On linear dependence of roots

by

A. SCHINZEL (Warszawa)

In memory of Professor L. J. Mordell

L. J. Mordell [4] has proved in 1953 the following theorem. Let K be an algebraic number field, a_1, \ldots, a_k elements of K, n_1, \ldots, n_k positive integers, $\xi_i^{n_i} = a_i$ $(1 \le i \le k)$. If $\prod_{i=1}^k \xi_i^{x_i} \in K$ implies $x_i \equiv 0 \mod n_i$ and either the numbers ξ_i are real or K contains n_i th roots of unity $(1 \le i \le k)$ then the degree of the extension $K(\xi_1, \ldots, \xi_k)$ over K is $n_1 \ldots n_k$. This theorem has been recently extended by C. L. Siegel [7] and M. Kneser [3].

The latter obtained the following purely algebraic result. Let K be any field, $K(\xi_1, \ldots, \xi_k)$ a separable extension of K and $K^* \langle \xi_1, \ldots, \xi_k \rangle$ the multiplicative group generated by ξ_1, \ldots, ξ_k , all of finite order, over K^* . The degree $[K(\xi_1, \ldots, \xi_k):K]$ is equal to the index $[K^* \langle \xi_1, \ldots, \xi_k \rangle:K^*]$ if and only if for every prime $p, \zeta_p \in K^* \langle \xi_1, \ldots, \xi_k \rangle$ implies $\zeta_p \in K$ and $1 + \zeta_4 \in K^* \langle \xi_1, \ldots, \xi_k \rangle$ implies $\zeta_4 \in K$, where ζ_q is a primitive qth root of unity.

We shall use Kneser's theorem to get a necessary and sufficient condition for the field $K(\xi_1, ..., \xi_k)$ to be of degree $n_1 ... n_k$ over K.

THEOREM 1. Let K be any field. Assume that the characteristic of K does not divide $n_1 \ldots n_k$ and $\xi_i^{n_i} = a_i \in K^*$. $[K(\xi_1, \ldots, \xi_k): K] = n_1 \ldots n_k$ if and only if for all primes $p \prod_{p \mid n_i} a_i^{x_i} = \gamma^p$ implies $x_i \equiv 0 \mod p$ $(p \mid n_i)$ and $\prod_{p \mid n_i} a_i^{x_i} = -4\gamma^4$, $n_i x_i = 0 \mod 4$ $(2 \mid n_i)$ implies $x_i \equiv 0 \mod 4$ $(2 \mid n_i)$ (1).

The above theorem can be regarded as a generalization of Capelli's theorem which corresponds to the case k=1. It should however be noted that Capelli's theorem holds without any condition on the characteristic of K (see [5], Theorem 428) while Theorem 1 does not, as it is shown by the example $K=Z_2(t)$, $n_1=n_2=2$, $a_1=t$, $a_2=t+1$.

⁽¹⁾ $(p|n_i)$ means here "for all i such that $p|n_i$ ".

We have further

THEOREM 2. Assume that the characteristic of K does not divide $n_1 \ldots n_k$. If either $\zeta_4 \in K$ or $n_i x_i \equiv 0 \mod 4$ $(2 \mid n_i)$ implies $\prod_{2 \mid n_i} \alpha_i^{x_i} \neq -\gamma^4$, $-4\gamma^4$ then there exist elements ξ_1, \ldots, ξ_k such that $\xi_i^{n_i} = \alpha_i$ and

$$[K(\xi_1,\ldots,\xi_k):K] = [K^*\langle \xi_1,\ldots,\xi_k\rangle:K^*].$$

It follows from Kneser's theorem that if $\zeta_4 \notin K$ and for some x_i , $n_i x_i \equiv 0 \mod 4$ $(2 \mid n_i)$, $\prod_{2 \mid n_i} \alpha_i^{x_i} = -4 \gamma^4$ then for no choice of ξ_1, \ldots, ξ_k satisfying $\xi_i^{n_i} = \alpha_i$ the equality (1) holds. The example K = Q, $n_1 = n_2 = 8$, $\alpha_1 = -1$, $\alpha_2 = -16$ shows that the converse is not true. Indeed for any choice of ξ_1 , ξ_2 we get

$$[K(\xi_1, \xi_2):K] = 8 < [K^* \langle \xi_1, \xi_2 \rangle:K^*] = 16.$$

It seems difficult to give a simple necessary and sufficient condition for the existence of ξ_1, \ldots, ξ_k satisfying (1). On the other hand Theorem 1 combined with some results of [6] leads to a necessary and sufficient condition for the following phenomenon: each of the fields $K(\xi_1, \ldots, \xi_k)$ contains at least one η with $\eta^n = \beta$ (β and n fixed, $n_i \mid n$). Condition given in [6] was necessary but not always sufficient. We shall prove even a more precise result.

THEOREM 3. Let τ be the largest integer such that $\zeta_{2^{\tau}} + \zeta_{2^{\tau}}^{-1} \in K$, if there are only finitely many of them, otherwise $\tau = \infty$. Let n_1, \ldots, n_k be positive integers, a_1, \ldots, a_k non-zero elements of K. There exist elements ξ_1, \ldots, ξ_k with $\xi_i^{n_i} = a_i$ $(1 \le i \le k)$ such that for all n divisible by n_1, \ldots, n_k , but not by the characteristic of K and for all $\beta \in K$: if $K(\xi_1, \ldots, \xi_k)$ contains at least one η with $\eta^n = \beta$ then at least one of the following three conditions is satisfied for suitable rational integers $l_1, \ldots, l_k, q_1, \ldots, q_k$ and suitable γ , $\delta \in K$.

(i)
$$\beta \prod_{i=1}^k a_i^{q_i \frac{n}{n_i}} = \gamma^n$$
,

(ii)
$$n \not\equiv 0 \mod 2^{\tau}$$
, $\prod_{2|n_i} a_i^{l_i} = -\delta^2$, $\beta \prod_{i=1}^k a_i^{q_i} \frac{n}{n_i!} = -\gamma^n$,

 $(iii) \ n \equiv 0 \bmod 2^{\tau}, \prod_{\frac{2|n_s}{n_i}} a_i^{l_i} = -\delta^2, \ \beta \prod_{i=1}^k a_i^{\frac{n_i}{n_i}} = (-1)^{n/2^{\tau}} (\zeta_{2^{\tau}} + \zeta_{2^{\tau}}^{-1} + 2)^{n/2} \gamma^n.$

Conversely if any of the above conditions is satisfied then each of the fields $K(\xi_1, \ldots, \xi_k)$ where $\xi_i^{n_i} = a_i$ contains at least one η with $\eta^n = \beta$.

