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" Introduction. Throughout the paper, k denotes a field of characteristic
other than 2 and g(k) = k*/k*. We denote by ¢ the square class number
of %, that is, ¢ = lg(k)|.

In this paper we investigate the behaviour of the set of equivalence
classes of quadratic forms over k with respect to orthogonal sum of quad-
ratic forms. This behaviour is characterized by the structure of Grothen-
dieck group G (%) of quadratic forms over k. '

" In Bection 2 we describe completely the groups G(k) for all fields
with ¢ < 8, by giving a decomposition of G(k) into direct sum of eyelic -
groups and determining generafors for the direct summands. Tt turns
out that in the case of fields with ¢ = 8 there are at most 13 non-iso-
morphic groups 6'(k), 7 for non-real fields and 6 for real fields. A safisfac-
tory feature of the classification is that the type of G(k) is completely
determined by the behaviour of binary quadratic forms over the field
k and by the reality of k. '

Another classification of Grothendieck groups has been supplied by
W. Scharlaun [12]. He classifies the groups G'(k) for fields with the prop-
erty that the subgroup B,(k) of the Brauer group B (k) consisting of
elements of order < 2 has at most 4 elements. This clags of fields contains
even some fields with infinite square class number but it does not contain
all the fields with ¢ = 8. In fact, if Q(k) denotes the mumber of non-
isomorphic quaternion algebras over &, then ecleatly Q(k)<C|B,(k)l,
so Scharlaw’s classification covers ati most the fields with @ < 4. Now,
af proved by L. Bzezepanik [15], in 5 of the 13 cases of fields with g = 8
we have @ > 4, hence those 5 cases do not fall under Scharlaw’s assumption
(these are the cases IV and VII of Theorem 2.4 and IV, V, VI of Theorem
2.5 below). Moreover, Scharlau gives details only in the case |By(k)] = 2
and for fields & with |B,(k)| =4 he gives only possible types of G(k)
module g subgroup of exponent 2, without specifying the propertles of
Tields determining the type of G(;’a) ' : :
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In Section 3 we obtain easily a parallel classification of Witt groups
W(k) of anigotropic quadratic forms over fields % with ¢ < 8. In the case
of non-real tields with ¢ < 8 a classification of Witt groups has been given
in @ recent paper of ¢. M. Cordes [1]. While the type of W{k) in the present
paper depends only on the behaviour of binary forms over %, Cordes
uges the u-invariant and the number ¢ of quaternion algebras to differen-
tiate between the cases.

Let us describe briefly the contents of the two remmmmg gections. -

- Bection 1 contains & general study of sets of generators for the group
- @(%), mostly without assuming that g is finite. In particular, in the cage
of & real field, we relate the structure of &(%) to the number of orderings
of & and investigate the influence of somse extremal behaviour of hinary
forms over %k on the number of orderings of the field (Proposition 1.22)
and on the structure of G(k) (Propositions 1.11 and 1.23).
. In Section 4 we collect 2 number of examples of fields with ¢ =8
showing that all the cases, with the possible exception of two, of the
classification theorems for Grothendieck groups actually do occur.

Notation. A diagonalized quad,mtlc form f = ayul+... +a,0%,
where a;ek”, will be denoted by f=(a;, ..., n,) and its equivalence cla.ss
by {fy = (a.l, vees @y, Tor ack® we shall use the bold-faced a to denote
the canonical ims:uge of @ in g(%), Le., & = ak™. If a quadratic form f rep-
resents an element @ in %*, we write fasa. If fava, then f represents all
the elements of a; 50 we-ean speak of the representability of elements
of g(k) by a guadratic form. The subget of ¢(k) represented by a form
f will be denoted D(f). The number of elements of g(%) represented by
the form (1, 1) will be denoted by g¢,. Thus ¢, = |D(1, 1)]. If ¢, =1, the
field is said to be pythagorean. A form f is said to be universal if it rep-
rvesents all the elements of &* (or equivalently, if D{f) = g(k)).

If % is non-real, we write s = s(%k) for the stufe of k. Thus s is the
minimal number of summands in & representation of —1 as a sum of
squares. The stufe is always a power of two, as. proved by A. Plister in
1965 (ef. [11]). '

" Infinite eyelic group will be denoted by Z (the group of rationaf
integers) and a eyclic group of order # by Z/nZ. A divect sum of » copies
of & group G will be denoted by ¢™. If G iz a group and § is a subset of
@, then we denote by [8] the subgroup generated by S.

To avoid repetitions, let it be agreed that “field” will always mean
“field of characterigtic other than 2" and “form?” will mean “a non-singular
quadratic form?”,

1. Sets of generators for the Grothendieck group., We refer to [7],
[10] and [13] for basic facts from the theory of quadratic forms over
fieldas. Let & be a field and G(%) its Grothendieck group of quadratic forms.
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In this section we do not assume that the square class number of % is
finite, unless otherwise stated. The following lemma is well known.

Levva 1.1, G(k) = Z & Q4(k), where the infinite eyclic summand is
generated by (1) and Gy(k), the subgroup of 0-dimensional elements of G (%),
is genevated by oll the elements of the form (1) — 6>, where ¢ runs through &*.

Let us remark that in the case when g(k) is finite, the group G (k)
is o finitely gemerated abelian group and so, by a classical theorem,
a direct sum of cychc groups. It is also well known that the only possible
torsion in G (k) is @ 2-power torsion.

Leywa 1.2, If a is not a square in k and the form (1, ¢} is universal
and g(k) = {1, a} x b (& direct.produci), then G, (k) is generated by (1> — {ay
and all elements (1> — {b>, where b runs through h.

Proof. G, is generated by all elements <1>-—<¢e>, cek®. Take an
element ab in ak, then <1, a) = ¢b, aby. Hence {1} —{ab)> = (1> —{a) -~
~({1y —{b>) and so (1} —<ab) may be omitted in the set of generators for @,.

CoroLLARY 1.3. If —1 is mot a square in k and g(%) = {1, —1} x k,
then @, is generated by (1> —{—1> and all elements (1) (B>,  where
b runs through h.

Levva 1.4, Let g(k) H{l a;xh, where a; are chogen in such

o wey that oll the binary forms (1, ;), vel, are universal. Then G(%) is
generaled by all the elements (1> —{a>, i<I, and {1>—<b>, where b runs
through k. '

Proof. We shall prove that every ‘element (1) — {ab), where

ac[[{1, &} and beh, can be represented as s linear combination with
iel
integer coefficients of a finite set of elements A —<Lap> and of (1> — <.

This follows from the following identity:.
L]

Ay —<aby = Y —1)’+1(<1> —<a) + (=1 (1> —<B)),
F=1

‘where ¢ = a; . . If.n = 0, then a = 1 and the identity holds; if » =1,
then a4 == a, ;und ihe result has been proved in Lemma 1.2. Assume the
identity holds for some # = 1 and @’ = @, ... 6,.; = 6,8, Where & = @, ...
ois . Then

(L) —<a'by = (LY — {ay (ab)) =
= Ar—ay—{ (-

Fuel -

—LIYFHCLY — o)+ (=1 ((T) — b,

A —<a — (1> —<ab))

L@ = Cagad) + (=11 = )

fa4L

:Z‘(

Jmal
a8 required.
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OoROLLARY ‘1.5, If the forms (1, @), 1 =1,
G =ty ... Oy, then

L) —<ap =

ciay My are universal and

n

D (=1 — (app).

i=1

Lemma 1.6. Adssume g(k) = H {1, @} x h, where a; is & sum of two

squares, for oll iel, Then the set of elements (1> — {a,>, i<l 48 Imeanty
independent (over 7).

Proof. First observe that all the elements (1) —<(a>, eI, are of
order two since {1, 1> = {a;, a;> for eawh jel. Agsume now thaf

2 (1) —<ay) =0,

j=1

where {i,,...,%,} iz a finite subset of I. Taking determinants on both
gides we get
7
H @ =1,
. =1
& contradiction.

