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‘T have given in [7] a purely algebraic proof of the following

TuroreM. Leb Gy J be subgroups of the multiplicative group of residues
mod m and J be a proper subgroup of G. Then there exist imfinilely many
primes belonging mod m fo G—J. '

The aim of the present paper is to prove on similar lines some special
cases of Tehebotarev’s density theorem in its gualitative form which
comprise the above resuli. The proof is based on the upper estimate for
the number of genera in a eyelic field of prime degree.

Notation. Terminology and notation are taken from [4]. In par-
ticalar & denotes a fixed algebraic nwmber field, all considered fields are
extension of & unless stated to the contrary and all prime ideals are defined
in k. For instance, an inclusion £ < K means that k< Q< K. ¢ is the
rational field, Z,, is a primitive mth root of unity, |2| = (£2:Q). For a finite
set S, |8| ig its cardinality. We say that the extension K/ is non-trivial
it K # 0. A prime ideal of degree one means a prime ideal of -degree
one over Q. . ) .

TaeporeM 1. Let K be ¢ normal non-trivial extension of k. There ewist

K .
infanitely many prime ideals p of degree one such that (»i-a—v) 5 1.

Remarlk 1. Tor X heing abelian a similar statement proved again
in a purely algebraic way oceurs in [1] as Corollary 8.8. However we
assert in contrast to [1] that p is of degree one.

Lemma 1. Let K be a oyclic field of prime degree and b be its relative
diseriminant, For every positive integer M there ewists a prime ideal p of

. ¥ .
k prime to bM such that (?) = 1.

Proof. Let 1= (K :k), where 1 ig a prime. It is well known that
b = f'!, where f is an ideal of k. Let 4 be the group of all classes of ideals
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mod f prime to f, H; be the group of the classes of idealy mod f which
contain a relative norm of an ideal from IC, finally H; let be the group
of the elasses of ideals mod f which eontain a norm of a principal ideal
of K.
The following inequality holds

1.
(Hy:Hy) < o< 7 (A:H)
where ¢ is the number of ambiguous Gl:hBS% {[31, I)
Hence ‘
' 1
ey S Es AL

Suppose ths;t there exists a positive integer M such that for every
prime ideal p of % prime to bM "we have

- (-

In each. class of ideals of k mod f there exists an integral ideal a prime
to b M ([3], Ia, p. 63). Let

@ | a=[T»,

where p are prime ideals. _

By (2) p splits completely in K into prime ideals of degree one over
k (cf. [4], §1, T'), thus p = Ng,'B; where P is an ideal of K. Hence by
(3) @ = Ngy([]P) and each class of ideals in % mod f contain a relative
norm of an ideal of K, ie. H; = 4, contrary to (1). .

Proof of Theorem 1. Let & be the Galois group of K and ¢ an

element of & of order I, where iz a pmme There exists a prime ¢ satisfying
the condition

g =1lmodl, ¢ eriscK/Q.

Hénee _
(4) [E, QL] =@

. Put K' = k(L,). The Galois groups of the extensions K’/i’a, (E) /e -
are isomorphic with the group of all substitutions &': o' = (Ca=> Lol
(#,4) =1 where ¢’ acts trivialy on the fields & and Q respectively.
Let K" be a field satisfying the conditions: K" < K, K" <K'
- Let J” be a subgroup of @’ corresponding to K", Finally, let L
be the subfield of Q(f,) cor:respondmg to the subgroup J.
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Clearly L < K" < K. Hence by (4)
L=, J" =06, K =

It follows that the fields K, K' are relatively K’ 1 Q) 1
prime over k. The Galois group of KK’ is the T 7T g
direct product ® 6’, where G’ acts trivially
on K, and & acty trivially on X', Put ¢’ = ¥ ®’ 0 &
(&, —»&af” Uiy, where g is a primitive root mod g. o’ is of order L.

Lét £ be & subtield of KK’ corresponding to the cyclic subgroup
{o0'} of the group GE'. The extension KK'/L is eyclic of degree [ with
the Galois group {oe'}.

