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The moments of partitions, IT*
by

L. Bruor Rrcumowp {Winnipeg, Canada)

5. In this section we consider the distributions p,(n, m), the number
of partitions of # into exaectly m summands from a given set A
={ay, @3, ...} of monotonically inereasing integers. For certain A’s we
determine the asymptotic b&hﬂVlGlu of the Xth moments B (n) de-
fined by

i3
t(n) = /_,\j mep (R, m).
Hpees ]
We are especially interested in the case when A is the set of primes. This
case is considered in § 7 :
Tet £ 4(8) he defined by

Lalt) = Do,

aed

Let o, denote the abscissa of convergence of £ 4(1). Since the ¢’s arve integers,
we have 1z a2 0. Let 0 <5 << 1 be some fized constant, We shall
congider in this section those A’s for which either of the following two
conditions are satisfied.

(1) og<<1—n. ‘ ' '

(IT) ¢, 1) i regular for ¢ 1—% except at the point ¢ = 1 where

it has a pole of order one. In (T} and (II) the estimate

Lalt) = OLI%}

" holds uniformly in Ret 3 1— 5 as [¢|—oe, where ¢ is a posifive constant.

If (II) holds we define the constants w, ¢ =1, 2, by
by U -

LA = Gt gy

where f(t) is regular at { = 1.

* The hrsf; part of this paper appeared in Acta .A,uth 26 (1975), pp. 411-4256. The

mumbers in brackets referes to the list of papers quoted there.
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Let
' % H o gy =0
(5.1) Pla) =1 R
B—Upy Uy, I uy #£ 0,

where y again denotes Euler’s constant.
Now py{n,m) has the generating funechion

5‘ ipA(wa,m = 11 — &)

nusd me=0 e

m G yle, 2)

which converges for | <1 and all 2. Again let 6 be the operator

é
0 = g—r.
z&z

Let 8,(x,2) be defined by

o

Sylm,8) =
4l ad 1"

ctesd

Then we obtain

T GA(E-—avi-;ib" 1) Sﬂ:}(emﬂ-ﬁ-iﬂ)
Gale, 1) 89

(5.2) tff’)(ﬂ) = iﬂw
In

Sgiﬂ)(g“ﬂ) g—né a0,

where o is throughout this section defined by

 (5.3) = @ 0 g=)) 2 1 9890677
_ o eo du
and
S(e) = D84, 084y eny 0718 ),
the summation being that of {2.10). |
Furthermore :
2’ }s)zymy'a
818w, 2) = \‘ =1 ,
it (L — ™)

aed

where of? is defined by (2.1). Also we obbain

— 1 o+ o 8
(6.4) _6“ 18,07, 1) = J cu"iCA(t)]’(t)Zu”g})a(t)dt

F—i00 Ge==1

o> 8, |argo gg-——rﬁ.
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Thug we obtain as before:
TeMMA 5.1 Let s = 1. Then

Eg( 1y

B8 (67", 1) = - Lals +1) + 0L

LuMMA 5.2. If condition () holds

Salet,3) = S48 gty
If condition (II) holds
,P(lognji)
a
8467 1) = ——"0 40

where P(w) i defined by (5.1).
Before stating our next resulf, we require some definitions.
Let A(w} denote the number of elements of 4 which are =< u.
We define the function f, fur real 2 > 0 by

falm) = v e
aeA

fa shall denote this function throughout this paper. _
We sayy that A has property (I1I) if with ¢ > 0 an arbitrary constant,
and. g a fixed integer > 0, .

Deope™ = 0{f7*(@)}

aead
and
' fio Jfa (oL £ (@) = O {1}
as a0, o
We swy that A has property (IV) if there exists some constant &, with
1> dy>> 0 and some constant 7, with 4 > 1, > 0 such that

A 7% (@) logf ((w) >0

and _
A (@) > ffF(a)
a8 o0,
It iy proven in [10] that A has properties (ILT) and (IV) when either
(11111 loga, /logv /hmloga /logv <3
st vrca
or

A(2u) = 0{4A(w)} = as

U003
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b
<o
[}

or

logl
s =lim—2 o2 exists and s> 0.
O eew lOgw
We say that 4 is a P-sequence if there does not exist a number p such
that ple, for all sufficiently large a,.

Let A, (a) be defined by
(5.5) A“(Q,) — Z aﬂg‘“(e—aa)(eua}__l)"ﬁ

acd

where g,(%) is a cerfain polynomial of degree less than u. In particular
filz) =1 and g,(@) = o
Liet D{a) be defined by

(5'6) —sgz Z d"‘l »”59 "59

p.1-=2 p59=2

where the d’s are cerfain numerical constanis and
by s, =120,

Limma 5 3. For n sufficiently large, equation (5.3) has & unigue solution.
Let k=1 If condition (I) holds :

== E T

aed

+ —+0 {a"”“”}

if conditon (II) holds

& 1 1 1
= —— - ——-1 .
# gq“a—l —}—a +O{a oga}

OQur first result iy
TrEOREM 5.1. Suppose A salisfies conditions (ILI) and (IV). Suppose
Sfurthermore that either A is o P-gsequence o7 thet

limlogf (@) floga = 0.