Now we are ready to determine the Grothendieck group in a case
when the behaviour of binary forms makes the situation as simple as
possible. But we assume nothing about the square class number of the
field. . ‘

Frorvosyrrow 1.7 ([18], Theorem 4.1.1). Let & be o field such that
every binary form over k is universal. Then

deti: G4(k)—>g(k)

i8 an isomorphism, and so G{k) = Z @ g(¥).
Hence, if {a;: i} is ony basis for g(k
o basis for Gg(k).

), then (L9~ <a;):

L4

'beI} 8

Proof. G,(k) is generated by ail elements A —L6y, eeg(k) An

application of Corollary 1.5 and Lemma 1.6 gives the result.

Lemwa 1.8. Let &k be o fidld with square class number 2". The number
wy of universal bimary classes over k is a power of 2 and u, 2" If K is
non-real and wg << 3% then w, < 2%

Proof. First observe that if the forms (1, @) and (1, d) are bofh

universal, then so is (1, —ab). This enables us to introduce the following -

‘law of composition in the set U,(%k) of equivalence classes of binary uni-
versal forms: '

Ay ap {1, by =<1, —ab).
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This is clearly well defined on equivalence classes and makes U, (k) into
an abelian group of exponent 2 with the identity {1, —1>. Hence u,
== |Uy(k)|, is a power of two and u, < 2% (for details, see [18]). On the
other hand, we denote by R Kaplansky’s radical of the field k, i.e. the
set of those elements @ in g(%) which make any quaternion algebra (a, bjk)
split (cf. [6]). B can be eagily identified as the set of @ in g(k) such that
the class <1, —ea)> is universal, and in fact the mapping sending @ in B
into {1, —a)> in TUu(k) i3 an isomorphism. Hence | K| = #,. Assume now
that w, = 2"~'. Then the index [¢(k):R] = 2"/2"! = 2 and, by Lemma
2 of [6], & is a real field with a unique ordering. Hence if % ig non-rea,l
o # 271 and the lemma is proved.

COROLLARY 1.9. If & is & non-real field and g = 4, then either all binary
forms over & are universal or there emists ewactly one binary universel class
over k (the hyperbolic plane). If & is a non-real field and ¢ = 8, then either
all binary forms over k are universal or there are at most 2 universal binary
elasses over k. _

We shall now turn to formally real fields and derive various structure
theorems for Grothendieck groups of such fields, First we prove the.
following general lemmas:

Lemwa 1.10. Let & be a real field and g(k) = {1, ~1} x k, whmv'e oll
the elements of b are positive in o Ffized ordering of k. Then

G =~ Z8ZDG,,

where the two infinite cyclic summands are generated by {15 and (1> — {15,
respectively, and G is generated by all elements (1> — {a>, ach,

Proof. In view of Lemma 1.1 it suffices to show that

= [(L)—<{~1}]@® Gy

By boiolla.ly 1.3 the group G,(k) is generated by <J_> {~1> and all
(1) —<ap, @eh. Hence it is sufficient to prove that from

Gy (k)

By ({1 — (1) +2w¢(<1> (ay) =

1=1

where a,eh, it follows m, = 0.
The above relation can be rewritten as

_<b13"~:bm> = Oy iy Op)s
where {By, ..., By, €y ovvs €} = {1, — cery @} and  {by, ..
n{e,...,e =0 '

Tf @, 0, then —1X belongs to one of the sets {b,, ..., b,} or {e,, ...
oy €} assume that by = —1. Then ey, ..., 6,> =~ —I1, a contradiction,

1: oy .,bm}ﬂ
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since ¢y, ..., &, arve positive in the given ordering of the field. Hence
®, = 0 and the lemma is proved.

We have already considered the case when evely binary foim over
& field is universal. If %k is real, this cannot happen, but it is possible that
“a half” of hinary forms are universal (see the example 2.5. I in § 4 below).
We determine the group G'(%) for such a field %.

ProeoSITION 101, Let k be a real ficld, g(k) = {1 —1}><[ 1{1, a}

and assume that all the binary y forms (1, @), iel, are umvmsul Then
Gk = Z®ZD(Z/2Z)",

where the two mfénite eyclic summands ore generated by {15 and (15— — 1>
and the remaining summands ore geow'ra.ted by the elements {1y —{—a,
iel:
Proof. By Lemma 1.4, Gy(k) it generated by (1>—¢ —15 and all
~elements (1> —{a), del. Using the identity
A =Ly = == —(KI> —{—a)),

we ean replace the above set of generators by {{1> —(—13, {1> —(—a>:
tel}. Now observe that (1> —{ —1> is of infinite order and 2((1)> —{ —a;})

= 0, for all £¢I. Hence

= [{1) —{=1]&® Gy,

where ¢y 1§ generated by the set § = {{1>—{—a;>: eI}, Since (1, )
is universal, —a, is a sum of two squares; also ¢(k) = {1, =1} x [ {1, —a},
fel .

hence Lemma 1.6 applies and gives the result.

Our next goal is o relate the struecture of the groups g(k) and Gk)
to the number of orderings on the field k. If ae & is totally positive, then
$0 is every element of @ = a%*. Hence we shall speak of totally positive
elements of the growp g(%). Obviously, they constitute a subgroup of
g(k). We have the following general result:

ProposrIoN 1.12. Let'k be a real field and
g =1, ~1pxTx []{1, a3,
. ief
where T denotes the subgrowp of totally positive clements. of g(k). The nuwmber
v = 1(k) of orderings of the field &k is finite if and only if I is finite. If
1| = p < oo, then
' P+ (k) <27,
Proof. We assume first that |I| == p < co. In the cage p = 0, the
set of totally positive elements defmcs an ordering of & and hence the
unique ordering. Thus # = 1 and the theorem holds. Assume now p > 1. If

P, =Tx{1,a}x...x{1,a}

-iom

" ponents are 1), then'
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iz an ordering of % (we think here of P, a8 a subset of ™ rather than of

g(k)); then any other ordering of the field can be represented as

P=Tx{, ea}x...x{1,sa),

where g == 1. Hence the number of orderings camnot exceed 2¥. To
prove the inequality p-+1 <, we represent all the » orderings n the

form
X {1, 2y up}’

where ez = 1 and s; =1, § =1, ..., p.

 Consider the matrix M = [g;], 1 <i<r, 1<j<p. The first row
of M congists of 1's and any two rows are different. If a column, jth say,
consisted exclusively of 1’s, then 4, would Dbe positive af every ordering
of I, hence a;T, a confradiction. We denote by E; the jth column of
M and define the componentwise multiplication of the columng. Observe
that if a product %, ... #; is equal to the unit vector (whose all com-

P, T {L, g0} ... P=1,..,7,

By e

ey NP =T,
a contradiction. Consider the matrix 3. The nuruber of all possible products

of colummns one, two, ete, at a fime, is at most

()= 5+ G =

If the number of distinet products was less than 27
have at least one equality of the type

Ea'l Ej;'z E-tl Eisa {Juy - did 5= {8 s}

and this clearly produces a non-trivial product of the vectors equal to
the unit vector. Hence the number of distinet vectors obtained by multi-
plying colummns of the matrix M is exactly 2 —1 and it cannot exceed
2’ ' (the total number of veetors with components 1, £1,..., +4-1). Hence |

212 and 8o pir--1,if p> 11 I p =1, then a, 1s. not totally
pmnwe, hence vz 2 = p--L.

To complete the proof, agsume now that r{k) << o and |1 | =

Let p be any integer and P =T X ” {1, e50:}, i =1,...,7 be the r

orderings. Cousider the firdt p columm of the matrix [sﬁ] Agx above,
any product of any number of these columns is different from the nnit
vector, henco 27 —1 s 2™ for any integer p, a contradiction. Hence if
7 is finite so is J, and the proposition is proved.

We recall that o field % is said to he pythagorean if every smm of
squares of elements of % is a square itself. In a pythagorean field the sub-

2F -1,

—1, then we would

group T of fotally pohﬂ.we clements of g(k) is trivial and we get the fol-

lowing result.
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‘COROLLARY 1.13 (Elman and Lam [2], 45 and 5.7) Lt T be a pytha-
goream field with ¢ = 2™ Then n< v < 2%

A pythagorean field with ¢ — 2™ and 7 = 2"~ iy sald to be super-
pythagorean. The pythagorean fields with ¢ = 2" and # = » can be shown
to satisfy a certain strong approximation property (SAL, of. [2]). In the
case ¢ = 4 both clagses coincide; in the cage ¢ ==
pythagorean fields are different.

