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1. Introduction. Consider the set
(1) (0,8 —1F = {{wy, 2, ..., @), 2 integer, and 0 <z, < n—1}
together with the partial order < given by:

L yen <y Vi, 1<i<Ek.

We say an integer valued function f is monotone an {0, » —1)* if:

@ < y=fl@) < fly).

The problem we shall be concerned with is to count the number {denoted
by L, (N, 2)} of monotone fanctions f: (0, »~-1)*->(0,1, 2, ..., N), to which
we refer as N-restricted aF-partitions (of any infeger).

In one dimension (k =1) the problem is trivial, I, (¥, n) = (N:n).
The problem for planes and higher dimensional solids was first studied
by MeMahon [2]. He generalized the concept of partitioning an integer
into a linear array, and defined plane partitions and partitions “in solido,”
as two or more dimensional arrays of integers non-decreasing in each
direction and sumining up to a given integer m. He also considered par-
titions with restricted part magnitudes. MeMahon was sucecessful in
obtaining generating functions for a wide variety. of plane partitions (not
neeessarily rectangular). R. Stanley [3] gives a survey of many of the
known results about plane partitions and some of the proofs involved.
These proofs appeal to the theory of symmetrie functions and the rep-
resentation theory of symmetric groups. They are quite involved and

apparently not frivially generalizable to higher cdimensional lattices

(except for somwe particularly simple 3-dimensional figuves). Carlitz- [1]
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uges a simple inductive proof to show that the namber of kxr arvays
of integers non-increasing in each direction for which the ith row is bounded
above by n; (n; = 1,4, Vi) is given by the determinant of the & x & matvix:

[

In case k = 7 = n and n; = N Vi, the above reduces to:

@ HH(

which iy the nwmber of N-restricted »? partitions. The search for an
exact count of golid N-restricted partitions has so far been unsuccesstul.
Even for our regular % ... xn lattice there seems to be no simple gen-
eralization of the above methods of attack in three or more dimensions.

We are led, then, to finding upper and lower bounds on the desired count. -

The upper bound is established by considering functions monotone
in the first 2 coordinates and otherwise unconstrained. The lower bound
is obtained by considering functions satisfying:

& &
f(mlil"'?mk)“(éf(?/l?"'!yk) ‘if Zw't(:zyi'
1 1

It i3 shown that in the limit of large % and ¥, these bounds differ in the
logarithm, by a factor of no more than 3Vk.
. An upper bound on the number of N -restrictéd 75 -partitions
2.1. Consider the set ¥ of functions f: (0, n —1)*—=(0, ¥N). Then since:
{feF| f monotone in all coordina,tes}
' S {feF| f monotone in the first 2 coordinates}
we immediately obtain:
(3) long(.N, n) < W tlog Ly(N, m), for k=2,
Unfortunately (2) does xot lend itself to easy manipulation in evaluating

log Liy(N, w) for purposes of comparison. Thus it iy convenient to formulate

upper bounds on 100'1;2(1\7 97 In terms of functions that are easy bo
hfmdle( ).

(&} The asymp.tntic value of logT, (¥, qaj can be obtained by approximating

1 n

IogL2 (N, a) ZZ (“i[f:;_j')

i=0 j=1
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2.2. Upper bounds on logL,{N, n). Let g = N/n.
ASSERTION 1.

3f2
(4) ) log Ly(N, n) =< nzlogf(l—kg)
Proof. )
n—1 n
. N+it]
[ = -
{5} log I, (N, n) %%1 ( T )
n—1
Zzlog(l\’+%+] % Zlog i+j)

Now since the funetion log(a) is concave, log(a +-b) +log(a—b) < 2loga.
Hence :

n—1

D D log{N +i-ti)

=0 j=1
-1

log(N +n)+ 2 (n—k)[log (N +n+k) +log (N +n—k)l<n2log (N +n).
=1

Uying similar arguinents, it can be shown that

i+l F
[ [roga+y)dedy <log(i+i).
i j—1

Substituting these in (8) we have:

log Lo (N, m) < nflog (N -+n) f f Iog (@ +y) dedy

3]”

= w210cr(N+%)—n210g =g = nzlogz— (l+g)
ARRERTION 2. For large n,
(6} log Ly (N, ») < 2Nnlog2 = n®(glog4).

by tho 1nteg1 al

ff (N4 T+y)dxdy = 2[4 ((g+ 2)tlo(g+2) — 2(g +1)*Dog (g +1) + ¢ logg) -
—2log2] where ¢ = N/n.