If $\zeta_4 \in K$ the conditions (ii), (iii) imply (i); if $\tau = 2$ (ii) implies (i) for not necessarily the same q_1, \ldots, q_k and γ .

This theorem can be regarded as an extension of the classical result concerning Kummer fields ([2], p. 42).

Let us write for two irreducible polynomials f and g over K $f \sim g$ if $f(a_1) = 0$ and $g(a_2) = 0$ where $K(a_1) = K(a_2)$. The relation \sim introduced by Gerst [1] is reflexive, symmetric and transitive.

Theorem 3 implies

COROLLARY. Two polynomials $f(x) = x^n - \alpha$ and $g(x) = x^n - \beta$ irreducible over K satisfy $f \sim g$ if and only if either $\beta \alpha^r = \gamma^n$ or $n \equiv 0 \pmod{2^{r+1}}$, $\alpha = -\delta_1^2$, $\beta = -\delta_2^2$ and $\beta \alpha^r = (\zeta_2^r + \zeta_2^{r+1} + 2)^{n/2} \gamma^n$ with γ , δ_1 , $\delta_2 \in K$.

This is a generalization of Theorem 5 of Gerst [1] corresponding to the case K = Q. (Note that the irreducibility of g implies (r, n) = 1.) For the proof we need several lemmata.

LEMMA 1. If $(a_i, b_i) = 1$ and $b_i \mid m \ (1 \leq i \leq k)$ then

$$\left(m\frac{a_1}{b_1},\ldots,m\frac{a_k}{b_k}\right)=m\frac{(a_1,\ldots,a_k)}{[b_1,\ldots,b_k]}.$$

Proof (by induction with respect to k). For k = 1 the formula is obvious, for k = 2 we have

$$\left(m\frac{a_1}{b_1}, m\frac{a_2}{b_2}\right) = \frac{m}{b_1b_2}(a_1b_2, a_2b_1) = \frac{m}{b_1b_2}(a_1, a_2)(b_1, b_2) = m\frac{(a_1, a_2)}{[b_1, b_2]}.$$

Now assume that the lemma holds for k terms. Then if $b_i | m \ (1 \leqslant i \leqslant k+1)$ we have

$$\left(m\frac{a_1}{b_1}, \ldots, m\frac{a_{k+1}}{b_{k+1}}\right) = \left(m\frac{(a_1, \ldots, a_k)}{[b_1, \ldots, b_k]}, m\frac{a_{k+1}}{b_{k+1}}\right) = m\frac{(a_1, \ldots, a_k, a_{k+1})}{[b_1, \ldots, b_{k+1}]},$$

and the proof is complete.

Proof of Theorem 1. Necessity. Suppose that for a certain prime p, a certain $\gamma \in K$ and some x_i , $\prod_{p|n_i} a_i^{x_i} = \gamma^p$, but for a certain $i \mid p \mid n_i$, $p \nmid x_i$.

Then for a suitable j

(2)
$$\prod_{p|n_i} \xi_i^{x_i} \frac{n_i}{p} = \zeta_p^i \gamma,$$

 $\zeta_p^j \in K^* \langle \xi_1, \ldots, \xi_k \rangle$ and by Kneser's theorem either $\zeta_p^j \in K$ or $[K(\xi_1, \ldots, \xi_k): K] < [K^* \langle \xi_1, \ldots, \xi_k \rangle: K^*].$

In the former case by (2) $[K^* \langle \xi_1, ..., \xi_k \rangle : K^*] \langle n_1 ... n_k$, in both cases $[K(\xi_1, ..., \xi_k) : K] \langle n_1 ... n_k$.

Suppose now that for some x_i and a certain $\gamma \in K \prod_{2|n_i} a_i^{x_i} = -4\gamma^4$, $n_i x_i = 0 \mod 4$ (2 $|n_i|$) but for a certain $i \ge |n_i|$, $4 + x_i$. Then for a suitable j

 $1 + \zeta_4 \in K \langle \xi_1, \ldots, \xi_k \rangle$ (Note that $\zeta_4 (1 + \zeta_4) = -2(1 + \zeta_4)^{-1}$.) and by Kneser's theorem either $\zeta_4 \in K$ or $[K(\xi_1, \ldots, \xi_k): K] < [K^* \langle \xi_1, \ldots, \xi_k \rangle: K^*]$.

In the former case by (3) $[K^*\langle \xi_1, ..., \xi_k \rangle : K^*] < n_1 ... n_k$, in both cases $[K(\xi_1, ..., \xi_k) : K] < n_1 n_2 ... n_k$.

Sufficiency. Suppose that for a certain prime p and a $\gamma \in K$

$$\zeta_p = \gamma \prod_{i=1}^k \, \xi_i^{x_i}.$$

Let $m = [n_1/(n_1, x_1), ..., n_k/(n_k, x_k)]$. If p|m we get

$$\prod_{i=1}^k a_i \frac{m a_i}{n_i} = (\gamma^{-\frac{m}{p}})^p$$

and by the assumption $mx_i/n_i \equiv 0 \mod p$ $(1 \leqslant i \leqslant k)$. This gives by Lemma 1 $(x_1/(n_1, x_1), \ldots, x_k/(n_k, x_k)) \equiv 0 \mod p$, and for an $i \leqslant k$ $x_i/(n_i, x_i) \equiv n_i/(n_i, x_i) \equiv 0 \mod p$, a contradiction.

If $p \nmid m$ we have

$$\zeta_p^m = \gamma^m \prod_{i=1}^k a_i \frac{m x_i}{n_i} \epsilon K, \quad \zeta_p \epsilon K.$$

Suppose now that for a $\gamma \in K$

$$(4) 1+\zeta_4=\gamma\prod_{i=1}^k\xi_i^{\alpha_i}$$

and again $m = [n_1/(n_1, x_1), \dots, n_k/(n_k, x_k)]$. If 4|m then

$$(-4)^{\frac{m}{4}} = \gamma^m \prod_{i=1}^k a_i^{\frac{x_i m}{n_i}}$$

and by the assumption $x_i m/n_i \equiv 0 \mod 2$ $(1 \leqslant i \leqslant k)$. This gives by Lemma 1 $(x_1/(n_1, x_1), \ldots, x_k/(n_k, x_k)) \equiv 0 \mod 2$ and for an $i \leqslant k$:

$$\frac{x_i}{(n_i, x_i)} \equiv \frac{n_i}{(n_i, x_i)} \equiv 0 \bmod 2,$$

a contradiction.

