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L. J. Mordell [4] hag pxove(l in 1953 the following theorem. Let

- If be an algebraic number field, ay, . o 4, elements of K, ny, ..., %, p031~

tive infiegers, & = a; (1 <4 I H el 1111phes #; = 0 mod n; and,
t=1
either the numbers & are real or K containg n; th roots of umty I=isk)

then the degree of the extension K(&,..., &) over K is n, . nk. ThlS
theorem hay heen rccently extended by C. L. Siegel [7] and M., Kneser [31
The latter obtained the following purely algebraic result, Let K be
any field, K(&, ..., &) & separable extension of K and K*(&, ..., E»
the multiplicative group generated by &, . oy &y 21l of finite order,
over K*, The degree [K (&, ..., &): K] is equal to the index [K*(¢&,, ...
v i K it and only it for every prime p, {, K "<&, ..., &> implies
Q,elf and. 142, eR¥¢E,, ..., &> implies 7, wei, where [, is a primitive
qth root of unity. ' '
Weo shall nse Kneser’s theorem to get a neeessary and sufficient
condition for the field K({&, ..., &) to be of degree n..,n, over I.
Trpownm 1. Let K be any ﬁeld Asgume that the characteristio of K

does not divide 0y ... my, and {«"”6 suge O [ {E, .., 515) K] =y ...y if
and ondy &f for wll primes po [[ o = 0¥ implies m, = 0 mod'p (p|n,) and
wlng :
I et ety mpmy - 0mod 4 (2]n,) implies @ = 0 mod 4 (219;) (.,

The above theorom can be rogarded as n generalization of Capelli’s
theorem which corresponds to the ease. & = 1. It should however be noted
that Uapelli’s theorem holds without any condition on the characteristie
of i (seo [B], 'l‘hum'am 128) wh]]e Theorem 1 does not, as it is shown by

- the example K == Z,(8), ny = 1y = 2, ay =1, ag ==$-1.

1} (pleg) meang hore “for all § such that plng”,
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We have further
THEOREM 2. Assume that the characteristic of K does not dmnde Fog oos e
If either &y e K or mw; = 0 mod 4 (2|n;) implies [[of? ety eyt them

2|n;

there ewist elememis &, ..., & such that £ = o; cmd

1y [K(Ey, .., &) H] = [E*(E, ..

It follows from Kneser's theorem that if ¢, ¢ and for some i

i EI(:/ If*]

na; = 0 mod 4 ( H ofi == —4y* then for no choice of &,..., &
sa,tlsl'ymg g = o;the equalltv( ) holds. The example K = @, n, = =,
a; = —1, ay = —16 gshows that the converse is not true. Indeed J' 01 any

choice of £, & we got
[K (&, &): K] =8 < [K*(E, &)1 K] =16,

It seems difficult to give a simple necessary and sufficient condition for
the existence of &,..., & satisfying {1). On. the other hand Theorem 1
combined with some results of [6] leads to a necessary and sufficient
condition for the following phenomenon: each of the fields K (&, ..., &)
containg at leagt one % with 4* = § (§ and » fixed, n,;|n). Condition given
in [6] was necessary but not always sufficient. We shall prove VeI B more
_ precise result.

TieoREM 3. Let v be the largest mtegefr such that Lyr -l
ave only finitely many of them, otherwise v = oco. Let Nyy -
integers, @y, ..., o, non-zero clemenis of K. There ewist clements STREETS
with & = o, (1 <i<<k) such that for oll n divisible by ny, ..., n,, but
ot by the characteristic of K and for all f<K: if K (&, ..., &) containg at
least one v with w* = § then ot least one of the following three conditions s

Cﬁle.ﬁf, if there
L.y My De positive

satisfied for .s-mta.ble rational mtege?e by ooy Bes Gy <oy Qi and suitable y, de kL.
koogy B .
”a,, ni ="
fa=1
I ' a; " n
{ii) n £ 0mod 2%, []ak = 82 f)’”ozI g —t,
2|ny :

(iii) R = 0mod __,f, ” azi = _g,u ﬂ][a H n,; - ____l)w.)z"(c 4+ wal‘_i‘_z)mﬂ "

2iag i=l

Gunwersely if amy of the above conditions is satisfied then each of the
fields K (&, ..., &) where & = a; comtains af least one 4 with 4" = p.