2—+0

Supposze furthermore thet

fﬂﬁlogloga,/logm << o0,

- Then 4f in addition condition (I) holds

i (n) = (2n4,) Viexp lan 2 log{ lme"’“}]

ed

a"kz (£a(1); 22402), ..., 2{(k—1)PLa(M)[L 4 O o} + Dy + O{f T (@)}];

icm
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if i addition condition (II) holds, then ¥ ,(1) is replaced by P(log -:E) in
) a

- ‘ 1
the vesult for condition (I}. 4,, a, D, and P(Iog ——) are defined by (5.5),
o

{B.3), (5.6), and (5.1) respectively. The summation is that of (2.10).
Proof. Let ,
o f( 1+?’n‘n)/3( )

Then in [10] it is shown that for any constant M > 0
(5.7) Gale™* ) @ (e™%) = O{afz™(a)}

for 0,<C (0] < .
Ag in the proof of Temma 2.6 it follows from (5.4) that fors =1,2,3

and |6] = 6,
B8 (8P (e}

= —i .
d:B-i o O{a }
Thus the proof of Lemma 2.6 shows that
% . )
1 Gule+ 1)y 8WHemtiy : 1
5.8) e oo ——— €7 a0 = [14+0{fZ{a)}]
(‘) ) 27C I GA( a, I) SA(G ) ) ]’I?JTC.A.Q {f.d. }

(FﬂnGL Ay > a4 {e) for some constant ¢ > 0). Now the theorem follows
from (b.7), (5.8) and (5.2).

TaeorEy 5.2, Under the assumplions of Theorem 5.1

(2md ) Pexp [cm — E log(l — e“m)] = % (n)[1 4+ 0{f7 a)}].

aed
Prootf. Due to the saddle-point condition, the ferm
axp Icm-— E log(1— e‘““)]
i acd .

iy insensifive to small changes in «. That is if o = a+ da, where da=> 0

1 : . — \-1 "y _ —_aa'
{65.9) Amq)[an ‘;.Jlog{l @. )J

e
W a . , - W ! —an
:‘:::[('HJ - A}_, “;aa‘:i") 40“_%0{«&12((1) (Aa)ﬁ}] exp {m". ‘/\Tj log(l—e¢ )},
aed, £beE.
Let a be the solution of .

: . ....1 “
W = 2 ey
¢ —1

el
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and a, he the solution of

n= 3

4e.

il ¢ —1 oy

Firgt of all, clearly ¢ = a+ da, where e iy positive. Also

2

ae,

Therefore

6(a+.ﬂ a)a

1

aed

1
= AQAa—I—O{— log™* L -
o o a

From this it follows that

(5.10)
Now

da~(do)~

\ | [
In_‘.}-‘, 61!0-__“1

A, Aa}

@ @ cEAz }
= —-_A Aa ] 2L,
—1 2 e -1 ot 0{ da (4a)

2.
da (Aa) ol

1

=0,

hence from (5.9) and (5.10) it follows thab

exp [cm——' 2 log{1 — g._““)] = {exp [an — Mlog(1— waa)j

sinee 4, > Ca™f,(a)

fal o)},

for some 0> 0. Now the theorem easily follows.

At this point let us consider a particnlar set, namely the set of %th

powers,

PHROREM 5.3. Let K
k=2, Let

Then .

- Jol
Mg(n) = {(k) =
)

g (n)

ax(n) =

= {1, 2k: 31‘7 -

be the set of T-th powers where

Mgln) = te(n) e(n),

(il

tzc(”)
73K( 7)

n

_E

-k

1

fo-]- . —.,.},..w
[1.+0(n” BTy,

3k

k41 M_L_
~)] 1+ Ofn T},

icm
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4

Proof. It is only necessary to note that {g() = Z{kt) and that (5.3)
may be rewritten ay

o400

1
n= | aAtI"(t)C(k(t—l))C(t)dtJr_16.; L ofa
from which it follows thab
i .
1 1 Bl 1
(C(:L + E)P(H"f)) [1+0{n F+} 7],
o ==
7

COROTLLARY. Let b be any wnwmber > 0. Then the number of partitions
of m into T-th powers having between

0 ol (ke+1)
| [ Efm) (20 2R
m ) |

1
‘ﬁf@+i

1
> (1 ~ ) o

w’f’me F(n) is any function of n sueh that fln)n' ¥+ >co as n—-co.
Hence almost oll partitions of n into k-th powers have fewer than
g (R suinmands whede g(n) is any function of n which tends fo
infimity with n. S ’ '
Let us consider the variance for general sets A