In virtue of Lemma 1 there exists a prime ideal q of £2 prime to
g-disc KK'/22 and such that:

EK'|Q

(5) # 1.
‘ q
It follows that
{(6) Nopg # 1 mod g.
Indeed,
KE'|0 , , )
I e A S T
“for some i, 7.

If Ngjpg == Lmod g we have by (7) (cf. [4], §2, {1))

- o (KK’/
= =

) )Ca— A ’ig =d'{y = fpmod g.

Thus, since q+q: ¢*¢, = & == {,. This means that ¢! does mot change -
elements of K’, K’ being generated by Z,. )
KK

Hence o* =1, t =0 and by (7)( )zl contrary to (5).

Liet Py Puy ey Pooy (732 0) Do prime ideals of degree one satisfying the

condition (?) #1 (0 «5isv—1).
T . .
», of degree one different from the ideals p; (0 < ¢
X ‘
N #* 1.
' In virtue of Lemma 2 in [7] there exists an mtegml 1dea.1 b of @
guch tham

8 qb={(a),

We ghall cohstruet a prime ideal

< r—1) and such that

Nopga>0, @=0(), (b, Nogq) =1,
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Put p = Nyep, (0<i<r—1), M= dlsca - No (dise KK (k) - n:p“

M = M, M,, where (M, qN Q,@b) = 1 and M, containg only prime factom
dividing gNg0.

£

= [[@—am,

i=1

fla, )

where o, = d, Uy, -1, 0y are conjugates of ¢ with respeet to @, § = 10
By the Chinese Remainder Theorem there exigt rational integers
¥, @ satisfying the conditions
—1 mod §(N g, ' 0 mod q(Ny45)%,
0 mod M, 1 mod ¥,
C = flw, )/ Ngob> 1.

{9) ':f/ =

Hence we have ¢

1 mod y,
(10) fla,y) =

Ngpamod (N b).
By (8)
(11) Noga = Nojgq-Nogh.

Hence by (10) ¢ is a positive integer.
By (10) and (11)

. (12) : O = Nggqmod q-Nme.' ,
Hence by (6)
(13) , U # Lmod ¢q.
By (8), (9), (10) and (12)
(14) - (O, yM) = (Cy y M, M,) =

Aecordlng to (13) the positive mteger (> 1 has a prime factor p,
sueh that

(15) : P, # 1 mod g.

Henee p,| f{w,_ y) and by (14) p.fydisca. In virtue of Dedekind’s
theorem there exists a prime ideal P, of degrec one in & dividing p,.
Let p, be a prime ideal of % such that L, |p,, p.|2,.. It follows (cf. [47,
§1, V')

e KXK' |Q KXK' [k ‘
o’ = e ; 0=t !,
B, P
This means that
KK’ Lk
T =o'y, 0t

A purely algebraic proof of Tehebotarev's theorem 141

Hence by the well known formula ([4], § 1, TV) we have on decomposing
into direct factors )

T
Clearly p,. is oﬁ degree oune, Le. p, = Nygop, because B, is of degree one.

Ty .
It must be (m) # 1. Otherwise we had by {16)
"
K’ . (4
it =0, ( W) =1, O = MO s (_{'L_) ¢,
P ’ P
Since (q, ¢) = 1 we have by (1
eontrary to (15).
F—1

By (14) p,t [[p;. Hence p, is different fromi p,, ...
i=0

= {, mod p,.

2):(p,, q) = 1, thus & =, p, =1L mod ¢

, b, and the

proof is complete.
As an application we shall prove now a special case of Tchebotarev

“density theorem. in its qualitative form. We shall show the following

TumoreM 2. Let K be & normal field and o an automorphism of K
satisfying o2 = 1. There emist infinitely mony prime ideals p of degree one
such that (K/p) = {(o}.