Oorornary 1.14. Let & be o real field with a wnique ordering. Then
ramk G(k) = 2. .

Proof. If » =1, then g(k) = {1, —1} x T, where I’ is tho subgroup
of totally positive elements. By Lemma 1.10 we have (k) s Z® Z @ Gy,
where @, is generated by all elements (1> —{a), aed’. By Artin—-Schreier
theorem, any such ¢ is & sum of squares, hence a sum of 2™ squares, for
an integer wm, hence 2’”((1} &) == 0. Thus G iy a torsion group and
rank G(k) = 2. '

Now we want o establish that in the case r == 2 we have rank

G(k) = 3. First we reformulate some Well']mown Pfister’s results con-
cerning the Witt ring W(k) for the cage of Grothendieck ring G{k). Let
k be a real field and P an ordering of k. The map

[

3
) = 2 BEDp oy

qual,

opt M(E)—~Z, o0p{ay,...,
is a semiring homomorphism (M (%) is the sémiring of equivalenco classes
of non-singular quadratic forms over %), hence by the universal property
of Grothendieck ring, vp factors uniquely through a ring homomorphism
G (k)-+Z, which will also be denoted by op. Hence

op (<> —4g)) = oulf> —p g

Now wsing standard arguments one can easily deduce from the resulty
of [11] the following Pfister’s Local-Global I’rmmple

(1. 1o) AcG(k) is torsion if and only if AImA = 0 and op(d) e 0. at

every ordering P of the field k.

We denote by kp the real closure of % which induces the ovdeving
P on k. Further, let jn: G{k)~>@ (k) be the canonical mapping and G4 (k)

the torsion subgroup of G'(k). Then an equivalent formulation of (1.15)
is the following. :

.(1.16) - The sequence

06 (k) —6, }’a)

TIGo {%p)

8 emact.

8 the two clagses of
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Now we can. prove the following assertion,
PROPOSTITON L17. Let & be o veal field and g(k) ~ {1, —1} x {1, @} x T,
where 1 is the subgroup of totally positive elements of \g (k). Then

G(k) = 2O ® @),
where the three infinile cyclio summands are generated by <15, (1> —{ —1),
L1y =@y, respectively.
Proof. From Proporition 1.12 we obtain # = 2. Let P, and P, be

the two orderings of & and &y and k, the two corresponding real clogures
of k. Congider the mapping

(J1yJa)r Go(E)->Go(hy) X Gol(lsy).
We have !
(d17 F2) (A —<{a)) = ({Ap — (13, 0)
and '

(Juh)Kl) {—=m) = {0, <1> (1),

where woe have assumed that aeP, and —aeP;. This shows that the
homomorphism (§;, fu) is surjective. Since the group Gy(k) X Gy(ks) is
iree, we have

Gy (k) = [{1) —<{ay] D [{1) —~{—a}] @ Kex(jy, ja)

by o standard lemma on abelian groups (¢f. [8], p. 44).
From (1.16) we obtain ‘

Ker(jy jo) = (%),
and the identity ‘

<l> Cay 4Ly~ w>—<1> <-1>

phows that
[CLY = <ap]® [{L) —{—ap] == [{1) —={~1Y]@ [y —<ad],

which proves the proposition. -

Remark 1.18. Using Blman and Lam’s Normality Theorem [2] one
can prove that for any field with finite number # of orderings one has
vamnk G(k) = #-f-1. This has been noticed by A. Sladek (for details and
an. indopendent olementary proof, see [14]). However, the proof in the
genoral case does not point out any bagiy for the group Gk).

Now wo will prove two results -concerning pythagorean fields.

Provogruron 1.19. A field k is pythagorean if and cmly #f the Gro-
thendiccl group @ (%) is torsion free. :
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Proof. If k iz not pythagorean, then (1,1) tepresents a non-square
@, say, and then <(1,1> = {a, a» and 2({1>—<{a}) = 0, i.e. (I} —<{a)> = 0
is a torsion element in G(%).

To prove the converse we need a lemma.

Lemwms 1.20. Lot & be o pythagorean field and n 6 positive inieger.
Then for any positive integer m,

Wlhyy vany gy = NByyony By =@y ey Gy = (Byy oy By

Proof by induetion on . Consider first the case m =1, If
nlay = n{by, then n{e> ~ b But k iy pythagorean, hemee {(a> =~ b,
and (o> = (b). '

Assume the lemma holds for forms of dimension m.

It wdayy ..oy @y =0y, oy by, then ey, ..
and by pythagoreanity, {ay, ..., @y 1> = by q.

Consequently Gy, ..., ey = {G1y ey Oy bppyd fOr SOME 04, ..., €,
Now n{eyy .. s byyst) =0 lby, oy by and by Witt’s cancellation
theorem ([197], Batz 4) we get nley, ..., 6y = n{by, ..., by>. Applying
the induction hypothesis we obtain {¢;, ..., ¢,> = by, i.\, by> and finally

Lty voey 1) = {01y veny Oy Dyppyd = {byy oiiy B
a8 requirad. ) :

Now we may coraplete the proof of Proposition 1.19. Assume k is
pythagorean. If there is a torsion element A in G (%) we write 4 = ¢ I = {fa>
-and assume wd =0, n>'0. Then 2 (f;> = n{f,y and so dmf, = dimf,
and Lemma 1.20 applies: {fi> = {fs», 1.e. A4 = 0. Thus there is no non-
- trivial torgion in G (k).

ProposrTION 1.21. Let % be a pythagoman fwld and

=@, -Nx [[ {1, a}.
iel
Then the set & = {(1)—{—1D>, (I —<a): iel} is linearly independent.

In particular, if ¢ = |g(k)| = 2%, then rank G(k) = n+1.

Prooi. In this proof the symbol (4, b} denotes the quaternion algebra
corresponding to @, bek”. We shall use the Hasse algebra and apart from
ity standard properties ({10, § 58) we shall make use of the following
straightforward consequence of the definition:

For positive 'mtegers o, one has

S(Zm (a,))w ® (a“ (a1 af‘}

i=1

m+1>:l

2y ay(wg1))2
1) 'taii( T+ 1) )

Assume now that a flmte subset of # is linearly dependent. Then
@1 (D = <biy) oo+ (1D — (b)) _ ,
= Y1 (LD = {0} + oo+ 4, (LD — {6p)),

vy O R g
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where all the coefficients are positive integers. Moreover, Proposition
1.19 makes it clear that we can assume the coefficients ., ¥; not to be
all even. Multiplying by 2 and rearranging the summands we obtain
A = 2wy b b)) 42y (e b+ 2y, 6
20t A Y ) U+ 2 By 20,0 = B

These two guadratic forms have isomorphic Hasse algebrag. Bub

-+ Zya <Gs>)

Wi\ 20 ey .1y
G ) )

. S8 (2, o)1 .
k)

~ ® (G.;, (6lyl
qwal

3
~® (0, i) e, ~1)® .

T=e]
N( —_17 c‘il e c‘il)f

where 4y, ..., 4 arve those indices ¢ for which v, is odd. Similarly, §B~
~( =1, by oiny by )y Where o, ...,y are those indices j for which a; is
odd. Thus SA4~8B imples (-1, Oy oee Cg) 2 (=1, 0y ... 0 ), hence
by - Gyl o By 18 & s of two squares, hence a square, since the field
iz pythagorean. _

But ¢;, b; are elements of a hagis for g(k), hence their product cannot
be a square. This shows that the set # is linearly independent. '

Wo end this section with some observations relating the nmmber of
orderings of a pythagorean field to the behaviour of bmmy forms over
the field.

Prorogrrrow 1,22, Let & be a ﬂeal field with sguaw clags namber g == 2"
>4 and r orderings. :

(i} k is superpythagorean (i.c. v = 2" %) if a.nd only if & is pythagorean
and. every anisotropic binery form represenis at most 2 elements of g(k).