If 4\mathemathen (4) gives

$$(2\zeta_4)^{\frac{m}{(2,m)}} = \gamma^{[m,2]} \prod_{i=1}^k \alpha_i \frac{[m,2]x_i}{n_i} \epsilon K; \quad \zeta_4 \epsilon K.$$

Thus by Kneser's theorem $[K(\xi_1, ..., \xi_k): K] = [K^* \langle \xi_1, ..., \xi_k \rangle : K^*]$. Suppose now that

$$\prod_{i=1}^k \xi_i^{x_i} = \gamma \, \epsilon K \quad \text{and} \quad m = [n_1/(n_1, x_1), \ldots, n_k/(n_k, x_k)] \neq 1.$$

$$\prod_{i=1}^k a_i \frac{x_i m}{n_i} = (\gamma^{\frac{m}{p}})^p$$

thus by the assumption $mx_i/n_i \equiv 0 \mod p$ $(1 \leqslant i \leqslant k)$. This as before leads to a contradiction. Therefore m = 1, $x_i \equiv 0 \mod n_i$ and we infer that $[K^* \langle \xi_1, \ldots, \xi_k \rangle : K^*] = n_1 \ldots n_k$, which completes the proof.

LIMMA 2. Let g be 0 or a power of 2, \mathscr{G} a subgroup of K^* containing K^{*g} . If $n_i x_i = 0 \mod g$ $(1 \leqslant i \leqslant k)$ implies $-\prod_{i=1}^k \alpha_i^{x_i} \notin \mathscr{G}$ then there exist elements $\xi_1, \ldots, \xi_k, \eta_1, \ldots, \eta_l$ and positive integers m_1, \ldots, m_l such that

$$\xi_i^{n_i} = a_i \ (1 \leqslant i \leqslant k), \quad \eta_j^{m_j} = \beta_j \in K^* \ (1 \leqslant j \leqslant l),$$

$$\langle \xi_1, \dots, \xi_k \rangle = \langle \eta_1, \dots, \eta_l \rangle,$$

$$[m_1, \ldots, m_l] | [n_1, \ldots, n_k],$$

for all primes p and

(7)
$$m_j y_j \equiv 0 \mod g \ (1 \leqslant j \leqslant l) \ implies - \prod_{j=1}^l \beta_j^{y_j} \notin \mathcal{G}(^2).$$

Proof. Assume first that all n_i are powers of the same prime q. Consider all systems $\eta_1, \ldots, \eta_k, m_1, \ldots, m_k$ satisfying the following conditions: for suitable ξ_i and integral e_{ij}

(8)
$$\xi_i^{n_i} = \alpha_i, \quad \xi_i = \prod_{j=1}^k \eta_j^{e_{ij}}, \quad \eta_j^{m_j} = \beta_j \in \mathbb{K}^*;$$
$$\det[e_{ij}] = \pm 1, \quad m_j | n_i e_{ij}$$

and

(9)
$$m_j y_j = 0 \mod g \ (1 \leqslant j \leqslant k) \text{ implies } - \prod_{j=1}^k \beta_j^{y_j} \notin \mathscr{G}.$$

Such systems do exist, e.g. $\eta_j = \xi_j$, where $\xi_j^{n_j} = a_j$, $m_i = n_j$; we take one with the least product $m_1 \dots m_k$ and assert that it has the required property. We note that by (8)

$$m_j \mid \sum_{i=1}^k \frac{\max n_i}{n_i} n_i e_{ij} E_{ij} = \pm \max_{1 \leq i \leq k} n_i,$$

⁽²⁾ $a = 0 \mod 0 \mod a = 0$.

 E_{ij} being the algebraic complement of e_{ij} , hence (5) holds and each m_j is a power of q. We can assume without loss of generality that $m_1 \ge m_2$ $\ge \ldots \ge m_k$. The only prime p for which (6) needs verification is p = q.

Suppose that $\prod_{p|m_j} \hat{\beta}_j^{x_j} = \gamma^p$ but for some $j \mid p \mid m_j$, $p \nmid x_j$. Let s be the greatest such j and let t satisfy the congruence

$$tx_s \equiv 1 \mod p$$
.

Then

Consider first the case p=q=2. If $m_s\equiv 0 \mod 2g$ there exists an $\varepsilon=\pm 1$ such that for every choice of z_j satisfying $z_s\equiv 1 \mod 2$, $m_jz_j\equiv 0 \mod g$ (j>s) we have

$$-(\varepsilon\delta)^{z_S}\prod_{j\neq s}\beta_j^{z_j}\notin\mathscr{G}.$$

Indeed if

$$z_s \equiv 1 \bmod 2, \quad m_j z_j \equiv 0 \bmod g \ (j > s), \quad -\delta^{z_g} \prod_{j \neq s} \beta_j^{z_j} \epsilon \mathcal{G}$$

and

$$z_s' \equiv 1 \mod 2$$
, $m_j z_j' \equiv 0 \mod g \ (j > s)$, $-(-\delta)^{z_s'} \prod_{j \neq s} \beta_j^{z_j'} \epsilon \mathscr{G}$

then

$$z_s - z_s' \equiv 0 \mod 2, \qquad -\delta^{z_s - z_s'} \prod_{j \neq s} \beta_j^{z_j - z_j'} \epsilon \mathscr{G}$$

and by (10)

$$-\prod_{j=1}^{s-1}\beta_j^{tx_j}^{z_s-z_s'} \frac{z_s-z_s'}{2} + z_j-z_j'\beta_s^{\frac{z_s-z_s'}{2}} \prod_{j=s+1}^k \beta_j^{z_j-z_j'} \in \mathscr{G}$$

which contradicts (9) since

$$m_j \equiv 0 \mod g \ (j \leqslant s), \quad m_j(z_j - z'_j) \equiv 0 \mod g \ (j > s).$$

Let us choose a root of unity $\zeta_{m_0}^r$ so that

$$\eta_s' = \zeta_{m_s}^r \eta_s \prod_{i=1}^{s-1} \eta_j^{tx_j \frac{m_j}{m_g}}$$

satisfies

(11)
$$\eta_s^{\frac{m_s}{2}} = \beta_s' = \begin{cases} \delta & \text{if } m_s \not\equiv 0 \bmod 2g, \\ \delta & \text{otherwise.} \end{cases}$$

and set $m_s' = m_s/2$

(12)
$$\eta'_j = \eta_j, \quad m'_j = m_j, \quad \beta'_j = \beta_j \quad (j \neq s);$$

(13)
$$e'_{ij} = \begin{cases} e_{ij} - e_{is} t x_j \frac{m_j}{m_s} & \text{if} \quad j < s, \\ e_{ij} & \text{if} \quad j \geqslant s; \end{cases}$$

$$\xi_i' = \prod_{i=1}^k \eta_i'^{\epsilon' i j}.$$

We find

$$\xi_i' = \xi_i \zeta_{m_g}^{e_{ig}}$$
 and $\xi_i'^{n_i} = a_i$ $(1 \leqslant i \leqslant k)$

because of (8).