Proof. 1. o =1 The theorem followq at once from the existence
of infinitely many prime ideals of degree one in K which can efmly be
proved in a purely algebraic way (see [2]). -

2. ¢ 5 1. Let 2 be subfield of K corresponding to {o}. The extension
K|Q is quadratic. By Theorem 1 there exist infinitely many prime ideals

q of degree one in £ such that
X0
1) (==
q

et p be a prime ideal of & such that g|p. Clearly p is of degree one.
By (17) we have (cf. [4], §1, V")

. _ (K/Q) - (EK/YG) '

(18) . G = | |
T q P

since the Galois gmup of the extension K /2 consists of two elements:
1, a. By (18) (Kjp) = (o>, QB.D -

Remark 2. Theorem 2 is a gener"uhzcmtmn of Theorem 2 of [T}

Let K be » finite extension of k, BV = K, E®, ..., K™, n = (K: k)
be the conjugates of K and K its normal closure. We ahafll say that K is
quasi-normal if it satisties the condition K®EY =K for all pairs i,J,
where i = 4. Clearly a normal extension is also qnmql-norma.l

-
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An example of a non-normal but a quasi-normal extension is fur-

3
nished by @(V2). For an arbitrary extension 2/k we denote by P(Q)
the set of prime ideals of & with at least one prime factor.of degree one
n. £, We say that the extension K /% is Baverian if for any £ the condition
P(L) < P(K) iroplies that £ contains at least one of the conjugates of
K (P(£) < P(K) means that the set P(2) — P(K) i finite); see 5],
p. 221 for b =¢. . .

We have the following cwctensmn of the oviginal result of Bauer
(), § 25, ILN). _

PHBOREM 3. Ewery guasi-normal ewlension ts Boueriam.

Lmyva 2. Let G be a transitive permutation grouwp on n digils, whose
all clements except the identity Fiw at most one digit. Let G (1<jign
be the stability subgroups of ®. Finally let U be an arbitrary subgroup of ©.
If [U, G;] + 1 then the set I of those elemenis of W which fir no d@g@t forms
together with the identity a group of order (M:[U, &]).

Proof. Let R be the set of those elements of & which fix no letier,
Put H; = [0, 61, n; = |H,| (1< 5 < n), N =N+ {1}, M =M+ (1),

- WehaveI = [, U], In virtie of Frobenius theorem (see [6], Theorem
180, pp. 202-—903) the set "R it a group. Hence E!Jt Is & group. Tt remains
to prove that |MR| = m = (U:H,). Put

M= erﬂi,

F=1

(19) T

. 'Vj e
(L <j<m),
Since the permutations 7; are dlstmct mod &, the dmtb wy 1< 3 = m)
are distinet.
Let F be the family of the sebs H; for which #, > 1. Two sety .,
H, of F are assigned fo the same clags 1f H, = sHyx™" for a certain relI

Olearly the latter relation is Ieflexwe, symmetric and transitive.
By the assumptions of the lemma [H,, H,] = 1 for # £ 5. Hence

(20)

1/1 :“/irn

H, % H, for H,, H,elf,
By the a,ssmnptwn H;eF. By (19) 4,
(L <i<m). 7

This means that the class represented by H; consists ol m sets:
H, =H,, H,, o H,

Lef § be the set them etic union of these sets. Weo have by (19)

P :/: 8.

= r,&i-r;"‘ and hence M, == 7 Hy7t

=1) 8] =t | Hyj ~ (m—1) == W] —m-+1 2 § W]+

since HyeF and m < § ], , ’

icm
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. Suppose that there exists another clags with the set theoretic union
&', say. Then on one hand

(22) 848 <,
on the other hand by (21)
(23) AR 1) (RS

Since [H,, H,] =1 for » s we have [§, S] = 1. Henee by (21)
and (23) we inter that
|S+;S’|' = 8]+ 8 ~1 =
contrary to (22).
The contradiction shows that the family F reduces to one class

IIII )

(24) F={H, =H,H,,..H,} .
Hence - )
(25) mM=1uU—85.