(i) IF & s pythagorean and there exists an anisolropic binary form
representing more than 2 elements of g(k) and n = 3, then r < 3.2

Proof. Tt {1, a5, ..., t,_;} be a basis for the group g(k). As observ-
ed by Wnan and Lam ([2], p. 1181) two orderings on % ave the same
if andl only if each a; has the same sign under both orderings. If v == 2%,
then all possible combinations of signs do occur and so every element of
g (k) ditterent from 1 is negative at & cartain ordering. Ienco D{1,1) =1
and. & is pythagorean. If ¢ = 4 we check at once |[D(L, a,)| = |D(1, —ay)
== 2 and this proves the assertion. Assume ¢= 8. Let (a,b) be.an
anisotropic form, i.o. ab +# L I ab =1, then D(a, b) = aD{l, 1) =
i.e. |[D(a, b)| =2 2, a8 required. If ab o I, then [D(a, b)| = [D(1, ab)] -and
80 we can consider tho form (1, ¢), where ¢ # 1. Fix an ordering P

. ® ((fiz, ——1)
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at which ¢ is positive (this is possible for any pythagorean field by [2],
Prop. 4.1). Assume (1, ¢) ~d, where d £ 1 and d = ¢, Then also d = -1
and d # —ec since every element represented by (1, ¢) is positive at P,
Thus & does not belong to the subgroup of g(k) generated by —1, ¢ and
- we can choose a basis for g(%) of the form {—1,¢,d,b,,..., b, ;}. Sinece

d is positive whenever ¢ is, we obtain r < 3-2""%, which proves (ii). But .

if » = 2% this is impossible, hence |D(a, b)| = |D(1, ¢)| = 2 and the first

part of (i) i8 proved. Conversely, assume that k is pythagorean and. |D (g, b)) -

< 2 for @b = —1. Let {1, a,, ..., a,_,} be any basis for g(k). We prove
that the subgroup P of g(k) generated by {a,, ..., &,_,} defines an order-
ing of the field. (learly, P v —P = g(k) and P is closed under multi-
plication. Take arbitrary o in @ and § in b, where a, b<P. Then ab % 1
and (4, b} ~ a-+ B, hénce a+Bee or a-+ feb. This shows that P (as a subset
of k*) is closed under addition, hence P defines an ordering of k. But if
{-L ay,...,a,,} is a bagis for g(k) then sois {—1, L@y, ..., a, ;}

for any choice of the signg; hence there are 2"! dlstlnct orderings and -

the proposition is proved.
ProvosITION 1.23. If k is o superpythagorean fdeld with square class
number g = 2%, then

G(k) =2 o ZELE)

If gik) = {1, =1} xh, then the direct summands are ge%emted by (1),
(1}-(—1}, and all the elemmts {1y —<a>, aeh.
. Proof. Propositions 1.22 and 1.19 show that the homomorphism
[]jpin (1.16) is in fact an injection. We shall show that the i image of [[in
containg 2" linearly independent elements which will prove all the asser-
tions of Proposition 1.23. Let {a,, ..., @,_,} be any basis for k. The 21
orderings of the field are completely determined by the signs of a;. Let
P be any ordering and assume that & a,, ..., &,_, 4 el Where g = +1.
Put

Ap = (L ={—aap) .. (<1> —{—tyst )

(we use here the rmg structure of G (k)).

Observe tha.tjp(<l> {ay) = OlfaeP a.ndjp(<i> {ay) =LY e 1>
it —aeP.

Hence
_ Jeldp) = ({I> —(—1)"™" = 2" ({1y — < —13) # 0
" and - :

Jp{dp) =0
Thus the images under the map []jp of 2" elements AP, where P runs

through all the orderings of k, form s linearly mdependent subset of
H Gy(kp); and by the remark . 'nbove, we are finighed.

for any ordering P’ = P.
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2. Classification of Grothendieck groups for fields with g < 8. The
main results in this section are Theorems 2.4 and 2.5 which classity the
groups G (k) for fields with ¢ = 8. For the sake of corpleteness we include
the cages ¢ = 1,2, 4. Theorem 2.1 follows directly from Lemma 1.1 and
Theorem 2.2 f.ollows rom Proposition 1.7 (the non-real case) and Lemma
1.10 (the real case). Theorem 2.3 has been proved first in [17] by another
method and we give here a brief and easy proof for it by using the results
of §1. .

Trrorem 2.1, Let k be a field of characteristic other than 2 and q(k) = 1.
Then G(k) 2 Z and the group is generated by the class <1).

Trmonrm 2.2. Let k be « field of characteristio other than 2 and ¢ (k) = 2

If k is non-real, then

G = ZeZ)2F.
If T is real, then
_ Gt = ZDZ.

In both cases the oyolic summands arve generated by (1> and <1> (a),

where @ 18 & pon-square in k.

Trozorum 2.3, Let & be o field of characteristic not 2
A, Let & be o non-roal field.
(L) If every binary gquodratio form over T is universal, i;hm

and Q(Tc) = 4.

G (k) 2= Z ©(Z[22)

(In If (1, 1)
k, then

18 universal bul there are non-universal bimary forms over

G (k) = 4 (Z]22)%,
(LIT) IF (1,1) 48 not wniversal, then
G ZOZHZIDRZ2Z,
B. Lot & be @ redl field.

(IVY If & 48 non-pythagoreon, then

(k) o

WP utlmqmmn, then
Gk) = Z®.

Proof. Woe put g(k) == {1, ¢} x {1, a}, where e = —1 unless -1 is

a. pouare in k. We also use the notation: H = (1> —<ed, 4 = {1>—<a},.

w= {1y~ {ea>. It § = 4, then s = 1, 2 or infinity, as proved by Ka-
plﬂ.nskv (3], Theorem fl)

= IV e Z)2F.
ff k4

7 — Acla Arithmetles XX VIIL2
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Case (I). Proposition 1.7 yields all the mfounatmn needed:

[E]CB[A] (Z22).

Case (II). By Lemma 1.1, we have
A ave linearly independent (Lemma 1.6) and D does not belong to [E, 4],
for otherwise D = E-+4, ie {l,ea> =< a) and {1,eay would be
a second universal binary class, confirary to Corollary 1.9. Hence

@, = [Blo[d]e[D] = (£/22)").

Oase (III). By Corollary 1.3, the group G, is generated by & and 4.
Here 2F = 0 and 24 5 0 (otherwise <1, 1> = (g, @) would be 2 universal
class).
AL LL1y =(-1, -1 11y =<a —t ¢ —a) = {a, &y @, @), and so
44 =0, Now E does not belong to [4] since none of the elements of
[A] has determinant ~L1. Thus

GD == [A’E] = [-A]®[E]

- Qase (IV). Now (1, 1) repr'esent‘s 2 non-square in k, so assume that
{1,1) ~ a Then (1, —a) is universal and Proposition 1.11 applies:

Gk =K oFleldl = ZeZaZ2Z.
Case (V). Now Proposition 1.17 shows that;

G(k) = [KLyle[Blold] = Z2¢.

" We come now to the main theorems of this section. ‘We recall our
notation: ¢ = ¢(k) = |g(k), ¢ = [D(L, 1)}, v, = |U,(k)!, the number of
binary universal classes over k. Both ¢, and u, are powers of two,
0 < g, 4y << g 30d g, > 1 if k is non-real and g > 1. It will be algo con-
venient to have the inequality s < g, at hand ([11], p. 126).

TaEROREM 2.4 (Clagsification Theorem. for Grothendieck groups of
non-real fields with q = 8).  Let k& be a non-real field of characteristic nof
2 and g(k) = 8. Then the Grothendieck group G (k) is determined as follows.

{i} The easc g, = 8.

o ZAEDL2E.

(L) If uy = 8 (i.e. every binary quadratic form over k is universal), then
G(k) = Z&(Z/22)D.

u5l< 8, then
G(k) = Z@&(Z22)",

(I If uy =1 and there exists & non-universal bmwpy fwm representing
more than 2 3Eemmts of g(k), then .

(In If 2<

#(h) = Zo(Z/22)°.

— (B, A, D]. Now T and .