If Ly X the conditions (ii), (iii) imply (1); if v = 2 (ii) implies (i) for
not necessarily the same g, ..., ¢ and y. ‘

This theorem can be regarded as an extension of the classical vesult
concerning RKummer fields ([2], p. 42).

icm
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Let us write for two irreducible polynomials f and ¢ over K f~g
if fla;) =0 and g¢(ay) = 0 where K(a;) = K(a,). The relation ~ intro-
duced by Gerst [1] is reflexive, symmetric and transitive.

Theovem 3 implies

Cororrary. Two polynomials f(@) = a™—a and g(x ) = 3" —f irre-
dueible over X satisfy f~g if end only if either B = 3" or n == 0 (mod 271,
@ = =0y, fe -8 and o = (5 Lt 12 awith y, 8y, Bye K.

This is @ generalization of Theorem 5 of Gerst [1) corresponding
to the ease K = . (Note that the irreducibility of ¢ implies (v, %) = 1.)

For the proof we need geveral lemmata.

Lnvma Lo If (@, &) =1 and blm (1 <4< k) then

Gy ak) (Qyy oony ) '
W=y eiy W =) == Y e
( b, [has -y By

Proof (by induction with respest to %). For & = 1 the formula is

. obvious, for & = 2 we have

ay Xy e 'm! . | (a’lﬂ az)*
=, = @by, b)) = - b = Y et
( b1’ bz) b b — (t; by, tinhy) bobs (@, az)(by, bz)‘ [y, bl
Now . assume that the lemuma holds for % terms. Then if
byim (L < i< k+41) we have ' '
by, Ay ) ( (Wyyoeeyty) “1:4-1) (g eoey Opy Byrn)
WYy e g B =] =
( b:t ’ . b!c-H I.blr ey bk] ’ bk+1 [bly 2 b.’a+1] ’

and the proof is complete.

Proof of Theorem 1. Necessity. Suppose that for a certain
prime.p, & certain y <K and some @, [] ofi = »¥, but for a eertain i p|n,,

Then for a suitable F
(@) ‘ H&f 7 o=y,

Bl%;
C" cIT*(£y, ...y &> and by Kueser's theorem either fJeK or [K(£,...
- §) K]< lK*<§u oy S K*J
. In the former case by (2) [K"<¢&, ..

cafey [I(&, ...y &) K] <<y iy

o &t K] < my ...y, in both

Suppose mow that for some ; and a certain peK []of® = —dyt,
2y
ne; =0 mod 4 {2} m) Dut for a certain 7 2 |ny, 4 +a;. Thed for & suitable j
' mz“'i

=] L+ Ly

2jnq M .
covy &g (Note that (L4&) = —2(L4£,)7") and by Kne-
’ Efa):K]< [—K*<£1, eny §k>:K*].

L+8,eKSE,
ser’s theorem either &,eX or [K{(&,...
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In the former case by (8) [K*(Ey,y ..oy 0K 1< my Ny, in hoth
cases [H (&, ..., & E]I< Ny .0 My

Suifficiency. Suppose that for a certain prime p and a yeK

R
(:p =Y ” E:%
q==]
T Let e = [0y [{Rg, @), .. vy B, @0)] TE plm we got
| kMmoo m |
[la™ =@ ")
te=1
and by the assumption ms/n, =0mod p (1 <<i<Fk). Thix gives by

Lemma 1 (@,/(0, 1), ..., 8 f(m, ) = 0mod p, and for an i<k
oz (Mg, m) = mf(n;, z) = 0 mod p, & contradiction.
It pfm we have

4 Ly

Ly = 7’mH @ " eIé, &y e I,
. i=1

Suppose now that f01 a vell
@ | ) 1+r:4uynfﬁ

.o ) =l .
and again m = [ f(May B1)5 ooy (g, m)] TE 4)m 11heﬁ

ﬂ i
. — ymg .

and by  the wssumfptlon 2, .ﬁ{}mod2 (1

< kY. This gives by
Lemma 1 (@, /(n,, Z)y - |

o By f (M, B)) =0 modz a.nd for an 4 < k;

@, 1

(15 @) - (g5 ;) =dmod2,
a contradiction.
Ti 44 m then (4) gives
' " m % [m,z}mi
(20) B =yt [T, K; LK.