The conditions $\det[e'_{ij}] = \pm 1$ and $m'_j | n_i e'_{ij}$ follow also from (8) since by (13)

 $\det[e'_{ii}] = \det[e_{ii}]$ and $m_i | n_i e'_{ii}$.

Finally suppose that $m'_j y_j \equiv 0 \mod g$ $(1 \le j \le k)$ and $-\prod_{j=1}^k \beta'_j v_j \in \mathcal{G}$. If $y_s \equiv 0 \mod 2$ we have by (10), (11) and (12)

$$-\prod_{i=1}^{s-1}\beta_j^{tor^{\frac{y_s}{2}+y_j}}\beta_s^{\frac{y_s}{2}}\prod_{i=s+1}^k\beta_j^{y_j}\in\mathscr{G}$$

which contradicts (9) since

$$m_j \frac{y_s}{2} = \frac{m_j}{m_s} m'_s y_s \equiv 0 \mod g \ (j \leqslant s)$$
 and $m_j y_j \equiv 0 \mod g \ (j > s)$.

If $y_s \equiv 1 \mod 2$ we have $m_s \equiv 0 \mod 2g$ and by (11) and (12)

$$-(\varepsilon\delta)^{y_{\mathcal{S}}}\prod_{j\neq s}\beta_{j}^{y_{j}}\in\mathscr{G}$$

contrary to the choice of ε.

Thus $\eta'_1, \ldots, \eta'_k, m'_1, \ldots, m'_k$ satisfy all conditions imposed on $\eta_1, \ldots, \eta_k, m_1, \ldots, m_k$ and $m'_1, \ldots, m'_k < m_1, \ldots, m_k$, a contradiction.

Consider next the case p=q>2. Let us choose a root of unity $\zeta_{m_s}^r$ so that

$$\eta_s' = \zeta_{m_s}^r \eta_s \prod_{j=1}^{s-1} \eta_j^{tx_j \frac{m_j}{m_s}}$$
 satisfies $\eta_s'^{m_s/p} = \delta$.

Set $m'_s = m_s/p$ and define η'_j , m'_j $(j \neq s)$, e'_{ij} , ξ'_i by the formulae (12), (13), (14). We find as before that $\xi'^{n_i}_i = a_i$ $(1 \leq i \leq k)$, $\det[e'_{ij}] = \pm 1$ and $m'_j | n_i e'_{ij}$. If now $m'_j y_j \equiv 0 \mod g$ $(1 \leq j \leq k)$ then $y_j \equiv 0 \mod g$ $(1 \leq j \leq k)$ and since $K^{*g} \subset \mathscr{G}$, $-\prod_{j=1}^k \beta_j^{ij} \in \mathscr{G}$ implies $-1 \in \mathscr{G}$ which is impossible by (9). Since $m'_1 \dots m'_k < m_1 \dots m_k$ we get a contradiction.

Consider now the general case. Let $n_i = \prod_{h=1}^H p_h^{r_{hi}}$ $(1 \le i \le h)$, where p_1, \ldots, p_H are distinct primes. By the already proved case of the lemma for each $h \le H$ there exist ξ_{hi} , η_{hi} and m_{hi} $(1 \le i \le h)$ such that

$$egin{aligned} eta_h^{p_{hi}^{Thi}} &= a_i, \quad \eta_{hi}^{m_{hi}} &= eta_{hi}, \ &\langle \xi_{h1}, \ldots, \xi_{hk}
angle &= \langle \eta_{h1}, \ldots, \eta_{hk}
angle, \end{aligned}$$

$$[m_{h1}, \ldots, m_{hk}] | p_h^{\max r_{hi}}$$

(16)
$$\prod_{p_h \mid m_{hi}} \beta_h^{x_i} = \gamma^{p_h} \quad \text{implies} \quad x_i \equiv 0 \mod p_h \ (p_h \mid m_{hi})$$

and

(17)
$$m_h y_i \equiv 0 \mod g \quad \text{implies} \quad -\prod_{i=1}^k \beta_{hi}^{y_i} \notin \mathcal{G}.$$

We get

$$\langle \eta_{11}, \dots, \eta_{1k}, \eta_{21}, \dots, \eta_{2k}, \dots, \eta_{H1}, \dots, \eta_{Hk} \rangle$$

= $\langle \xi_{11}, \dots, \xi_{1k}, \xi_{21}, \dots, \xi_{2k}, \dots, \xi_{H1}, \dots, \xi_{Hk} \rangle$,

$$[m_{11}, \ldots, m_{1k}, m_{21}, \ldots, m_{2k}, \ldots, m_{H1}, \ldots, m_{Hk}] | [n_1, \ldots, n_k].$$

Let us choose integers t_{hi} so that $\frac{1}{n_i} = \sum_{h=1}^{H} \frac{t_{hi}}{p_h^{r_{hi}}}$. Then

$$\left(\prod_{h=1}^{H} \xi_{hi}^{thi}\right)^{n_i} = a_i, \quad \xi_{ji} = \left(\prod_{h=1}^{H} \xi_{hi}^{thi}\right)^{\frac{n_i}{p_j^* ji}} \quad (1 \leqslant i \leqslant k),$$

hence

$$\langle \eta_1, \ldots, \eta_{Hh} \rangle = \langle \prod_{h=1}^H \xi_{h1}^{t_{h1}}, \ldots, \prod_{h=1}^H \xi_{hk}^{t_{hk}} \rangle.$$

Moreover

$$\prod_{p|m_h} \beta_{hi}^{x_{hi}} = \gamma^p$$

implies by (15) and (16) $x_{hi} \equiv 0 \mod p$ $(p \mid m_{hi})$. Finally $m_{hi}y_{hi} \equiv 0 \mod g$ implies $y_{hi} \equiv 0 \mod g$ unless $p_h \equiv 2$. Since $\mathscr{G} \supset K^{*g}$ the conditions

$$m_{hi}y_{hi} = 0 \mod g \ (1 \leqslant h \leqslant H, \ 1 \leqslant i \leqslant k) \ \ ext{ and } \ - \prod_{h=1}^H \prod_{i=1}^k eta_{hi}^{y_{hi}} \epsilon \mathscr{G}$$

imply for $p_h = 2$

$$-\prod_{i=1}^{k}\beta_{hi}^{v_{hi}}\epsilon\mathscr{G}$$

which contradicts (17). The proof is complete.