Moreover, {1,1) =<{—1, —1> and (e, ay =<{—a, —a}, hence
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(Iv) I f g =1 and every non-universal bmwr il form mpwsmts at most

2 clements of ¢(k), then

Gh) = Za(Z22)7.
(if) The cose g, = 4.
VY If ¢ =4, or ?f 822 and 1w, > 2, then
Gh) = ZQZ4Z o (Z[22)Y,

w2 oand wy =1, then
G(k) = ZQZAL D (Z22)®,

(m) The case qq ==

(VY1) If &=

etemmss of a( ) and

G{k)
Remark. Tn Section 4 we produce examples of fields which show

that all the cases of Theorem 2.4 do occur, except possibly (II).

Timonnmm 2.5 (Clagsification Theovem -for Grothendieck groups of -
real fields with g == 8). Let k be a real field with square class number ¢ = 8.
Then the Grothendiech growp G (k) is determined as follows.

(i) The case gy = 4.
(L) If wy =

YAV ALY ARV AV A

2, then

G(k) = 2P @ ( ZfOZ Y,
{TI} If %y == 1, then o
G} == zm @(Z /2Z)€3) .
(i) The case gy = 2.

(IXT) If uy = 2, then . o
. G(h) = ZV 0 Z[2Z.
(IV) If uy = 1, then '
' (Ia) o AN (1/‘32}(3)

,( ) If them 18 an anisolropic binory form wepwsmtmg more than 2
elements of q(k), then

G (k) = ZW,
(VI) If every mmtropw binary form represmﬁs at most 2 clements of g(k),
then : :
(k) o= Z‘s).
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Remark, We shall prove in Section 4 that each of the six cages
“of Theorem. 2.5 actually occurs, except possibly (IT).

Proof of Theorem 2.4. In each of the seven cases we fix a de-
comiposition of ¢(k) into direct product of subgroups ef order two:
g(k) = {1, e} x {1, a} x {1, b}, where we assume that ¢ = —1 whenever
—1 s not & gquare in &, and ¢ and b are chosen to satisfy certain con-
ditions. We wuse the following notation for the generators of &,(k):

B = {1y =<6, A = {1y =), B = (1> — by, O = (L) —<abd, D = (1)~

— ey, T = (1> —eby, H = (1) —<eab).
Case (i). ¢, = 8. Here the form (1, 1) is universal and so the stufe
8¢ 2. Also (1,1} = e, ¢y for every ¢ in g(k), so that 2({1> - {6} = 0.
Subease (I). Proposition 1.7 proves that

Gy = [H]a[4]d[B] == (Z/QZ).(“, :

Subease (II). Choose a non-square e such thai {1, e) be universal.
‘Then by Lemma 1.2, we have &, = [H, 4, B, 0]. Assume that O<[H,
4, B}; then necessarily ¢ = A+ B (determinants), and this implies
{1y aby = (a, b). We show that also (1, ab)ave. In fact, if ¢ =1, then
from (1, e)~ab we geb (1, ab)~e. If ¢ =2, then ¢ = —1, (1, 1}~ —ab
and so (1, ab)~ —1 = ¢. Thus in either case (1, ab)~ e, a, b and so (1, ab>
is & third universal class, contrary to Corollary 1.9, (An alternative proof:
if 0 = A+B, then G o2 (Z/22)® 2 g(k), and by Theorem 2.2 of [18]
all binary forms over % have to he universal). Flence using Lemma 1.6
we get '

Gy = [B, 4, B, (] = [Blo[A18[Blo[C] = (Z/2Z)".

Subease (IILT). (1, 1) is the only universal form, 80 ¢1,1> = a4, -1
_and consequently s = 1. Now I(1, ¢) is a subgroup of ¢(k) and 1D (e, d)|
= |D(1, ed)|. Hence if 2 < |D(¢, d)| < 8, then |D(e, d)| = 4, and so there
exists a form (1, ¢) repregenting exactly 4 elements of ¢(k). If D(1,e)
= {1, ¢, a, ea}, then we choose an element b in g(k) which is not represent-
ed by (1,¢) and write g(k) = {1, €} x {1, a} x {1, b}. We know that

({1, ¢ = {a, eay, and this implies ¢b, 6b> = <ad, eab> and Ly ay = e, tad.

Thus B = 4 +D and B4+F = ¢+ H. The group G, ix generated by the
elements ¥, 4, B, C, D, F, H (Lemma 1.1) and the above relations show
that D and H are superfluous in the seb of generators. By Lemma 1.6,
the elements B, 4, B are independent; put ¢, = [, 4, B]. Then ¢ does
not belong to G, for otherwise ¢ = A+ B and (1, a) = (b ab>. We
observe that (1, e)~a implies (1, @) ave (since s = 1), and so (1, @) would
be. a universal form which is*not the case. Thus Q46

- Write Gy = [B, 4, B, 0] and observe that F¢@,. Otherwise, com-
paring determinants we get either # = H+B or F = B4 4-0. Now
the fivst possibility gives (1, ey = {b, ¢b> which implies the universality
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of (1, ), & contradiction. The second possibility tmplies <1, ) = (ea, eab3.
But this is also impossible: if {1, b) ~ ea, then (1, ea) ~ b and from (1, ¢) ~ ea,
(1, @) ~ea we got (1, ¢a)~a, e. Thus (1, ea) would be a second universal
Dinsry form. Summarizing we geb:

Gy = G @[I"] = G o [Cle[F] s

= (B o [A|0[Bl@[0]18[F] = (Z/22)5).

Subease (LV). Herc again s == 1 and @, iz generated by the seven
elements B, 4, B, ¢, D, F, H. Wo prove that they are independent.
Lt ns prove first that any four of them ave independent. Suppose, for
instance, A --B--D-|-F =0, Then 4 +B = D F, hence {a, b> = {ea,
eby and (@, b) reprogents at leagt 4 olements of g(k), contrary to (IV).
Similarly, any smn of three or two of them is not 0. Put &, = [B, 4, B, (]

and @y = [D, I, II']. To get the result it suffices to show that ¢4, N G, = 0.

First note that none of D, F, H belongs to &y, for det(F+A+B+0) =e
and go this swm I8 not equal to D, ', H, and as remarked above, D, I, H
cannot be exprossed as a suwm of 3 or less generators of 6. Similarly,
DT, D--H, ¥F--H do not belong to &,. To see this observe that the
determinants of the sums of any three of &, 4, B, ¢ are eab, ea, eb, 1.
Thus none of D8, D-+H, I'4- H can be o sum of three or four generators
of &, beecause of unequal determinants, and also none of them can be
a sum of less than 3 generators of ¢4 . If reinains to prove that D + F -+ H 6.
First observe that det(D--F-4H) = e and none of the sums of two or
three generators of ¢, hag determinant e. Thus the only possibility is
BA4A B0 = D4 B4 H,orequivalently, H = #+A+B+C0+4+D+ T,
or else {1, 0,0, 1; 1, eab> = (e, a, b, ab, e, ¢b>. That this cannot happen

g eagily seen on using Witt's theorem on piecewise equivalence ([19],

Satz 7; compare [7], p. 25). In view of the hypothesis (IV) every dyadic
change of the fornt (e, a, b, ab, ca, 6b) reduces merely to a permutation
of the diagonal endries and so we never pass-from this form by dyadic
changed to (1,1, 1,1, 1, eab). Thus we have proved that & NG, =0,
and Ho woe got

Gy = Uy 06y = [BIO[ATO[BIGI0 o [ Do (I 6[H) a (£/22)0. |

(ago (i), gy = 4. We know that ¢ =0 gy, 30 we have now s < 4 and
§ > 1 (ofherwise gy =+ ¢ ~ 8). Note also that in the cdwe (ii} the class
4¢15 18 universal. This iy obvieus if s == 2, and if.¢ = 4, then (1, 1) is
anisotropic and represents 4 elements of g(k), hence (1,1, 1) represents
at leayt B eleents of g(k) (¢f, [9], p. 13). Consequently, the 1111111:13)1i0&17i¥;e
clags 4 (1> reprosents all g(k). Hence 4({1> —<ed) == 0, for every ¢ in 4"

Subease (V). Consider first the case § == 4. Agsume —1 =*a,—}-b,
where @, beD)(1, 1). These le in different cosets of " modulo E* and
80 wo may write D(1, 1) = {1, @} x {1, b} and g(¥) = {1, =1} x D(1,1).
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Here {a, by = {1, —ab>, hence {1, & b, aby = {1, --1, 1, ~1) which ig
equivalent to 4 4+B+C = 2H. By Lemma 1.2, &, =[F, 4, B, 0] and
the above relation shows that

G, = [B,4,B] = [F]0[A]0[B)] ~ Z/AZ & (Z/27)®.