=l

Thus by. Kneger’s theorem [K(&l,

vy G KT
Suppose now that

oy BT = KGR,

n£‘~ye}f a,nd m

[y /(my, ),
o=l i

rary %R:/(?'b.’a: w!a)] e 1.

icm
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Then for 2 certain prime m and
_ »p

nc,‘m

H e

dl
thus by the wmumptmn mme =0modp (L<i<k)
leads to a contradiction. Therefore m =1, », = 0 mod #; and we infer
that [K"CE, ..., &0t K] = My en Ny which completes the proof.
LinwMa 2. Let g be 0 or a power of 2, ¥ a subgroup of K* containing
In

Y, If mw; oz 0mod g (1i< k) implies — [1¢ ¢# then there emist

2wl
elemonts &y ..y Egy Nay ooy and positive integers my, ...

. This a8 before

, Wy such thet

e (LSEE),  n = feKY (15 <),
CEuyoons > = Sy ooy,
(B) y [m;,.--,w]lmu---,%],
(6) nﬂ? == P imgjlie&‘mj- =0modp (plmy)

iy
for all primes p and
i
(7 myyy == 0mod g (L<j <) implies — [ [ 85 49 (*
fel
Proof. Assume first that all n, are powers of the sa,nie'prime q. Consider
all gystemns 0, ..., 7y, My, ..., My satisfying the following conditions:
for guitable &; and integral e;

§ :
(8) gla, &=[]n" w7 =K
. Fe=1 o
debleyl = &1, mylngey
and
. &
(9) nyy; 0 mod g (1§ < k) implies ~ [ ] 6@,

gml

Such systoms do oxist, o.g. #; = &, where g = ayy My = #;; We
take one with the least produet m, ... m, and assert that it has the required
property. We note that by (8)

I_a’ TIAX .

Lk

"y | IS, 2Oy lly == - maxn,,
", oy Tl

2y @ -+ O mod 0 moans a = 0.
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. B being the algebraic complement of e;, henee (5) holds and each my is
a power of ¢. We can assume without loss of generality that my, = m,
> ...» m;. The only pllme p for which (6) needs verification is p == g.

Suppﬁse thait H ﬂj = y? but for some j p|my;, prz,. Let s be the

greatest such j a.nd let ¢ satigfy the congruence
t, = 1 mod p.

Then

. ) 81 L
(10) nﬁ;wjﬁs = ¥,

=1

Consider first the case p = q = 2 IE“'m‘9 o= 0 mod zg bhele exists an

=..0m0dg (> s) we have

__(-sa)ﬂs”ﬁ;j?f(ﬁ'
s
Indeed if - ) _
z, =1mod 2, mz =0modyg (j> 3, -ad"anﬁ}.ieg*
: ‘ i

and

2, =1mod 2, myz; =0modyg (j> ), —("5)%” :15(4

. FLT
then
2,—2, = 0mod 2, —§" H "f"”n‘
J#a
and by (10)
' a—1 2’-‘!_“_:3__1_
=187 I 18
F=1 Foaget

which contradicts (9) since

my = 0mod g (j<s), myly—e) = Omodg (§>3).

Let us choose a root of unity £, so that
' e X
=G [ [ ™
J=1
satisties
ma . .
s s 8 . if m, % 0mod 2¢
(11) R A T
: &6  otherwige,

icm

- XE g, =1 mod 2 we have m, =
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and set my, == m,/2
(12) o=, mp =y, f=p  (§ #);
(13) . : 6;} . 6{_.,' “eistmj";;b: 1f 3 < 3,
: & i j=s
ok
{14) & = ”7‘1}‘{5_
Fuml
We find )
=608 wd M=o (1<i<h)

becanse of (8). .
The conditions det[ey] = +1 and m|ney; follow a.lso from (8)
since by (13) .