Remark. It is possible but not worthwhile to obtain l=k in the general case.

Proof of Theorem 2. We apply Lemma 2 with $g=0, \mathscr{G}=\{1\}$ if $\zeta_4 \in K$; with $g=4, \mathscr{G}=K^{*4} \cup 4K^{*4}$ otherwise and find that for suitable $\xi_1, \ldots, \xi_k, \eta_1, \ldots, \eta_l$

$$\xi_{i}^{n_{i}} = a_{i}, \quad \eta_{j}^{m_{j}} = \beta_{j} \quad (1 \leqslant i \leqslant k, 1 \leqslant j \leqslant l), \quad \langle \xi_{1}, \dots, \xi_{k} \rangle = \langle \eta_{1}, \dots, \eta_{l} \rangle$$

$$(18) \qquad \qquad \prod_{p \mid m_{j}} \beta_{j}^{x_{j}} = \gamma^{p} \quad \text{implies} \quad x_{j} \equiv 0 \mod p \quad (p \mid m_{j})$$

and if $\zeta_4 \notin K$

$$m_j y_j \equiv 0 \mod 4 \ (1 \leq j \leq k) \quad \text{implies} \quad \prod_{j=1}^k \beta_j^{y_j} \neq -\gamma^4, \ -4\gamma^4.$$

If $\zeta_4 \notin K$ we see at once that the conditions of Theorem 1 are satisfied; if $\zeta_4 \in K$ they are also satisfied since then by (18)

$$\prod_{2\mid n_i} \beta_i^{x_i} = -4\gamma^4, \, n_i w_i = 0 \, \, \text{mod} \, \, 4 \, \, (2\mid n_i) \quad \, \text{implies} \quad \prod_{2\mid n_i} \beta_i^{x_i} = (2\zeta_4\gamma^2)^2,$$

 $x_i = 0 \mod 2$, $\prod_{2|n_i} \beta_i^{x_i t/2} = \pm 2\zeta_4 \gamma^2 = ((1 \pm \zeta_4)\gamma)^2$, $x_i/2 \equiv 0 \mod 2$, $x_i \equiv 0 \mod 4$ $(1 \le i \le k)$.

By Theorem 1 we have $[K(\eta_1, ..., \eta_l):K] = m_1 ... m_l = [K^* \langle \eta_1, ... \eta_l \rangle:K^*]$, hence the theorem.

LEMMA 3. If $\eta_1, \ldots, \eta_l, m_1, \ldots, m_l$ satisfy the conditions of Lemma 2 with g = 2, $\mathscr{G} = K^{*2}$, $\delta \in K^*$ and $\sqrt{\delta} \in K(\eta_1, \ldots, \eta_l)$ then

$$\sqrt{\delta} \in K^* \langle \eta_1, \ldots, \eta_l \rangle$$
 and $\delta \neq -1$.

Proof. If $\sqrt{\delta} \in K(\eta_1, ..., \eta_l)$ but $\sqrt{\delta} \notin K^* \langle \eta_1, ..., \eta_l \rangle$ then

$$\begin{bmatrix} K^* \langle \sqrt{\delta}, \eta_1, \dots, \eta_l \rangle : K^* \end{bmatrix} > \begin{bmatrix} K^* \langle \eta_1, \dots, \eta_l \rangle : K^* \end{bmatrix} \geqslant \begin{bmatrix} K(\eta_1, \dots, \eta_l) : K \end{bmatrix} \\
= \begin{bmatrix} K(\sqrt{\delta}, \eta_1, \dots, \eta_l) : K \end{bmatrix}$$

thus by Kneser's theorem we have for a certain prime p

$$\zeta_p \in K^* \langle \sqrt{\delta}, \eta_1, \dots, \eta_l \rangle, \quad \zeta_p \notin K$$

 \mathbf{or}

$$1+\zeta_4 \in K^* \langle \sqrt{\delta}, \eta_1, \ldots, \eta_l \rangle, \quad \zeta_4 \notin K.$$

However $\zeta_p = \gamma \sqrt{\delta^{x_0}} \prod_{j=1}^l \eta_j^{x_j}, \ \gamma \in K$, gives

$$\sqrt{\delta} \in K^* \langle \eta_1, \ldots, \eta_l \rangle$$

unless $x_0 \equiv 0 \mod 2$. In the latter case let

$$m = [m_1/(m_1, x_1), \ldots, m_l/(m_l, x_l)].$$

If $p \mid m$ we get

$$\prod_{j=1}^{l} \beta_{j}^{\frac{mx_{j}}{m_{j}}} = (\gamma^{-\frac{m}{p}} \delta^{-\frac{m}{p}\frac{x_{0}}{2}})^{p}$$

and by the assumption

$$rac{mx_j}{m_j}\equiv 0 mod p \qquad (1\leqslant j\leqslant l).$$

This gives by Lemma 1 $(x_1/(m_1, x_1), \ldots, x_l/(m_l, x_l)) = 0 \mod p$ and for a $j \leq l x_l/(m_j, x_j) = m_j/(m_j, x_j) \equiv 0 \mod p$, a contradiction.