Agsume that s = 2. Now D(1,1) = {1, =1} x {1, a} and g{k) = .D(1, 1) x
x% {1, b}. Consider (V). Since u, = 2, either (1, ¢) or (1, —a) I8 universal
and we choose @ 8o that (1, @) be universal. By Lemma 1.4 we obtain
Gy = [H, A, B]. Here 2F — 24 = 4B = 0, 2B 3 0 and H¢[4, B], A ¢[B]
(by comparison of determinants). Hence

G = [Blo[E10[A] == Z4Z(Z22)™.

Subcase (VI). Now {1, —1) is the only universal class and &, = [ K, 4,

B, €] (Corollary 1.3). From (1,1} = {a, &> we obtain 2B = 20. Hence

Gy=[0,4,B, B~ (], where2F =24 = 2(B—{) = 0 and 4B = 0,2B = (.
Certainly E¢@, = [4, B, B—(] (determinants), so we may write @,
= [F]®6G;. Now [B]n[4, B—C] =0, otherwise we would get 2B
= A+R—0 (dcterminants), and {1, a> = (b, ab}, contrary o the non-
universality of (1, a). Thug

6, =[Blo[4, B—C] = [B]e[4]@[B - 0],
since 4 s B—( (otherwise (1, —a) would be universal). Hence

6, = [B1o[Blo[4]6[B— 0] = Z/4Z &(2/22)".

Case (iii). g, = 2. Now obviously s> 1 and from s < ¢, we got
§ = 2. Thug D(1, 1) = {1, —1}, None of anisotropic binary forms can
be universal, since if (1, ) is universal, then —acD(1,1). But, in-fact,
- more is true. Using an argument dus to L. Szczepanik, we prove that
LD(e, d)i < 2 for any anisotropic form (e, d). Tf this is not the case, we may
assume that |D(1,a)| =4 and D(1, @) = {1, @, b, ab}. Thon from ¢1,1>
= (=L, ~1)> we get <1,5,b) = (1, —b, ~b). We have (1, —b>~ —~a
and so (1, —b, —b) a2 ~a, while we shall prove that {1, b, b> does not
represent —a. To this end we wmust determine D(1,b, 5) = (JD(e, b),
~where € runs through> D(1, ). We shall show that D(1, b) = {1, b} and
80 D1, 5,0) = D(L,b)w Db, b) = {1, b, —b} does not contain —l, A8
required. '

Now we determine D(1, b). Knowing D(1, 1) and D1, a) we pee ab
onee that —1 and —a do not belong to I)(1, ), henee also —b and —ab
do not. If abe D(L, b), then (1, —ab) ~ —a, —b, —ab, hence also (1, —ab)
~(—a)(—ab) = 4%, Thus (1, —ab) ~a2h(—b), and so abeD(1, 1), a con-
tradiction. Eence ab¢D(1,b), D(1,b)[ < 4, and so D(1,b) = {I, b} as
required. . '
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. Now we determine G{k). Write g(k) = {1, —1} x {1, @} x {1, b}; then
9H =44 = 4B =40 = 0 and 24 5 0, 2B £ 0, 20 5 0. By Lemma 1.2,

Gy = [B,4,B,0] =[Fa[4, B, 0]

(since H¢[4, B, (7). Mere [4] N [B] == 0, since otherwise 24 = 2B
which gives abeD(1,1), and we want to prove that [(1n [4, B] = 0.
Tndeed, if not, then eliminating the cases, where determinants are not
equal, ono gots fthe following possibilities: cither

(1) 20 == 84 4.2B,
;

or ’
(2) 0 or 30 == 4--B or 344 B or 4438 or 34 43B.

Congider (1), We obtain <1, 1, ab, ab> = {a, 4, b, 8> and we show
that this is impossible by applying piecewise equivalence. Obgerve that
(a, a) can be changed dyadically only into (—a, —a) and similarly (b, b)
only into (—b, —b). Now {a, b}, {-—a, b) etc. represent only 2 elements of
g(k) and 8o cannot be changed dyadically in & non-trivial manner. Hence
there is no way of getting either 1 or ab by applying dyadic changes to
(@, & b, b) and consequently (1} cannot hold. ' :

As to (2), we observe that the possibilities are 0 = 4 +B.

. Here the only one non-obvious possibility is 4 + B+ == 0 (all the others

are ruled out by |D(e d)| <2, ed # —1). But this implies <1,1, 1>
= (@, b, #b> which again contradicts piecewise equivalence. Hence
G, =[Alo[Ble[0]o[B] = (Z42)" 0 Z|2Z.

+

This completes the proof of Theorem 2.4.

Proof of Theorem 2.5. Let & be o real field with ¢ = 8. In each
of the gix cases of the theorem we fix an ordering of % and write g(k)
= {1, ~1} x {1, a} x {1, b}, where a and b aro assumed to be. positive
in the given ordering of k. We denote the generators of &, by B ={5—
—{ 1>, A = {1>-{a>, ele., ay in the proof of the preceding theorem.
Nate that now 0 is of infinite order and by Lemma 1.10, we have

Gy == [B106,,

where Gy = [4, B, (/] is to be determined.

Case (i), gy == 4. | 1
Agsume (1), In this case @ beD(1,1) and <1, —ap, {1, —b> are
easily shown fo be universal. Ilenee by Proposition 1.11,

Gy o [4, B] = [A]0[B] == (£)22).
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If there is only one universal binary eclass, then A-+-B--C £ 0 and
we pbtain,

@ =[4,B,C] = [4]e[Blo[C] = (£/22)",

which proves (II).

Case (ii). g, = 2.

Assume o is a sum of two squares and b is not. If an element ¢ is a sum
of squares in k, then it is already a sum of two squares. Indeed, let ¢ be
the minimal number such that any sum of squaves in & i3 a sum. of ¢ squaves
and 27 < < 271, Then ¢ >2-2°+12 > a1 ([11], Satz 23),'and it follows

- eagily that in case ¢ = 8 we have ¢ = 2. A consequence of this fact is
that 24 = 0 and B and ¢ ave of infinite order. o

Assume now (ILL). We may assume that (1, —a) is universal. Hence

(L, —a) ~ ~D and (1, 3) = e, ab), ie. B = 4 +. HHence -

¢ =[4,B] = [Rle[d] =~ ZOZ/2Z.

Subcase (IV). We have (1,1) = {a, 6), hence (b,b)> = {ab, ab)
and 2B = 2C. Now G = [B, A, B— (], where B is of infinite order and
24 =2(B—C) = 0. Hence ¢, = [B]l@[4, B—C(]. Now 4 = B, pince
otherwise (1, by = (g, ab), (1, —a) ~ —b and so (1, —a) would be a sec-
ond universal form, contrary to (IV). Thus

G, = [Bleld|o[B—0] ~Za(Z/22)V.

Case (ili). ¢, = L.

Proposition 1.19 asserty that G(k) is a torsion free group and so A,
B, ¢ are ail of infinite order. ~

Assume (V). Without loss of generality let (1, @) represent more than
2'elements of g(k), i.e. (1, 0) ~ b. Hence (1, a) = <b, ab> and 4 = B+
and G, = [4, B]. Now Proposition 1.21 proves that

G =[4)0[B] = 29,

Bubcase (VI). By Proposition 1.22, the field it superpybhagorean
and now Proposition 1.23 proves that

. Gy = [A]@[Blo[(] o 2.
This completes the proof of Theorem 2.5.