Using conventional technigues it can be shown that ag » and N tend to oo the ratio
of the sum to the integral tends to 1. However, even the latter formulation is somewhat
cumbergome; the hounds derived above are mmplm: and, sulfice to egtablich the results
of this paper.
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Proof. From (5)

: n—-1 %
log Lo( N, ) Z N [log (W -+ +5) —log (i + )]
Fe=f} gﬂl
=1 7
\ | "T . .
> logch, w1 (dince loge iy concave)
s Nl 0g e} -~ -_..._‘_..4-
= = 'J
' n.'1 w.:’l ] 1
3y
Nloge 4§y e - N
g“(Z b4 %_24' /_J.f)
Trpd =l i=l Jwp--1"
'n——l n-+1 ’
Nloge(w f m)
=l 9
Toge (n+log, 2L w L G
ﬂn—l
{2n)!
= N1 ( log, — )
ogel|n--log, BY N

Using Stirling’s approximadion :

o) (2w )2"'3“2’”1/47:% for 1
08— ~lo —mm or large n
= 2nln® B 2 e~V dman® ( wrge )

) 2n

< log, i =2nlog,2 —n.

i
Hence for large , _
 logLy(N, n) = Nlogc[n l—gnlugrz—n] = InNlog?
g.e.d.
3. Lower bounds on the mumber of N-restricted #° parl;itions
3.1. Partitions that are monotone along *“diagonals” § - = o) N \‘:r ==

Consider partitioning the k-dimensional eube (0, n—1)% into ( —1)k-}-1
diagonal sections:

&
=lal Yo =i}, 0<j<uk.
i
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To find a lower bound we restrict our attention to "ﬁhose functions f
that are non-decreasing along suceessive §s: for which f(@) < f(y) when-’
ever £eS;, Yel; and 0 =l4<j=<< (n—1)k,

For example in three dimensions:

8y = {(0, 0, 03}, 8, ={(1, 0, 0), (0, 1,0), (0,0, 1)},
s = {(2,0,0),(0,2;0),(0,0,2),(1,1,0), (L,0,1),(0,1, 1)}, ete,
and we consider Tunctions for which
F(o, 0,00 f(1, ¢, 0) and ... and f(8, 0, l)
f(’ 0,04,) and ... and f(C, 1, 1) < ete.

Drrinrrron. Leb <5 be th(, partial ovder defined on subsets (Q,,) of

non-negative integers given by
sz = sz Y EQm17 V?IEszﬂ FEY.

THEOREM 1, Given any sequence of (n—1)k--L1 finite subsets Q; of

the mon-negative integers, suech that

(N {0} = Qn T <. < Q(n 1 5= {N}
Re{n 1)

the product [] 16l Wil §s a lower bound on the number of N-restricted
. J=0 .
nP-partitions, where

={a;']$mi Y

Prooi. The pmduct counts the total number of functions f: (0, n—1)*
~(0, N) for which f(8;) = @, with §,’s satisfying (7).

Hence all we hzuve to show is that such funections ate monotone.
So let f be such a function and let @ < y then

I k
j.r = th<zya =jy'
1 1
Thig implies, from (7) that
. 0, = Qjﬂ
and. Ro, ‘
| Fl(ey,) < F) (2;,)-
Hence 2 < y =f(#) < f{y), 4.e.d.

COROLLARY 1. Let ITy == {Py, Pyy ...y Pyap} be a portition of an in-
teger M < N into (n—L1)k--1 non-negative parls thab are not necessarily

- ordered.
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Then.:
kln—1) .
(¥, n)y= [] (L+P).
0 ) .
The proof follows immediately from the theorem by letting
J=1 .
g = 2P for 1<j< -1kl (g =0)
D
and

Q.’i == {QJ‘: (13'"'%"11 Qj"|"21

3 Gt}

Examprr. Congider 12 vesirvicted 23-partitions and let

I,

be a partition of ¥ = 12, into (n —1) k-1 =

corpllary. Then,

= (2,4, 4,2)

= 4 pa,rts as specified in the

Py & 191 8y 1851
2 | g, =012 3 | & = {0,0,0) 1
4 |9 =234,506 5| 8 = (1,0,0) (0, 1,0),(,0,1) 3
4 _ @y = 6,7,8,9,10 5 8y = (1, 1,00, (1,0, 1), (0,1, 1) 3
2 | @, =10,11,1 3| 8 =(1,1,1) 1

It should now be clear that function values on each §; can be chosen
independently of each other from the elements of the corrvesponding ¢,

without interfering with monotonicity constraints (see Fig. 1),

FO10€ G,

FOODE G,

a0eg

f00e G,

00,04,

Fig. 1

F,00eq,

FOANE @

GICE
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Consider the largest m among the setis 8;, and let 8™ =

them
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The number of yuch fanctions is
q