1.
, .o 1 0
RICEERE |
Leiy] = [ey] ‘ 0 1 ’
1 Wy
— iy — Ty 1
8 S
0 1
_ 1

det[e;] = det[ey] and myin;ey.

i
i<k and —[]pYe%.

j=1

Finally sﬁppbse that miy; = 0 mod g (1

If ¥, = 0 mod 2 we have bV (10}, (11) and (12)
a-l t:uj 2 -4ty Vi a
~I15 = H Bl e
J=l Fergpl

which contradicts (9} sinee

mﬂyn wm0modyg (15¢) 'md Yy = 0 mod ¢ (4>39).
", :

=0 mod 2g and by (11) and (12)
’ ~(cdys [] plic#

i#8

contrary to the choice of 2
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THUS 3, vy Hs My -y My, Sabisfy all conditions imposed on 7y, ...
vy Ty Mgy ooy iy ANA W LM << My L.ty A contradiction.

Consider next the case p = ¢ > 2 Let; us chooso a rool of wnity
my SO Ghad

e m_,'g
tas—= - ‘ ] .
He = Ly T ” ;Mo sabisfies  ngtel® =8,
f=1

Set m, = my,/p and define ngy My (J o 8), €y & by the formulae (12),
(13), (14). We find as before that &™ = a; (1= 4= k), deti[ey] = L1 and

mi|nge;. IE now myy; = 01110dg (I<j=k) then gy =50 modq (L=g

< k) and since K" c @, ~H Bl e% implies —Le® which 18 impossible
J=1

Wb}c < ’m1

by ‘(9). Since m; . . Ty, We gel & contmdmb:on.

Congider now the general cass. Let n, = [] piv (L< 4= k), where

f=1
D1y erey Py BTE distinet primes. By the already proved case of the lemma
for ea(}h ho<C H there exist &, #,; and s, (1 <4<{k) such that

fn? = gy 7723'”' = ey
CEnay vees Ened = (g ooy Mkl
(18} ‘ Mgy ooy Mgy, ] | DR
(16) [T 5 =y implies o, =0 mod gy (p,]mp)
Dplmpg
amd
i . ' mhy, = 0 mod ¢ impliey —”ﬁ"‘ Z,
=1 "
We get _
Miay +oos Mgy Many e ey Nogs 5 By - -y NEp?
= <511: (AR 511;1 521‘7 LR ] §2ru e ‘EIIH vesy &"'wu):
(115 <o vy m!‘in Woony eevs Mgy «ony Mgrey v og Py ]| [y ey g
1 &,
Lot us choose integers &, 8o that -— == me Then
) oy Rmsl h'

NI wnww

N1

iom
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henee
_ , 7
My o r’?m) <” &y ---;Hfrff .
Bl
Moreover
A
178 =
2)['"’%

implies by (15} and (16) @y == 0mod p (p|my,;). Finally myy,, = 0 mod g
implies ¥ == 0 mod g unless p, == 2. Since ¥ = K™ the conditions

L]

fim=] te=

Wopgling +: 0mod g (L5l H, 1<i<k) and

imply for g, = &
&
v
. H ﬁmﬂﬁ(g
P

which contradiets (17). The proof is complebe.

Remark., It iz possible but not worthwhile to obtain I = % in the
general case,

- Proot of Theorem 2. We apply Lemma 2 with g =0, ¥ = {1}
it Lyed; with g = 4, % = K™ U 4K™ otherwise and find that for suitable
Ey ey Gy Muy omes M

Ef" = Uy 17?;” = ﬁy‘ (Ldk, 1 ﬁ;,? =l ), <511 cany Eic> = <771; ) "'h>
(]:8) nﬁjﬁf = P implies @ = 0 mod p {plm,)
' Bimy

and if {, ¢ K

&
Omod 4 (L=ij<ck) tmplies [[pH 5 —p*, —dpt.

i"nj y_‘,‘ B
. Pk

Tt &, ¢ B wo see ab once that the conditions of Theorem 1 are satistied;
if £,eH Thoy are wlge satisfied since then by (18)

r] ﬁft S m-i-{l-)}dl’ th’ﬂmi ] 0 ]U(]d_ 47 (2 I%{) implies ” ﬁ:’f’ﬁ == (25.1')/2)2,

2fng g

=0 mod. 2, “ i == 0 mod 2, @, == 0 mod 4

2tng
(1 SOF
, '.By Thoorem 1 we have [K (7, ..
coy iKY, henee tho theorem.