If $p \nmid m$ we have

$$\zeta_p^m = (\gamma \delta^{\frac{n_0}{2}})^m \prod_{j=1}^l \beta_j^{\frac{m x_j}{m_j}} \epsilon K; \quad \zeta_p \epsilon K.$$

Suppose now that $\gamma \in K$,

(19)
$$1 + \zeta_4 = \gamma \sqrt{\delta^{\alpha_0}} \prod_{j=1}^l \eta_j^{\alpha_j} \quad \text{or} \quad \zeta_4 = \gamma \prod_{j=1}^l \eta_j^{\alpha_j}$$

and set again $m = [m_1/(m_1, x_1), \ldots, m_l/(m_l, x_l)].$

If 4|m then

$$(-4)^{m/4} = \gamma^m \delta^{x_0 \frac{m}{2}} \prod_{j=1}^l \beta_j^{\frac{x_j m}{m_j}} \quad \text{or} \quad 1 = \gamma^m \prod_{j=1}^l \beta_j^{\frac{x_j m}{m_j}}$$

and by the assumption $x_j m/m_j \equiv 0 \mod 2$ $(1 \le j \le l)$. This gives by Lemma 1 $(x_1/(m_1, x_1), \ldots, x_l/(m_l, x_l)) \equiv 0 \mod 2$ and for a $j \le l$

$$\frac{x_j}{(m_j, x_j)} = \frac{m_j}{(m_j, x_j)} = 0 \mod 2,$$

a contradiction.

If $4 \nmid m$ then (19) gives

$$(2\zeta_4)^{\frac{m}{(m,2)}} = \gamma^{[m,2]} \delta^{x_0} \frac{m}{(m,2)} \prod_{i=1}^l \beta_i^{x_j[m,2]} \epsilon K; \quad \zeta_4 \epsilon K$$

or

$$(-1)^{\frac{m}{(m,2)}} = \gamma^{[m,2]} \prod_{j=1}^{l} \beta_j^{\frac{x_j[m,2]}{m_j}}; \quad \prod_{2|m_j} \beta_j^{\frac{x_j[m,2]}{m_j}} = -\delta_1^2.$$

The contradiction obtained completes the proof.

LEMMA 4. Let K be an arbitrary field, n a positive integer not divisible by the characteristic of K, m_j divisors of n and $\beta_1, \ldots, \beta_l, \beta$ non-zero elements of K. If each of the fields $K(\eta_1, \ldots, \eta_l)$, where $\eta_j^{m_j} = \beta_j$ $(1 \le j \le l)$ contains at least one η with $\eta^n = \beta$ then for any choice of η_j and η and for suitable exponents r_0, r_1, \ldots, r_l

$$\zeta_n^{r_0} \eta \eta_1^{r_1} \dots \eta_l^{r_l} \in K(\zeta_4)$$
.

Proof. This is an immediate consequence of Lemma 6 of [6].

LEMMA 5. Let K be an arbitrary field of characteristic different from 2 and τ be defined as in Theorem 3. $\Theta \in K$ is of the form ϑ^n , where $\vartheta \in K(\zeta_4)$ if and only if at least one of the following three conditions is satisfied for a suitable $\gamma \in K$:

$$\theta = \gamma^n,$$

$$n \neq 0 \mod 2^r, \quad \theta = -\gamma^n,$$

$$n = 0 \mod 2^r, \quad \theta = (-1)^{n/2^r} (\zeta_{2^r} + \zeta_{2^r}^{-1} + 2)^{n/2} \gamma^n.$$

If $\zeta_4 \in K$ the last two conditions imply the first.

Proof. Necessity follows at once from Lemma 7 of [6]. Sufficiency of the first condition is obvious. In order to prove sufficiency of the other two note that if $n \not\equiv 0 \mod 2^{\tau}$ and $qn \equiv 2^{\tau-1} \mod 2^{\tau}$ then

$$-1 = (\zeta_{2r}^{q})^n$$

and if $n \equiv 0 \mod 2^{\tau}$ then

$$(-1)^{n/2^{\tau}}(\zeta_{2^{\tau}}+\zeta_{2^{\tau}}^{-1}+2)^{n/2}=(\zeta_{2^{\tau}}+1)^{n}.$$

· On the other hand since $\zeta_{2^{\tau}} + \zeta_{2^{\tau}}^{-1} \in K$,

$$\zeta_{2^{\tau}} = \frac{1}{2}(\zeta_{2^{\tau}} + \zeta_{2^{\tau}}^{-1}) \pm \frac{1}{2}\zeta_{4}(\zeta_{2^{\tau}}^{1-2^{\tau-2}} + \zeta_{2^{\tau}}^{-1+2^{\tau-2}}) \epsilon K(\zeta_{4}).$$

The last assertion of the lemma is obvious.

Proof of Theorem 3. Let us assume first that for all l_i

Then by Lemma 2 applied with $g=2, \mathcal{G}=K^{*2}$ there exist $\xi_1, \ldots, \xi_k, \eta_1, \ldots, \eta_l, m_1, \ldots, m_l$ such that

$$\xi_i^{n_i} = a_i \ (1 \leqslant i \leqslant k), \quad \eta_i^{m_j} = \beta_j \epsilon K \ (1 \leqslant j \leqslant l),$$

(21)
$$\langle \xi_1, \ldots, \xi_k \rangle = \langle \eta_1, \ldots, \eta_l \rangle,$$

$$[m_1, ..., m_l] | [n_1, ..., n_k],$$

$$\prod_{p\mid m_j}eta_j^{x_j}=\gamma^p\quad ext{implies}\quad p\mid x_j\ (p\mid m_j)$$

for all primes p and

(23)
$$\prod_{\substack{2|m_j \\ j \neq j}} \beta_j^{y_j} \neq -\gamma^2 \text{ for any choice of } y_j.$$

By Theorem 1 $[K(\eta_1, \ldots, \eta_l): K] = m_1 \ldots m_l$ and thus all fields $K(\eta_1, \ldots, \eta_l)$, where $\eta_j^{m_j} = \beta_j$ are conjugate over K. If now $K(\xi_1, \ldots, \xi_k) = K(\eta_1, \ldots, \eta_l)$ contains an η with $\eta^n = \beta$ then each field $K(\eta_1, \ldots, \eta_l)$ contains such an η and by Lemma 4, Lemma 5, (22) and (23) we have either

$$\beta \prod_{j=1}^{l} \beta_j^{r_j \frac{n}{m_j}} = \gamma^n$$

or

(25)
$$n \equiv 0 \mod 2^{r+1}$$
 and $\beta \prod_{j=1}^{l} \beta_j^{\frac{r_j}{m_j}} = (\zeta_{2^r} + \zeta_{2^r}^{-1} + 2)^{n/2} \gamma^n$

for suitable integers r_1, \ldots, r_l and a suitable $\gamma \in K$. Indeed, if $n \equiv 0 \mod 2$, $\beta \prod_{j=1}^{l} \beta_j^{r_j \frac{n}{m_j}} = -\gamma^n$ or $n \equiv 2^r \mod 2^{r+1}$, $\beta \prod_{j=1}^{l} \beta_j^{r_j \frac{n}{m_j}} = -(\zeta_{2^r} + \xi_{2^r}^{-1} + 2)^{n/2} \gamma^n$, we get on taking square-roots $\zeta_4 \in K(\eta, \eta_1, \ldots, \eta_l) = K(\eta_1, \ldots, \eta_l)$ contrary to Lemma 3.

