ..., la)), B, =%, ..., B, = ¢

and .
&y = i =1,2,..., k)
2 o i 50 (4§ y 2y ey K3
2 = max{|?yl, ..., [B]).
Also, for positive integral v, put
O(r) = k*r((log B)(logn)|*®,  f(r) = e~ p1,

If 7 denotes the smallest positive imteger for which

flr=1) < @< f(r),

then
7z BY 41
and
1wy s 8 ( 2y By A 200 By - oo 2 )| > me 00
By (39), this inequality may in fact be replaced by
(40) A m;c(m1E1 + @Byt . )| > wemRBOW,

which is slightly stronger.

15. As a corollary to this theorem we show how it gimplifies when @ i3
very large, thus under the hypothesis that, say

(41) o :/> 316754-316754 )
It had been found in § 10, formula (193, that

logr —2%%((log B (logr)]'"* —1 < }M( logrw2]cé((1ogB)(logr))1’2.
' 7

Hero the right-hand side implies that

fin) <.

icm
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Sinee f{r) > x, it follows therefore from (41) that now
y '2 Blﬁkg' +1,
hence, by k> 2 and B = 2, that

(42) 7 > 9%,
By the {irst lower bound for #,

(log (r —1)"

l B /2 g
(log B) T

1

whence, by (19),

r-—-1) 1
f(':_hl) >u2—10g(7"——1) —1.

This implies that

f(r--1)
y—1 =

r—1 ’
(Hog(r—1)~1) > tlogr,

a8 follows from the very large lower bound {42) for ». Thus also
flr—=1) =+,
The integer » is then eonneeted with @ by the inequalities

Tr/s < @< 7.1-,
8o that

%Iog'r < logx << r-logr,

logr —log3 + loglogr < logloga < logr +-loglogr < 2-logr.
On the left-hand side, by (42), trivially
loglogr >log3,

50 that

logr < loglogw < 2-logr.
On combining the last inequalities, it follows then that

'\ logz 6-logx

loglog» loglogw

Thege inequalities combine to the result that
O (r) < 6k*(loga) {(log B) (loglogz) )",
Theorem 1 implies therefore the following corollary.

B - Acta Arithmetica XX VI
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- r L4 ¥
Let oy, ...,y 0, B, By, ..., B, @y ooy @y, By ooy 8, and @ be as in
Theovem 1, bul assume that now

d, p16%d
x> BB

Then
|y« ..ty (o0, By - .+, )| > g~ 1273 loga)(clog By (log logm — 1L/

This is Baker’s firgt result, but with explicii constants.

16. Let a4, ..., ay @, By, ..., By be a8 in Theorem 1, but assume that
a, and E, have now heen specialized by taking

a/]ﬁ = 0, henﬂe "E]G _ 1.
Denote by ¥,, ..., ¥, positive integers such that
(43) : Y=k
and that the product '

. @ = Yo Y By — Yyl Y B — Yr_al
satisfies the inequality
(44) 0< o< 1.

Theorem 1 will enable us to establish a lower bound for o in terms of .
For this purpose puf
Py = e JyIcEj_le (3=1,2,..., k1)
and assume, withount loss of generality, that the notation is such that

PrZ Pz ... =@ > 0.
Sinee evidently

{45) P1Ps oo Py = Y= k=2,
not all the ¢; can be < 1.
It
-1 > 1 and henece @1 for j=1,2,.., %1,

put % = k—1; otherwise denote by » the smallest suffix in the interval
1< k-2
for which
Prot1Wagas +« Pre—g = 1.

By (45), such a suffix certainly exists.
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I7. Having fixed x in this way, consider now the system of %+1 <%
linear inequalities, :
l<egy (§=1,2,..,u—1),
(4:6) I"’le g ‘pn(F:H-I' e Pra \<~ guu!
[ Yatees T8Nt ) < 1
for w,, ®y, -..,; #,, ©. The » -1 linear forms

B1y Bgy vony By Ty Y1+ oo+ B, Y., + Oy

In @, ®gy ouy W,y 2, om the leftshand sides in (46) have the determinant
Yz; and the product of the right-hand sides is by {45) equal to the same
value since

Pree P 1" CuPugre e Pr—q = Yp»

Henge, by Minkowski’s theorem on linear forms, the inequalifies (46)
can be satisfies by a system of » +1 integers wy, %, ..., @, 2 1ot all zero.
But since all the #'s and %’s are integers, the last inequality (46) implies
the equation

(47) @Yyt 0y, 0y, = 0.
Hence it follows that already af least one of the integers
Dy Dy ovey By

does not vanish. On the other hand, it is uneertain, and in fact of no impor-
tance, whether », is or is not equal fo zero. :
We denote from now on by 4, ey ..., iz all the distinet suffices
1,2,...,x
for which

here naturally
1€ K<

18. The right-hand sides g; and @@, ... Py, of the first » inequali-
ties (46) all are greater than 1. Tt follows therefore from these inequalities
and from the equation (45) that
(48) |5, By e« Bige| < Pa@2e v Prt” PuPrei1 o+ Prr = Vi

It is also pessible to give an upper bound for z,. For identically,
BrYyt eee FBY T VY = (@1 By + ... +-f1"'xEx+mrg)yk—2 T (Yl — Y5)s

i=

,
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g0 that, by (47),

(49) (@B 4.+ T o)y, = 3wl H ).
i=1
Here
. RIS
<@y |0l —yl = P (G =1,2,...,%).
7
It follows then from (49) that
o By . By < e M,

Here se < b —1, w << 1, and y, = &, so that also

(k—1) @M1

(B0) ey By -+ oo B ey < < 1.