LJ‘:WE = | :]-ﬂ:é.d)?)si ]

)i K] ==y my = [y,
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., #y sutisfy the conditions of Lemma

LEMMA 3. If f1y -y M1y My, -

2 with g =2, ¥ =K, 5eK* ond V3K (ny, ..., m) then
l VoeE*ny oy > and 8 % —1.
Proof. It VoeK(n, ..., m) but V3¢E" (e, ey i) then
LB V8, 1y ooy KX 3 [ gy ey s X1 3 (K (g oy )2 K]
= K8, 11y ery ) K]
thus by Kneser’s theorem we have for a certain prime p
Lpe K VB mey n by LptE
or ‘
1+ LB Yoy ny e mdy LK,

- 1 )
However {, = Vo0 [, vel, gives
_ =1

V3R Oty oo

unless #, = 0 mod 2. In the latter case let

o= [y (g, 8)), - ; myfinng, @)].

"It p|m we geb

and by the agsumplion

T « . T
~—=0modp (1Kjg.
My
This gives by Lemma 1 (4/(mq, @), ..., @ f(my, &) = ‘ : 0 mod p and for
& b mf(my,y my) == myf(my, my) =0 modp, a contradwtmn.
It pfm we have

Lo b
=ty [Ta" Ry ek,
=
Suppose now that rek,
!
(19) - 144 = -),]/(Vonm or  { = 7’”7??"

Gl

and seb again m = [tyf(my, 2,), ..., my/(my, @,)].

icm
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Tf 4|m then
m o : r mm
(‘mdt)mf‘d. ™ [] ﬁg m; or 1 = ,ymn By

FED] f=1

and. by the assumplion aym/m; = ¢mod2 (L <j <)

This gives by
Tomma L {@y/(my, 2,), ...y /(g ) =

0mod2 and for a j<1
mj' M,

y ‘
i == 0 mod 2
(’fﬂu, -ﬂj) ('Mj, mj) ?

g contendiction.,
Xt 44w then (19} pives

I 5 L Ll
(L0 = 2l 5T n T eR;  LeK
or
m H ay[m, 2] xj[m,2]
(~ ])(m,Z) — ,}_,Em,zilifﬁj iy nﬁf T e — 8
Fel Amy

The contradiction obtained completes the proof.

Lmmma 4. Let K be an arbitrary field, n o positive integer not divisible
by the charaocteristic of K, my; divisors of w and By, ..., By, B non-zero elements
of . If each of the fields K (v, ..., n;), where 5j7 = §; (L <j<1) conlains
at least one n with n" = § then for any choice of 7; and n and for suitable
CXPONCNES Yoy Tay ooy Wy

Gt e K (L)
Proof. This is an immediate consequence of Lemma 6 of [6].
Luwma 5. Let K be an arbitrary field of characteristic different from
2 and v be defined as in Theorem 3. O XK is of the form 07, where @K ({,)

if and only if at least one of the following t?me conditions is swtzsfwcl Sor
o suitable veX:

6 == Vn:
n e 0 mod 27,
G = (=L Lyt

B = ",

7 o 0 mod 27, Lt o)yt

If §y <& the last two conditions imply the first.