The condition (21) implies that

for suitable integers q_1, \ldots, q_k . Hence (24) leads to (i).

It remains to consider (25). If $L = K(\eta_1, ..., \eta_l)$ contains an η with $\eta^n = \beta$ then by (25) it contains $\zeta_n^r \sqrt{\zeta_{2^r} + \zeta_{2^r}^{-1} + 2}$ for a certain r.

If $n/(n, 2r) \equiv 1 \mod 2$ then L contains

$$\zeta_n^{\frac{rn}{(n,2r)}}\sqrt{\zeta_{2^{\tau}}+\zeta_{2^{\tau}}^{-1}+2} = \pm\sqrt{\zeta_{2^{\tau}}+\zeta_{2^{\tau}}^{-1}+2};$$

if $n/(n, 2r) \equiv 2 \mod 4$ then L contains

$$\zeta_n^{\frac{rn}{2(n,2r)}}\sqrt{\zeta_{2^{\tau}}+\zeta_{2^{\tau}}^{-1}+2} = \pm\sqrt{-(\zeta_{2^{\tau}}+\zeta_{2^{\tau}}^{-1}+2)};$$

if $n/(n, 2r) = 0 \mod 4$ then L contains $\zeta_n^{\frac{rn}{2(n, 2r)}} = \pm \zeta_4$.

By Lemma 3 the last case is impossible and in the first two cases

$$\sqrt{\pm(\zeta_{2^r}+\zeta_{2^r}^{-1}+2)} \epsilon K^*\langle \eta_1,\ldots,\eta_l\rangle = K^*\langle \xi_1,\ldots,\xi_k\rangle.$$

Hence we obtain

$$(\zeta_{2^{\tau}}+\zeta_{2^{\tau}}^{-1}+2)^{n/2}=\vartheta^{n}\prod_{i=1}^{k}a_{i}^{s_{i}\frac{n}{n_{i}}}, \quad \vartheta \in K,$$

which together with (25) and (26) gives again (i).

Assume now that for some l_1, \ldots, l_k

$$\prod_{i \mid n_i} a_i^{l_i} = -\delta^2, \quad \delta \in K.$$

Then we apply Lemma 2 for the field $K(\zeta_4)$ with $g=0, \mathcal{G}=\{1\}$ and we infer the existence of $\xi_1, \ldots, \xi_k, \eta_1, \ldots, \eta_l, m_1, \ldots, m_l$ such that

(27)
$$\xi_i^{n_i} = \alpha_i \ (1 \leqslant i \leqslant k), \quad \eta_j^{n_j} = \beta_j \epsilon K(\zeta_4) \ (1 \leqslant j \leqslant l),$$

$$[m_1,\ldots,m_l]|[n_1,\ldots,n_k],$$

$$\prod_{p \mid m_j} eta_j^{x_j} = \gamma^p, \ \gamma \in K(\zeta_4) \quad ext{implies} \quad p \mid w_j \ (p \mid m_j)$$

for all primes p.

By Theorem 1 $[K(\zeta_4, \eta_1, ..., \eta_l): K(\zeta_4)] = m_1 ... m_l$ (see the end of the proof of Theorem 2) and thus all fields $K(\zeta_4, \eta_1, ..., \eta_l)$, where $\eta_i^{m_j} = \beta_i$ are conjugate over $K(\zeta_4)$.

If now $K(\xi_1, ..., \xi_k) \subset K(\xi_4, \eta_1, ..., \eta_l)$ contains an η with $\eta^n = \beta$ then each field $K(\xi_4, \overline{\eta}_1, ..., \overline{\eta}_l)$ contains such an η and by Lemma 4 we have

$$\beta \prod_{j=1}^l \beta_j^{\frac{r_j}{m_j}} = \vartheta^n, \quad \vartheta \, \epsilon K(\zeta_4).$$

The condition (27) implies that

$$\prod_{j=1}^{l} \beta_j^{r_j \frac{n}{m_j}} = \prod_{i=1}^{k} \alpha_i^{q_i \frac{n}{n_i}}$$

for suitable integers q_1, \ldots, q_k . Hence $\vartheta^n \in K$ and using Lemma 5 we get one of the cases (i)-(iii).

Conversely if (i) is satisfied then any field $K(\xi_1, \ldots, \xi_k)$, where $\xi_i^{n_i} = a_i$ $(1 \le i \le k)$ contains $\eta = \gamma \prod_{i=1}^k \xi_i^{-a_i}$ with $\eta^n = \beta$.

If (ii) or (iii) is satisfied then by Lemma 5

$$eta\prod_{i=1}^k a_i^{rac{q_irac{n}{n_i}}{n_i}}=artheta^n$$

where $\vartheta \in K(\zeta_4)$. On the other hand, the equality $\prod_{2|n_i} a_i^{l_i} = -\delta^2$ implies $\zeta_4 = \pm \prod \xi_i^{n_i l_i l_i^2}$.

Thus $\vartheta \in K(\xi_1, ..., \xi_k)$ and $K(\xi_1, ..., \xi_k)$ contains $\eta = \vartheta \prod_{i=1}^k \xi_i^{-\alpha_i}$ with $\eta^n = \beta$.

The last assertion of the Theorem if $\zeta_4 \in K$ follows from the last assertion of Lemma 5.

If $\tau = 2$ and $n \not\equiv 0 \mod 2^{\tau}$ we have either $n \equiv 1 \mod 2$, in which case $-\gamma^n = (-\gamma)^n$ or $n \equiv 2 \mod 4$. In the latter case we get from (ii)

$$\beta \prod_{i=1}^k \alpha_i^{\frac{n}{n_i}} \prod_{2|n_i} \alpha_i^{\frac{l_i \frac{n}{2}}{2}} = (\gamma \delta)^n$$

which leads to (i). The proof is complete.