Indeed, if ol -8 and o¢M then ceH; for some j, ¢ # 1. H;cF,
oed contrary to assumption. This implies the inclusion ¥ — 8 < M which
together with the obvious inclugion M = W— 8§ givey (25). By (26), (21)
and the definition of M

I = -
and the proof is complete.
Proot of Theorem 3. Let K be a guasi-normal extensmn of & and

suppose that Q does not contain any of the fields K (l S EE
Let ® be the Galois group of K|k represented as a transifive permu-

ISH‘]— =Mm,

" tation group of » fields K (1<j<n). Then K% corresponds to jth

stability subgroups of ® denoted by &. B

Let U be the subgroup of & corresponding to the field [K, 2]. U is
Galois group of the extension 2K/, it being assumed that U acts triv-
ially on £ (see [4], §1, P 8). We have
(26) U =1,
Indeed, if If =1 then QK = Q, K < K < £ contrary to the assumption.
Let 9 be the set of those permutations of W which fix no letter.

Put M =M+ {1}

The set M is a group of order > L. For @t = 1 this follows from (26).
It I~ W, U contains » permutation different from the identity that
fixes a digit, say {. Further the group ® is trangitive and the condition
EOWE® =K (r s£s) implies [G,, ] =1. This means that the per-
mutations of ® except the identity fix at most one digit. By Lemma 2
M is a group of order m = (W:[1, G;]). The condition m = 1 implies
K9 < [, 2]< @ contrary to the assumption.

3 — Acta Arlthmetica XXVIIL2 -
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Let L be the subextension of QKO correbponclmg t0 9. The extension

QK /L is normal and non-trivial with the Galois group M.
In virtue of Theoremn 1 there exist infinitely many prime ideals
P of degree one in L such that

Let g,p be prime ideals of the Helds £, & respectively such thab
Blg, alp. The ideals p, q are of degree one, thus

pel ().
We have (cf. [4], §1, V, V)
: o 'QIT.’/L) (.QE/D)(KM) :

on restriction to K, where {o)dm is the set of elements o™, reIN. Hence

o

Clearly v = a(ib‘)eiﬁ't. Hence by (27) oeM. This means that o and

1

also ror™ ! (ve B} do not fix any digit. In particular ror™'¢@, (ve G).
Since the group &, corresponds to the field K® = K we have p¢P{(K)
(ef. [4], §23, 1I).

Thus we have proved that if the field £ containg mo conjugate of

- K then there exist infinitely many prime ideals p such that peP (Y —P(K).

This means that the field K is Bauerian. Q.E.D.

Remark 3. It is ea,sy to see that quasi-normal fields have property
(zee [B]).

TUsing class field theory and A:rtm’s mmprncﬂy laow we shall give
one more application of Theorem 1.

Let m be a.modulus as defined in [3], Ta, §3, .60 (M can contain
the factor p,, to the first power). By a group ¢ of ideals mod i we shall
understand a set of ideals of % satisfying the following conditions:

1) ¢ is a group with respect to wwltiplication of ideals,

2) Bvery ideal of & is prime to m.

3) @ containg all prinecipal ideals (a),.where a =21 modm,

. A subset J of a group G of ideals modm which itsclf satigfies the

conditions 1), 2), 3) iz called a subgroup of G.
We have

TEROREM 4. Lét G be a gmup of ideals mod moand J o 13’."01187‘ sub-

group of G. There ewist infinitely many prime ideals p-of degrec one in ke such
that pe@ —d. ‘

&
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Proof. Let fields £, K correspond to the groups €, J, respectively.
We have 2 < K, 2 5= K. By Theorem 1 there exish mfml’tely many prime
ideals ¢ of degree one in 2 such that

K K2
(28) 1,
q

Let p be a prime ideal of & such that g]p. The ideal p is of degree
one and p = Ng;q. By the definifion of a class-lield peG.

On the other hand since K, 2 are abelian we have by (28) (ef. [4],

§1, V)
(28)-(52)

By Arting reciprocity law p¢d, Q.E.D.
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