) 3. Classification of Witt groups for fields with ¢ < 8. The With group
W{k) of a field k can be defined as the factor group G{ky/H, whore H is

the sgbgroup of G(k) generated by the hyperbolic plane <1, 1% The’
canonical surjection f: G(k)—W(k) can be eagily shown to act in the -

following manner:

f(<al:- T “az)‘“(bl:.---r bm:’) = <Lf1, RRER ) "blly 7 “‘"‘bm> I“Od .
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Henco all the results of Section 1 concerning sets of generators for G (k)
can be reformoalated for the case of 'Witt groups. If k) =X,0...0X,, '
then W (k) = f(Xy) ...+ f(X,) and if H = X,, then Wk =fX)®...
o @F(&,), where fIX) o X\ /H ond f(X,) o X, for 4> 1.

Ienee, to obtain a classifieation for Witt groups of fields with ¢ < 8
we shall use the classification of Grothendieck groups earried oub in
Section 2. In each of the cases wo find a direct swonmand X of 6H{k) such
that H < X, and we determine a direct sum  decomposition for X ('
(Proposition 8.1) and then write antomatically a direct sum decomposition
for W (k). Observe that for X we can take [(13] [{1>—{—1>], whenever
Ly~ —13 gonerates o direct snmmand of G(k), since (1, —1) = 21—
= ({15 == —13). L burny out that <15 — ¢ —1% generates a direct swmmand
for all fields & with ¢ < 8, as can be seen immediately from the decomposi-
tiony of G(k) given in Section 2. By Lemma 1.10, this happens for all
real fields and for non-real fields one can easily prove that <1>-¢ —13
generates a divect summand of Go(k) in each of the following cases (inde-
pendently on the value of ¢): (i) s = 1 or 2, (ii) 5 > 2 and the clags 24N
is universal (then (1) —{—1) is an element of maximal order in o ()
and generates a direct sunmand by [16], Corollary 2)(1).

- Provostrion 3.0 Suppose Uy —{—1> generates a direct summand
of Gy(ke)y X == [Q3] @[y~ —~10] and H = [(1, ~13].

-~ If kds @ non-real field and s is the stufe of &, then X|H o= Z]2sE
and the group s generated by {1 mod H.

If k is o veal field, then X = [(L>]@H, and so X/H ~x Z, where the
group s generated by {15 mod H. - :

Proof. In the real ease there is nothing to prove and so we assume
that & is non-real. We define h: X—2Z/2sZ by putting . '

B -+ m (<L — ( —13)) = (# +2m) (mod 2s).
Cleaxrly b iy o mu‘jjeutivu honomorphism and Kerh can be easily shown to.
coincide with H. Honco the result.

Trmorem 3.2 (Classification Theorern for Witt groups of fields with
g = 8). Let I be a field of choracteristic other than 2 and with square class
number 4 < 8. Lhen the Wikt group W (k) is determined as follows.

1.og e A W(ER) ~ Z/0Z,

Z0¢ %y & non-real:
(2L) H‘N(]'i;) o~ (Z/‘Q,Z)(ﬂ, ]f § 1;
(2"2) [P Z/f’l:Z, ]:f 8 = 2 N

(1) Added in prool. It ean bo prnved that 1> —<¢ — 1> always generatce a

- diveet suminond i Holk). The proof will appdar in the Proe. of J. Belyai Math.

Boe. Colloguiow on Nuwher Theory hold at Debreesn in October 1974,
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q =2, k real:
(2.3) W) 2.
3. ¢ =4, k non-real:
(3.1) Wik) = (Z]22)®, if (I) of Theorem 2.3 holds and s =1,
(3.2) = ZMZOZ2Z, if (L) holds and s = 2,
(3.3) o (Z]22)9, if (IT) holds,
(3.4) o= (Z/42), if (TIT) holds.
g =4, k& regl:
(3.5) Wk =ZaoZ2Z, if k is non-pythagorean,
(3.6) =7ZaZ, if k& is pythagorean.
4o g =8, k non-real:
(4.1) W (k) = (Z[22)%, if g =1, =8 and 8 =1,
4.2y = ZAZS(Z[22)®,  if g =u, = 8 and § = 2,
(4.3) ~ (2[22)9, g =8, 2< Uy <8 and 5 =1,
(4.4) = FUZ(Z2E), if g, =8, 2< U< 8 amd 5 = 2,
(4.5) o (21228, if gz =8, uy =1 and there ewisis
wel* such thet |D(1, a)] == 4,
(£.6) o (Z[2Z)®, if g =8, %y = Land [ D(1,0)| <2
: Jor every non-universal form (1, @),
(4.7) = (ZADNOZ2Z, if g5 =4, Uy =2 and 5 = 2,
(4.8) = ZRZG(Z2TY,  if ¢ =4 and s = 4,
(4.9) e (ZIAZ)D @(ZREYD, if qu =4, Uy =1 and § = 2,
(4.10) o (ZAZ)S, if gy = 2.

b. g =8, & real:

(5.1) W (k) = 2 (#/22)®, if gy =4 and w2,

(5.2) = Z@(Z/22)", if gy =4 ond wy =1,

(5.3) = IPRZ2 i g =2 and wg 2,

(5.4) o Z0 (2 228, if qu =2 and uy =1,

(5.5) o= 78, if kis pythagorean but not super-
pythagorean,

(5.6) o Z, if & es suparyyﬂmqommz

Remark. The fields in all the cases are known to exist excepl in
(4.3), (4.4), (4.7) and (5.2).
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4. Examples. [11 this section we give examples of fields corresponding
to the Classification Theorems 2.4 and 2.5. For each case, except 2.4.
IT and 2.5. I, we point out a field which satisfies the conditions imposed
in Classification Theorems. Let us remark that in [17] there have been
given oxamples of fields showing that all the cases of Theorems 2.1, 2.2
and 2.3 actually occuor.

We shull use four different consiructions of fields with tinite squave
clagg nnber: Gross and Fischer’s, formal power series fields ovér a field
with finite square elass number, quadratic extensions of fields with finite
gquare clags number and o construction of Elman and Yam. First we
fntie the result of Gross and Tischor ([4], pp. 301-302).

Taswma 4.1, Let & De afny Jield of chavacteristic other them two and let
{ugek*: iel} be any set of representatives for o subgroup 8 of the group
g(k) = k*[k**. Then there ewists an algebraic extension K of & such that
{o;: iel} is a set of ropresentatives for. clements of the group g(K). K can
always be chosen non-real and if % is real and —~1e8, then K con be chosen
real, 100. '

This lemma enables us to construet fields of the type 2.4.T and
2.5.1. In Lact, using Lemmsa 4.1, one can prove that for any integer » > 0
there exists a field & sueh that g == w, = 2" (i.e. every binary form over.

I is unjversal; see (1], p. 4075 [37, (3.8); [18], Theorem 2,3). Thig eomprises

2.4.1,
The case 251 Weo shall prove that for any mtagm # > O fhere

ewists a real fuld b osuch that g = 2% gy = thy = 2%

For n == 3 we shall obtain s field satistying 2.5.1. In the case n =1
we can pub & = R, so assume » > 1. We choose n prime numbers p., ..., P,
such that p; == 1 (mod 4),7 = 1, ..., » and the g.e.d. (p;+p;, 91 ... 0n) =1
for all 4,4, 1 «j< 4= n. Here py =1 (mod 4) can be chosen arbitrarily
and if p,. ..., Py, have already been chosen in such a way that p;, =1
{mod &), ¢ =1, ..., m, the g.6.d. (P9, P1.e V) =1L 0T 1 <f<im
L (mod p;), then we pick up a prime p,,; such that p,,
zm 1 (mod &py), F = 1, ..., ;. Then it is casy to choek that py, ...
]xmre the required propnrl\y (ef. [18]). _

Now, aceording to Liomma 4.1, there exists o real algebraie extension
E ol the radionaly stieh thad

al fl‘ = {1, X{L, puia}-

ere g = 2% and gy w= ‘2.‘“'"‘1, ginee every o, v o sum of fwo squares. Since
Py 9y 18 coprime with p, .., p,.,, it I8 o square in %, that is, for every
pair of indices 4,7 we have {1, —p> ~ p;. Also <1, —p> ~ 1, i.e. the
forms (L, ~-p;> reprosent all the basis elemonts - of g(k), hence each of
them 18 wniversnl. Multiplying these universal formus according to the

+ P
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rule introduced in the proof of Lemma 1.8, we obtain 2"~ universal clasges.
But u, < 2" (since (1,1> is not wniversal), hence u, = 2"' and the
statement iy proved. -

We remark here that the same method gives also an exa.mple of
a field % with ¢ = g, = u, = 2". We choose k& o be non-real with
gk} = {1, pr} > ... x {1, p,,}. Then as above all the forms (1, —p;> = (1, p;>
are universal and they generate 2" universal forms. Henge we have & field
satisfying 2.4.L

The cases 2.4.11 and 2.5.II will be left without examples. I do not
know at the moment if the cages actually do occur(2),

In most of the following examples we shall use the tields of i’mmml
power series. We state here without proof a lemma giving some known
properties of quadratic forms over those fields.