THEOREM. 5.4. Let

summaonds 48

) = L) _(tz(m )

falny  \t(n)
Then wnder the a.s'sumptifms of Theovem 5.1

otm) =42 (10 @+ 017 @)

Proof. From 'J.‘]momms 5.1 and 5.2 we obtain that

sl

oyim) = (1008 (e -+~ — (098 (¢™") B} {1+ O (@)})
where «, i defined by (5.3) with & = 0 and o with & = 1. Here we use
equation (5.10) and the fact that 4. has property (I11). The Lheorem now
follows from Lemmas 5.1 and 5.2 and equation {5.10),
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6. In this section we consider the distributions ¢ A(n, ), the number
of paritions of » into exactly m disfinet summands from A == {ly, Gy, ...}
We examine the aswnp‘m“rw behaviour of the #th moments w'(n), defined hy

" (n) me q4ln, m),

=1
a8 %—>o0.
We Suppose that one of the following two conditions holds:
Let 0 <2 5 < L be a real .constant.
(1) £.4(#) is regular for Ret > o, —7 except at ¢ = 0 < gy << 1, where
it has & pole of finite order with residue B and where the estimate

£a(t) = O{#%
holds uniformly in Ret = oy —# a8 [t|—oc, where ¢ is a positive constant.
(117) £ 4(2) is regular for ¢ > 1 —» except at ¢ = 1 where it has a pole
of finite order with residue B and where the esfimate
Lalt) = 0{pl}

holds uniformly in Ret > 1 — 7 a8 {t{— o0, where ¢ is sSome positive constant.

We define g by

7@ AR ‘
{6.1) 7 = -~ TR gy} -1
‘a';j eﬂa+1 dﬁ ) ( ) ))
where ' .
T8(e?) = N(6'r, o', ..., 6+,

the sumrnation being that of (2.10) and

' 2 — 2t
Tiw,2) = _>_4 eyl

e
We define B,(§) by

692) = Nargi (o 1)
m'A

Where gy(w) ig & certain polvnonnn@l of degres < 4 —1 and in particular
gil@) =1, gi() = . ~
" We define Dy (#) by
. o) U
ok g
(6.3) Dy =d45% ... ')" D sy Ay -+ Ay s
. fiy=2 ,u5Q=2

where the @"'s are certsain numerical constants and

ey e sy = 12¢0.
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We now state conditions (V) and (VI).
logay

exists,

(VI) J; = inf {(loghk)™" 3 lla, 8|} oo as k-»co where the lower bonnd

=

is taken over those a, satisfying e, < § <5 3 and {6} denotes the distance
of 6 from the nearest integer.

In 6] it is shown that these conditions hold fcu rather generfll A.
The proof of the following theorem is very similar to the proof of Theorems
3.1 and 5.1, the main difference being that oune refers to [6] instead
of [10]. .

Taeorey 6.1. Suppose A sotisfies (V) and (VI). Then: if in addition
(1) holds

wy(n) = (Imfy) lfzexp{ﬁmr Vlog(1+e-f‘“)}

aed

XE(R‘BW% T(“o)f(%)(l—ﬁ""o“)ﬁ
$BTVE (L), oy FEHRRTERNGL D —1) g (B —1)) X

% [L4+ D+ 0} + 043 (A)}]

Cions 18 defined by Lemma 3.1. If in addition (IU) holds

F(n) = (2nBy)"VEexp {fn+ > log(1+e~™)}8~*(Rlog2)* x
aed .

X [1-+D5 -+ 0" O {f7* (A}

Here B, By, and Iy are defined by (6.1), (6.
tion as in § B,
Corresponding to Theorem 5.2 we have :
Tuiorem 6.2, Under the assumptions of Theorem 6.1,

2), and (6.3). f, i§ the same func-

(2B exp [+ 3 log (Lt ) = oy (n) L+ O {7+ 0L (A1}
N aed .
Jorresponding to Theorem 5.3 we have
TuBOREM 6.3. Let K = {1,2% 3% ...} be the set of k-th powers. Let
Mg (n) = wh(n)fug(n),

Y ue(n) ( U (1) )2

™ = ) ()
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Then

Mg () = %ll(k-l-l)(l__zl—l/h)é-( )p( )70 LR VY
1 —1/{fe-1) )
ellamr 2ol 2 ) ogumens,

TR
gf‘K(qq,)z ot B o —E/ (et 1) ((1 — ik I’(1__| ) (1 1L“W))” i “i_‘ O{%-—-]f(k-}-l)}}'

The conelugions corresponding to the corollary of Theorem 5.3 con-
cerning the distribufion. of the number of distinet summands that ean
be deduced from this theorem and Tehebycheff’s inequality are some-
what stronger than those obtained by Erdds and Turdn ([13], p. 56). This
is different from the Corollary to Theorem 5.3 -which may indicate the
true state of affairs ([13], Section 4). Unless the 7 in the following

theorem is relatively large as above the rezults will not be asymptotic..