Proof, Necossity follows at onee from Lemma 7 of [67. Suiflelency
of the first condition it obvious. In order to prove suificlency of the
other two note that if » % 0 mod 27 and gn = 2" mod 2° then

~1 = ()
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and # # = 0 mod 2° then
(=17 (G G 2" =
hand since Cerrcj.,"zleIf,

(A ILH
. On the other
Far = B(Lor b G0 L, (5T T K (L),

The last assertion of the lemma ig obvious.
Proof of Theorem 3. Lebt us assume first that for all ;

n'aﬁf # — &

2]ng

(20)

Then by Lemma 2 applied with g =2, ¥ = K** there exist &, ...
Viovy Eny Wy oeey Ny My ...y My sUch that ‘

ot = Biel {1<j <,

= (I<<i<h,
(21) e B = iy ey
(22) | (g ey ]| [, ey ]
ﬂ g =y implies play (p|m,)
. mj

for all primes p amd

(23) H,B”J ;é —9? for any choice of 1 Y; .

2|mJ

By Theorem 1. [E (9, ..., m): K

. -

1 =m,...

= f§ then each field K (74, ..., %)
) and (23) we have

=K (9;y..., ) contains an » with »*
containg such an % and by Lemma 4, Lemma 5, (22

either
i rjl
(24) plle’ ™ =»
=1
or '
(26)  n =0 mod 2°"* . and ﬁnﬁj "y i’zr LA

F=1 _
, 1; and a .sm’mble ye K. Indoed, if n = 0 mod 2,

'8”13 jm" = —9" or n = 2" mod 2", .5’”13 jmj = —(Ip+ &7 +2)n_/27’“,

F==1
we get on faking square-roots QeK(n, 171, vy ) == B {1, .

to Lemma 3.

for mita.blc integers ry, .

my and thus all fields K (g, ...
“wen, ), where 7% = p; are conjugate over K. Tf now K (&, ..., &)

..; m;) contrary

icm

-~ wo infer the exigtence of &,,..
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The condition (21) implies that

(26) H 87 ﬁ N
. fel

for suitable integers g,, ..., g,. Hence (24) leads to (i).
It remains to consider (25). If L = [1(1;1, ...y my) containg an y with
o then by (2h) it contains {7 l/ézz - Et +2 for a certain 7.
If #/(n, 2r) == 1 mod 2 then I containy

bl

LM YVEe 103 12 = 2 Vit L 42,

= 2 mod 4 then I containg

if n/(n, 2r)

WY ot G2 = eV (G G +9),

it n/(n, 2r) =0 mod 4 then I contains £,°™™ = -Lf,.

By Lemma 3 the last case is impossible and in the first two cases

K*<§1, evy £

ey M =

Hence we obtain

(521'1“6;1’1 + Mi Pel,

7 T'n
ﬁl}a i

gl

which together with (25) and (26) gives again (i).
Assume now fhat for some I,,..., I

) .
Il z’_ﬁ—w_w-"',

2|ny

Then we apply Lemma 2 for 1'.116 field K(f,) with g = 0, ¥ = {1} and
ey &y My ovey By Wy, + v vy M STCH 1_'.h.a,‘u

i = (1< R), o =feK{{) 1],
Ly evny g = '
oy My | [Rgy e

S, yeK (L)

dek.

(27) SRS TREE/

[’i’)‘l«l, N ' ﬂ’]a]v

1] Bl =

implies 2w (#|m;) '
p[mj . .
for all primes p.

By Theorem 1 [K(é‘,]l, Riyoeny Bt H{EY] = 0y -
the proof of Theorem 2) and thus all fields K{{,, %y, ...
Y = B, are conjugate over K(Z,).

m; (see the end of
» M), where
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Ii now I(&y,...; &) = K(&,, n1y .-y op) conbaing an 5 with #” = 8
then each fisld (L4, %1y ey ) contalm .guch an z and by Lemma 4
we have

ﬁﬂﬁ%@=wn BeK(L,).

The condition (27) 1mphes that

”ﬁa jmj ﬁ awiq‘i;%

. Fe=]
for suitable integers g4y, ..., ¢,. Hence 9"« K a.nd using Lemma b we get
one of the cases (i)—-(iil). . ‘
Convergely if (i) is satistied then any field K (&, ..., &), where £} = q,
e .