Lmvvia 4.2. Lel k be a field of characteristic not 2 and K = k((%)) be

the field of formal power series over k. Then the following statements hold
rue.

(4.2.1)  g(K) = g(k) x {1, &}, in particular, if q(k) s fimite, then q(H)
= 2q(k). .

(4.2.2)  If a,bek” and (@, b) is not the hyperbolic plane, then @t represents
over K only those square elasses of g(K) which are of the form
cK™, where oek™ is ropresented by (a, b) over k.

(4.2.3)  If a, bek*, then (a, bt) represents only 2 elements of glK) over
K (that 15, a and bi).

(.2.4)  The hyperbolic plane is the only mmmsal class over K that is,
it (H) = 1.

{(.2.5)  If & is non-real, then 30 is K and s(K) = s(k).

The cases” 2411 and 2.4.IV. For any integer w3 and’ f:mJ'

my Lm << n, there emists o field K such that g = gy = 2% u, = 1, every

anisotropie binary form represents of most 2™ elements of q(I{ amcl there

s an anisotropic binary form repr esenting cxaetly 2 elements of g(K).
For take any field k such that g(k) = 2™, 8(k) == 1 and every binary form
over & is universal. Put X =k{(t,) ... ({t,.,,)) and apply Temwa 4.3
to check that X hag the quuued propertios. The cases # = 3, m = 2
and % = 3, m = 1 comprise 2.4I1T and 2.4. IV, respectively.
The case 2.4.V. For any integer n3> 3 there emists o non-real field
- K suchthat g = 2", ¢, = & and s = 4. Here the field K Q) -« (sl
where @, denotes the field of 2-adie numpers, satisfies the roquummm,s

(2) Added in proof. I can only prove the following. If there exists n roal

' .ﬁel.d satisfying 2.5.I1, then a suitable quadratic extension of it s a 11011-1‘(\&1 finld
satiafying 2,411, :

icm
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(for # == 3 we have K = Qz which falls under 2.4.V). It would be desirable
(le. s =2 and u, = 2)
appearing in 2.4V Aactually ocours.
The case 2.4 VI For any integer n 2 3 there emists o non-real fwld
K such that ¢ == 2% ¢y = 4, 8 = 2 and w4, = 1 (put n = 3 to obtain 2.4.VI).
Lot & be an algobraic exteusion of Q(V —2) with ¢(k) = 1, =1} x {1, a},
where a* = —2. llere 8 == 2 and every binary form is universal (vee [17],
B 30), in particular, gy(k) == 4. Tut K = k{(t))) ... {(#,_,)) snd apply
Lemma 4.2 to obtain the result, ‘
The case 24.VIL Jor any integer n = 2 there ewists o non-real field
K such that q == 2% gg == 2y g =L and § =2 (n =3 gives 2.4.VII),
Indeed, let p be & prime number eongruent to 3 (mod 4) and put K
lrg,((' ) oo ((tama)) 0 @il i) )} -o - () where T, denotes a prime field
of characteristic p and @, iy the field of p- a.(ho nombers. Well known

- behaviour of binary forms over ¥, and @, and Lemma 4.2 yield the result.

Now wa ghall digcuss the four remainig cases of Theorem 2.5. First
we quote gome regyults of Gross and Fischer concerning the behaviour

of the group ¢(k) under quadratic extensions of k. Let K = k(Va) be
a. quadratic extension of the field & (chark =£ 2). Define i: g{k)~+g(X)
by pubting (k™) = K™ and N: g(K)~-g(k) by N(aEK**) = Ny,(a) k™
These are group homomeorphisnig and the seguence ‘

3

. : o 3 : N .
L {*, @l g () g (K) S g () |
8 emact (ef. [4], p. 208). HFrom this we get easily the following result.
Lomma 4.3, Let k be o field with chark = 2 and g(k) = {1, a} x},
K o= k(Va). Assume further that D(1, ~a) = [] {1, b} and ;K are
del
chosen to sabisfy Ngple) = by, iel. Then
G(E) = ><H {1, ¢;}

(heve h is meant to be the subgrnup of g (K) with the same cose‘t representatives

as in gk,
The case 2.0.1IT. Lot & he a real algebraic extension ot the rationals

guch that g(k) = {1, ~-1} x {1, 2} (Lemma 4.1). We consider K = k(V2)

. and prove thatb JEL sammj'mﬁ 2.5. ITI The form {1, —2) m universal over

k, hence D(1, = {1, —1} x {1, 2},

Wo have N M,,l [l/ = —1 and N (2 - +¥2) =2, hence, by
Lemma 4.3, —1, 1 l/ 2 -} Y2 are the represemmweﬂ of 2 basiy for
the group r/(T(' ). Obaerw that X is a real field and g = 8. 'Moreover

~l Y2 i a sum of two s, l.rcﬁ,

BV = (Lk VRV,
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while 1 4+V2 is not, since its conjugate i3 negative in the ordering of K
induced by that of R. It follows that Dg(l, 1) = {K*%, (2--V2) K™},
Le. ¢ = 2. Further, u, < ¢, = 2 (since the universality of (1, a) implies
that —a is a sum of two squares) and we prove 1, =2 by ogtablishing
that (1, —(2+V :_2—)) is universal. In fact, the equaility above implies that
(1, —(2-+V2)) ~ 1, and we have also 1 —(2+V2) = (—1)(L +V3), that
s (1, —(2-- V’E)) A ~(1+]_/§). Hence the formn represents all the basis
elements of g(K) and so is universal. Summing up: X 4s real, ¢ == 8, q»
= i, =2, that is, K falls under 2.5.T11.

The case 2.5IV. For any integer n >3 there ewists a real field
K such thot ¢ = 2", g, = 2 and u, = 1. Take % as in the preceding example
and put K = k((t))) ... ((f,_,)). Lemma 4.2 gives the result. When # =
we obtain a field satistying 2.5.IV. ‘

The case 2.5.V. If £ falls. under 2.5.V, then, by Proposition 1.22 (ii)y
the number # of orderings i8.<{ 3. On the other hand, the field is pytha-
gorean, so r =3, by Corollary. 1.13. Hence r = § and the field satisfies
SAP (2], Corollary 5.7). Conversely, if q(k) = 8, kis pythagorean and
satisties SAP, then # = 3 and there must be an anisotropic binary form

representing more than 2 elements of g(k), since otherwise, by Proposition

- 1.22(i), % is superpythagorean, i.e, r = 4.

Hence 2.5.V characterizes pythagorean fields with q = 8§ satisfying
BAP. The existence of such a field for any ¢ has been proved by Riman
and Lam ([2], p. 1187). : .

The case 2.5.VI. By Proposition 1.23(i), the field is superpytha-
gorean. Olearly, for any = = 1 there exists a superpythagorean field with
square class number g = 2" for example R{(ty) ... {(fa_1)), 28 follows
directly from Lemma 4.2. - : :

Remark. The above examples of fields provide at the same time
examples for the Classification Theorem 3.2 for 'With groups of fields
with ¢ < 8. However, here the number of cases ‘where the existence of
 fields is not known, inereases to 4. Tn fact, the case 2.4.XT splits into two
. cages 3.2(4.3) and 3.2(4.4), the case 2.4.¥ also splits into &wo cases one
of which (8.2(4.7)) is not covered with any example, and finally, the case
2.5.11 goes info 3.2(5.2). '
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