Thus

Yu

|} << T+ Joog| By 4 oo A [ B,
where
B =< eMge? (j=1,2,...,%.
Hence, by =< k-1,

] < kePmax ([my], ..., (@) = kePmax (i@, .., @)
Therefore, on noting that o, ; =@,., = ... =@, =0 and pubting
@ = max (i, ..., [9]) = max{|z |, ..., @l 20,

it hag been proved that
(51) @ < hoProax (|@g [, ..., [2,])-

All factors of the product @; @, ... ;. are integers not zero so that
the absolute value of this product cannot be less than max (ley |, ..., |
The inequality (51) implies therefore that

1)
g, @y, O] 2= (Re®) e,

and hence it follows from (48) that

(52) . 2 < hePy,.

Put now again

H%a

O . .
#) = _ (G=1,2,...,%)..

icm
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Sinece |m| < =, by (48),
213 .. 5] < By,

‘whence, by (50},

{53) |2y @y .. @@, By oen gy By 2] < (B—~1) w0t®-D

19. Apply now to this inequality (33) the remark to Theerem 1. For
this purpose, with a slight; change of notation, denote by #” and »”' the smal-
lest positive integers satisfying

Jr-Ly<a<f(r) and [fO'-1)<y<fir),
respectively. I follows immediately from the estimate (40) of § 14 that

1
(k1) a0 > ¢~ P,

g0 that, by the definition of w,

.
. —(k—1) 2k~ <O
58 Yl Bamt el B — s > (1)~ G,

This formula has still the disadvantage of involving the integer »* de-
pending on » rather than the integer »* which depends on y,. We show now
how to change over to a formula involving =",

For the momenf, puf

8 = 2k*(log B)*2,
In § 10 we had for every integer r > 2 obtained the formula

logf(r)
T

.= logr — p{log#)"2 —1 +o(r),
where

=M+ elr) and 0 Q(’:‘“)<i.

o) 2 7 12r

Aggume now again that
r = B 11,

then, by § 14,
= 26‘1, Egg_'!‘

logr > f* > 32, <27,

From these estimates it is easily dedunced that

logr
0 < o(r)< ﬁfn<2~57,
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and that therefore

Ing( ) —2 L < logr— B (log )t —1 4275,

Hence, whenever f(r) > 1, then nscessarily
(55) logr — B{log#)*? > 1 —275 > &,
On the other hand, from the definition of f(r),

flr+1) o lOBU 1)~ Bloger -2, o= pr(logly 1Y 2~ dogmY)

J(r)

Here, by (55) applied to » 41 instead of », the first exponential factor
on the right-hand side iy greater than ¢%*, Next, by the mean value theorem
of differential caleulug,

(log (r +1))"2 — (logr)"® < (2 (Jog#)"2)~*

hence, by logr > f2,
. p 1
2 __ 1/ e
pr((log [r +11)** — (logr)?) < % 3

80 that the second exponential factor is greater than ¢~Y2. We have thus
found the bagic inequality
(56) fr41) > i f(r) i v B% 1.

20. Thig inequality shows that f(r) is strmtly mereasmg and that for
every pair of positive integers #» and » = B +1,

flr4-n) > e"4f(r)
Now, by (562} and by the definitions of #* and »,

Fr =1y <hePy, and g, > ).

It follows that ‘
< 4R 4 logk -1
The right-hand side of the estimate (54) is then greater than

—(io—1) 2k %)c'(r"-HBH-log E+1)

(k—1)"¢Ye , = M say,

for C(r) trivially is an increasing function of 7.
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The quantity 4B-+4-logk+1 is negligibly small compared with
¥ = B* 11, From the definition

'O{#) = Ir((log B) (logr)*"
of C(r) we deduce then easily that
‘ M 6—‘2?L‘(k~'1)0(7").

Hence, on writing again r for ';'”, the following result has been established.

TarROoREM 2. Let &, ..., 6y, where k= 2, be distinct non-vanishing
inlegers, and let a > 0 be an integer satisfying (@, @y, ..., d_;) =1 ; let
further Yy, ..., ¥y, be iniegers such-that v, = k. Pul

B =a+max(|e, ..., |4_4), B =%, . B =

and define C(v) and f(r) as in Theorem 1. If r is the smallest positive integer
satisfiying \

Flr—1) <y < f(7),
then

> B¥ 41
and
VW By — 1] - g B — Ypy| > 700,
21. Considerations similar to those of § 15 allow to replace this esti-
mate by one which, although less good, is 0oTe explicit.
We now assume that
. "ijk }> Bl()k‘]"Elﬁk’;'

Under the same hypothesis as in Theorem 2 it follows then thai

— 1933k 1){clog Bioglog ypy ~HH?

Yl B — Yl oo a1 —Ypal > Y

Apart from the explicit constants, this estimate is again due to Baker.

It is highly probable that the constants in Theorem 2 and in this
corollary can be improved by a direct apphca.tlon of Lemma 3 instead
of the transfer method.
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