(1<i<k) confains n =y [ &% with 5" = §.
=1

If (ii) or (iii) is satisfied then by Lemma 5

E q.'n,
1
ﬁl]ai Moo=t

where #¢H({,). On the other hand, the equality [] afi = — 6% implies
= & [, "
2lng :
Thus #eK(&y,..., &) and K(&;, ..., &) containg n = 9 H £7% with
1 fm=]
= §.

The last assertion of the Theorem if &,eX follows from the last
asgertion of Lemma b.

It v =2 and # = 0 mod 2 we have: either » == 1 mod 2, in Whlch_

case —y" = (—)" or n =2 mod 4. In the la.tter cage we geti from (ii)

Bnaat.ﬂinaﬂi = n

. 2ing
which leads to (i). The proof is complete.
- Proof of Oorollary. I the irreducible polynomials f(#)} = a4"—a

and g{w) = ¢"— f satisfy the relation f~g we have by 'I‘hem:em 3 the
following five pos'ﬂbllmleq

28) _ a=p, B=d;

(

(29) nZ0mod 2T, a= —4 =g = —af

(30) n=0mod2", a= —aﬂiﬁ‘, B = coad;

(1) o #0med2, a=-8% —f, §- gL
(32) no=0mod 2, o= —08=coff, f=—02c0d,
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and two other poSsibilitieb obtained by fthe permutation of ¢ and g in
(29) and (30). Here y = = § means that y/8is an nth power in K, & = ( 1y
and ® = (ézr+5“1+2)“12

Moreover in (29) to (32) it i1 assumed that {, ¢ K. Now, (29) gives
t_1m0d2 a_____‘at sﬂ—m_l ﬁ"‘ 3+stl

(30) gives t =1mod 2, a = ecua"‘ = e, f S oS,

(31) gives § =1 == 0 mod 2. Indeed, if for instance ¢ = 1 mod 2 then

—8 = —f =08 and (K.
If s =t =0mod 2 then
o = -_a”, L‘tatﬁl = —1: ﬁ = as—*—” .

(32) with & = —1 gives like (31) that s =¢ = 0 mod 2. In that case

n: —p M " -
a4 —= _waa_t’ ast 1 —w, ﬁ= as+sl 1-

Thus in any case wé have either § = o’ or = = 0 mod 2°*%, ¢ = — &%
f = wa’. On the other hand if at least one of these conditions is satisfied
then by Theorem 3 each of the fields K (£) with f(%) = 0 contains an .
n with g( ) = 0 and since f and g are 1rreduclble and of the same degree
K(§) = Kz}

Note added in proof. Theorem 3 is incompatible with Theorem 2 of T. Nagell,
Bestimmung des Grades gowisser relativ-algebraischen Zohlen, Monaigh. Math. Phys.
48 (1839}, p. 63. However already the special case of the latter theorem given by
Nagell as his Theorem. 3 is not valid in general, as shown by the example 2 = ¢,
n=8, &= —1, b = —16 contained in Theorem 6 of Gerst [1].
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1. Introduction and resulis. Let p, P, denote respectively a prime
and an almosb prime with at most & factors. We are inferested here in
counting solutiong of the equation P, +2 = p, attaching suitable weights -
depending on the prime factors of Py. ‘

Let Ay == A,(n) be the generalized von Mangoldt function

(1) - Ay = prLF,

% integral > 1, where u denotes the Mobius fanction, L dauoté_s the ari-
thmetical function logn, and * denotes the Dirichlet convolution. Clearly
A; = A, the von Mangoldt funetion, and it is easily shown that ‘

(1.2) - Ay = A DAy %4,

therefore - . :
742 = AL+ A%,

Ay = AL +3ALw A 4 Asd A,

and so on. An easy induction on % now shows that

Ay(n) = 0 if n has more than k prime factors and thus 4, can be
taken as a weighting function for k-almost primes. Thus the natural sum
to study is :

(1.3) D) d(n+2) 4y n),

) . : NEE :
and our purpose in this paper is to show that for large k the sum (1.3)
is gquite near to the expected asympbotic value. We shall also obtain the
asymptotic behaviour of (1.3) for & > 2, but assuming the still unproved
Halberstam~Richert conjecture on the d.‘tstrlbutlon of primes in arithmetic
progressiona.
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