Proof of Corollary. If the irreducible polynomials $f(x) = x^n - a$ and $g(x) = x^n - \beta$ satisfy the relation $f \sim g$ we have by Theorem 3 the following five possibilities

(28)
$$a \stackrel{n}{=} \beta^t, \quad \beta \stackrel{n}{=} \alpha^s;$$

(29)
$$n \not\equiv 0 \mod 2^{\tau}, \quad \alpha = -\delta^2 \stackrel{n}{=} \beta^t, \quad \beta \stackrel{n}{=} -\alpha^s;$$

(30)
$$n \equiv 0 \bmod 2^{\tau}, \quad \alpha = -\delta^2 \stackrel{n}{=} \beta^l, \quad \beta \stackrel{n}{=} \varepsilon \omega \alpha^s;$$

(31)
$$n \not\equiv 0 \bmod 2^{x}, \quad \alpha = -\delta_{1}^{2} \stackrel{n}{=} -\beta^{l}, \quad \beta = -\delta_{2}^{2} \stackrel{n}{=} \alpha^{s};$$

(32)
$$n \equiv 0 \mod 2^{\tau}, \quad \alpha = -\delta_1^2 \stackrel{n}{=} \varepsilon \omega \beta^t, \quad \beta = -\delta_2^2 \stackrel{n}{=} \varepsilon \omega \alpha^s,$$

and two other possibilities obtained by the permutation of α and β in (29) and (30). Here $\gamma \stackrel{n}{=} \delta$ means that γ/δ is an *n*th power in K, $\varepsilon = (-1)^{n/2^r}$ and $\omega = (\zeta_{2r} + \zeta_{2r}^{-1} + 2)^{n/2}$.

Moreover in (29) to (32) it is assumed that $\zeta_4 \in K$. Now, (29) gives $t \equiv 1 \mod 2$, $\alpha = -\alpha^{st}$, $\alpha^{st-1} = -1$, $\beta = \alpha^{s+st-1}$.

- (30) gives $t \equiv 1 \mod 2$, $\alpha \stackrel{n}{=} \varepsilon \omega a^{st}$, $\alpha^{st-1} \stackrel{n}{=} \varepsilon \omega$, $\beta \stackrel{n}{=} \alpha^{s+st-1}$.
- (31) gives $s \equiv t \equiv 0 \mod 2$. Indeed, if for instance $t \equiv 1 \mod 2$ then

$$-\delta_1^2 = -\beta^t = \delta_2^{2t}$$
 and $\zeta_4 \in K$.

If $s \equiv t \equiv 0 \mod 2$ then

$$a \stackrel{n}{=} -\alpha^{st}, \quad \alpha^{st-1} \stackrel{n}{=} -1, \quad \beta \stackrel{n}{=} \alpha^{s+st-1}$$

(32) with $\varepsilon = -1$ gives like (31) that $s \equiv t \equiv 0 \mod 2$. In that case $a \stackrel{n}{=} -\omega a^{st}$, $a^{st-1} \stackrel{n}{=} -\omega$. $\beta \stackrel{n}{=} a^{s+st-1}$.

Thus in any case we have either $\beta \stackrel{n}{=} \alpha^r$ or $n \equiv 0 \mod 2^{r+1}$, $\alpha = -\delta^2$, $\beta = \omega \alpha^r$. On the other hand if at least one of these conditions is satisfied then by Theorem 3 each of the fields $K(\xi)$ with $f(\eta) = 0$ contains an η with $g(\eta) = 0$ and since f and g are irreducible and of the same degree $K(\xi) = K(\eta)$.

Note added in proof. Theorem 3 is incompatible with Theorem 2 of T. Nagell, Bestimmung des Grades gewisser relativ-algebraischen Zahlen, Monatsh. Math. Phys. 48 (1939), p. 63. However already the special case of the latter theorem given by Nagell as his Theorem 3 is not valid in general, as shown by the example $\Omega = Q$, n = 8, a = -1, b = -16 contained in Theorem 6 of Gerst [1].

References

- I. Gerst, On the theory of n-th power residues and a conjecture of Kronecker, Acta Arith. 17 (1970), pp. 121-139.
- [2] H. Hasse, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, 2nd ed., Vol. 2, Würzburg 1965.
- [3] M. Kneser, Lineare Abhangigkeit von Wurzeln, Acta Arith. 26 (1975), pp. 307-308.
- [4] L. J. Mordell, On the linear independence of algebraic numbers, Pacific J. Math. 3 (1953), pp. 625-630.
- [5] L. Redei, Algebra I, Budapest 1967.
- [6] A. Schinzel, On power residues and exponential congruences, Acta Arith. 27 (1975), pp. 397-420.
- [7] C. L. Siegel, Lineare Abhängigkeit von Wurzeln, Acta Arith. 21 (1972), pp. 59-64.

On twin almost primes

by

ENRICO BOMBIERI* (Pisa)

Dedicated to the memory of my teacher, Giovanni Ricci

1. Introduction and results. Let p, P_k denote respectively a prime and an almost prime with at most k factors. We are interested here in counting solutions of the equation $P_k + 2 = p$, attaching suitable weights depending on the prime factors of P_k .

Let $A_k = A_k(n)$ be the generalized von Mangoldt function

$$\Lambda_k = \mu * L^k,$$

k integral $\geqslant 1$, where μ denotes the Möbius function, L denotes the arithmetical function $\log n$, and * denotes the Dirichlet convolution. Clearly $\Lambda_1 = \Lambda$, the von Mangoldt function, and it is easily shown that

$$(1.2) \Lambda_k = \Lambda_{k-1} L + \Lambda_{k-1} * \Lambda,$$

therefore

$$egin{aligned} arLambda_2 &= arLambda L + arLambda * arLambda, \ arLambda_3 &= arLambda L^2 + 3arLambda L * arLambda + arLambda * arLambda * lpha + lpha * arLambda * lpha, \end{aligned}$$

and so on. An easy induction on k now shows that

 $A_k(n)=0$ if n has more than k prime factors and thus A_k can be taken as a weighting function for k-almost primes. Thus the natural sum to study is

(1.3)
$$\sum_{n \leq x} A(n+2) A_k(n),$$

and our purpose in this paper is to show that for large k the sum (1.3) is quite near to the expected asymptotic value. We shall also obtain the asymptotic behaviour of (1.3) for $k \ge 2$, but assuming the still unproved Halberstam-Richert conjecture on the distribution of primes in arithmetic progressions.

^{*} Supported in part by N. S. F. grant number GP-36418X1.