31x59 x50 %3t = [ [(14P)'5H
1

3.2. To obtain the highest possible bounds from this scheme one
should now fry to maximize the produet in Corollary 1, over all partitions
of integers < N¥. Efforts to do so are hampered by digital and positivity
constraints, and lack of analytic information about the sizes of the sets §;.
Something close to a maximum, however, can be obtained by a choice
af the parts P; to approximate the “Lagrange MultipHer® result:

(8) 147, = A8

as Tollows:
k

Let the sets §; = {®] 3 @ = j} be ordered according to size:
1

JSJ'1| = \ngf =...=8;

Hp— 1)k+1| -
{ 31, sz, saey S?'m}-
CoROLLARY 2a. Let

w= IS, =

Fa= 1 largest m

N\
== .
L =)

Proof. Approximating the result {8) for elements of 8™, in Corollary
1 let ITy be defined as:

. [M ISi] 8;e8™,
j=

0, else

I8, l<m<(n-1)k+1,

(9}

(where [»] = greatest integer < ).
Then sinee

'H?

8;| = N
2 b= =L s Jl[i,,l l f !
the corollary applies and therefore:
w S e N 185,
. R = —— I8
LN, )= ][( F[ il]) ”Q(Mmi”|)

d? |.7?, m

av )”1 []s

g1
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Now '

L THe

logn 18 1 Z|Sj|low|8,

Since the funection f(x) = xlogs i eonvex,

1 m ] i
— b

" 8. |log .LS L ()O‘MA@‘

e ;}; [ ng | 1 1) " ’

m

M
% 18, 1log 18, > > Mylog =™

and

. m
N AL,
8 ||hshl> Jl[m Mo
i = )
. ’m;

fr=l

N Tn J[[ i N My
T

CorROLLARY 2b. For N < {n-—-1)k+1

’ N
LN, m) = 27N where My = I8y,
PES R

For small values of N the choice (9) of the parts Py may yield an
exceeding number of zercs. A better choice ia:

.1, b Sj [ SN,
0, §;¢8V.
This is a valid choiee for all ¥ < (n —1) k-1, Substituting into Corollary 1:

Pj:

LN, n) jan (P, -+1) X I“IO| ul 21].,1;,’
J .

q.e.d. .

Theorem 1 and its ensuing corrolaries constitute the basic resnlts
of this paper. What remains to be done iy an investigation of how cloge
these bounds are to the actual values of logL, (N, #). Howwm, before
we can do that, we need an esmmam@ of M,

R L S S A
faml ¥

EE S A lum(mtm
3.3. To obtain analytic inform‘mhion about M, = 3 |§], we appeal

Inrgestm
t0 the methods of proba.blllty theory.
In particular, think of each coordinate @y B 4 mn(lom v:mmblc
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taking on discrete values 0,1, 2,...,n—1 with equal probability 1 /%
independently of all the othel coor dmmteq

Then
8; = nwuber of points whose coordinates add up to §
= 0¥ x Prob. [sum of w; = j].

Formally let #; be & independent identic&lly_ distributed random
variables, each with density

=
-

) —

1 -
7

d

pm.; = D(‘m_z)'

L\

0

. &
Lot s be the random variahle defined by their sum: ¢ = ¥ »,. Then
1

(10} 1851 = nFp,(§) where  p,(j)

Notice the following facts about. p,:

= Prob. (s =3).

L 1" — . 2 —1 n?
(a) Since each p, has mean 5 and wvariance i3 (mm for
) o]

n—1 . Fom?
large #), & has mean u, = 5 % and variance o, ~ o

{(b) p, 15 symmetric unimodal about a peak which occurs on or near
the mean u,.

We are now in 2 position te estimate Mm nsing the Chebyshev Ine-
quality.

TumoreEM 2. Let M, = 3 |8, then for large m,

largestm
2m I ’ _l/"'
s ne, m << nvk,
S
(1 — %) wE, m oz aVk.
T
Proof. M, = p,(4) from (10}, As a result of (b) above, the
largest m ’

latter is equal to,

- m—1 ‘ m - m
a1 n* Prob. [—nmgwg 8 — g gm—z—] ~ 7% Prob. [;s — s —2~]

_ for large m.
Now from the .Chebyshev Inequality: :

o fon®

{12) Prob. [[s—u < @] = 1-————— al— “Toa
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This is an aceurate estimate for values of » somewhat larger tharn one
standard deviation, but is of liftle use otherwise. To obtain & more accu-
rate estimate for small valuey of #, notice that sinee p,(2) is symmetrie
unimodal '

Prob. [|s — | < 2] ;%Prob. [ls—plssy] for vz

Z kn?
z2—1l—r from (12).
y 12y*
. . . T 1
Now as aTunction of i the right-hand side reaches a maximmm, at § = .

independently of z, so that substituting 7 in the above, for - %l/k?’b

s ta
3Vkn

The theorem is then established by snbstitution from (12) and (13) into (11).

(13) ' Prob. [|s— u,] <

4. Comparison of asymptotic bounds

4.1. Introduction. To present the final results, it is necessary to
consider four separate regions.

For each region:
~ {i) Using Corollary 2 together with Theorem 2 an asymptotic lower
bound is established on logL, (N, n):

LN, ) < log L(¥, n).

(i) Using Assertions 1 and 2 an asymptotic upper bound is obtained
on W log Ly N, #): "

nk”ﬂlog_Lg(N, ny < u, (N, ).
(From (3) logL.(N, n) < ﬂk‘ﬂlogLQ(N, #).) -
(iif) It is shown that the asymptotic ratio of the bounds, i‘iN ! ﬂ')
is << 3¥'k. Then since H )
n*log L (N, m) _ (N, )
(N, n) LN, )

it follows that for large » and N¥:

1 : '
S n**log L, (N, n) < log L (¥, n) < fn’“‘““’long (N, n).

4.2. Lower bounds. As an immediate comequenw of (Jorollary 2b
{(log L. (N, %) = Mylog2) we obtain:
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(a) for ¥ < aVk

Mylog?2 » —=n"log?2, where g =

N
log L, (N, n) = -

(The last inequality follows from Theorem 2.)
(b) Similarly for nVk < N < (n—1)k -1

My log2 =

7 u
log L, (N, n) = fn’“(l— " )100‘2" 3 Flog2.

3N
From Corollary 2a we have:

log LN, n) > M, log( jm)
Using this:
(¢) for (n—1LYk +1 < N

for a.ﬁy m o< (N -1k +1.

< » choose . = [ﬂ,l/ Mﬁ] S nlﬁ;, then

knt —
log LN, n) > M,y og (N iV E) = n* (1 - ) log (¥ /nVF)

2,nft:
=~ log(g/Vk).
(The last inequality follows from Theorem 2.)
(4) Similarly for n*< N: Letting m = (»—1)k--1,

k1 ;qw,‘
nogk.

log Ly, (N, n) > #*log
4.3. Upper bounds. .
(a) For N < nVk, using (3) together with (6), we have
log L, (N, g = Njn.
For the remaining regions we use (3) together with (4):
(b) For aVk < N < (m—1)k+1

(n—1)k+1

n) < wFglogd  where

&2

log (N, n) < log Ly (nk, n) < ntlog -- (1 +7r) < w’]og% for k= 3.
(¢) and (d). For N = (n—1)k+1

: 3/2

log Ly, (N, m) < m?log - (1 +g) < n*log2g.

(The lagt inequality is true for g = N/n2= 5k > 3 .

4.4. Asymptotic ratios. Using the resultis of the previous two para-
graphs we can now calculate the asymptotic ratio of the derived )
bounds. The results are best summarized in a table:

.-
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Table

Bounds on the normalized logavithm of the count, Ly (N, n), as & function of the

normalized maximum g ==

(& /n)

Remarks. (a ) For N <
(b) For ’)’Ll/k

Asymptotic fower
Region hound on
(log Iy (7 m))/(n®)
glog4
T ST
N albk W
V< N - . 2log2
< (n-1)k+1 }
~1) k41 i -
b <N <n? #log(g/VE)
n? g N log(g/k) -

< (n—=1)k+1 the ratio is {log,2k.

To prove tham the latter is <

tloge2k < Vi or ++log, Vi<
{¢) For (n—L)k+1 < N <

<3VEk (k=

3
< %w® the ratw is —

Agymptotic upper
bound on

(log Ly (N, m))/{nf) '

glo g4
log (28}

log (2g)
log (2g)

log2g
log =

A

3 log2 3 logé =
5 mggigé— %15g3< 5<3Vk for
Vi
(d) For N =ab the_fatio is
| log2g 10gg+10gz
log% B 10gq~1_0‘g7::

Since g > Nin>

Agympiolic ratio
is e

3k

i,éloga (2k)

3

aVE the ratio is 0bvi611s1y 3VE.

3} it is sufticient to prove
2 V% which can be readily checked for k2 3.
~————, which I8 a de-

l/lc

N
creasing funetion of g. Since in 'thlS 1eg10n §=" >k

= 3 for large #,

k3.

7, asymptotically the ratio reaeh% unity.
The final result

i, e ) -
?ﬁn’” 210gL2(N, #) < log L (N, m) < 0 2.1.0g Ly(N,n)

follows immediately from the discusgion in Section 4.1.

icm
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