However the standard deviation is significantly smaller than the meun
and under the conditions below gives & slight improvement on the ro-
sults of Brdds and Turdn in Theorem IIT of [13]. It seems difficult to
compare the strength of asymptotic assumptions directly and the main
goals are different in their work and ours.

Corresponding to Theorem 5.4 we have

THROREM 6.4, Let

= B (s

wy(m)  \uly(n)
Then under the assumptions of Theorem 6.1: if condition (I') holds

\ I'{og) R{1-~2~%) £(1 '
Auimy = ZWEATERECHN) 1y L gigresg 0 griap;

if condition (I1') holds

T

245

Of courge unless # > 1 the lasf relation is not an asymptotw Te-
lation. :

7. In this section we let P = {21, Ps, ---} Whele P, denotes the »th
prime. While (%) may uot satisty one of conditions (I), (IT), (X') or (11",
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‘the other conditions of Theorems 5.1 and 6.1 are satisfied (see [6]). The

only significant difference arises in the determination of the asymptotic
behaviour of the sums : '
7 2” 1
Bife) = Yl amd (o) = % Tt

7

Let us consider 8;. We have
_ 1 . ) ™
8,(e") = —— J o LNIOTME, o> 1, brgel< 2 —6.

It is well-known that
Zet) = log( ﬂ‘"ZZ = logt()—h (9
mzl

angd (1t} has no singularities in Ret > }. Thus, lefting « be defined by (5.3}
with 4 = P,

g4iva
Sue ) =5 | e Tilogtint@a—
a+i0o -
L etrayegam@dt, o1
omi Jm ¢ € " ’
-

We may estimabe these integrals mueh as in [11], pp. 77-81. We
deform the path of integration to the following intervals of integration:

There exists a constant ¢ > 0 such that () has no zeros in the region
([12], p. 114)

Ret = 1 —eclog™*t|loglog ~**]4|.

Let ¢ denote the curve Ret = 1—alog“‘"’"‘jt[10g]6g“3”|tl. Let I,uT, = the
segiment of -

Ret,= 1 clog™**~loglog™/'—

contained between the upper and lower parts of #.
Let I, denofie the part ef I,UI, below the real axis and 1.-116 mtegla-

tion ig in the upward direction.
Let I, = the part of ¢ asympiotic to the line Ret = 1 and meeting
I,. Then let I, be the reflection of I, about the real axis.

2 — Acta Arithmetlea XXVIIL3
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Let I,

. gy
Let I, = circle with centre at ¢ = 1 and radius exp (—log“”——) in
: 31

the counterclockwise direction.
- In view of (2.7) it is easily verified that the integrations over I, and
I, are

O{a exp (—a log“”m loglog=%" i)}
24

for some constant ¢; > 0.
I is also easily verified that the integmtions over I, and I, are

1
{a"lexp ( —cylogh’ — 100 log™%7 —)}
o

for some constant ¢, > 0.
Now

| logl(t) =

(t—1)+ ...,

henee we may replace logl(?) in the integrals over I, I,, and I, by
—log(t—1). Also on I, I,, and I,

1 S
(7~1) -’ ' I{n () =:i‘ ‘l"% —(_t—l)’

It can also be shown ag in [11], pp. T7-81, that

J f f) aH{t—1 "110g—wdt

fs I
=gt (Idglog = +y-0 {exp[—cslog‘“}» loglog=%" %-]}) .
o [4]

Furthermore let F (Iog _-]:) be defined by
T oa

(7.2) F(log %)

0 : log log —
[+ .

1
(log;logE —logw|du;

=

"
= the segment of the real axis from I, to 1L—exp (——logaf . -—).
a

icn

The moments of partitions, IT 241

then we obtain mueh as in [11], pp. 77-81, that

(IJ +1! | +z‘[ )« (C(t)l’(t) B til) log til o

1 ' 1
= F (log ;) +0 {exp[ —c,log" ""% loglog=¥* ;]}

B.vIld. that

b (1) (v +1)

41

(7.3) F(Iog %) = g

I +0 {oz“llog-"w"2 };}
l R .
og a

where b, is defined by (7.1).

We therefore conclude:
THEOREM 7.1. There emisls & constant ¢ > 0 such that

Bhn) -~ 1 51 1
=a Z(loglogz—l—y——zm—pﬁ—f—ﬁ’(logz)-l—

M=
. ) l -w3['i'
+0 {exp [ —elogh™ = (Ioglog ) ]};

» 3{(k—1) I)“Cp(k)) [1+0{a}],

26,(2), .-

] 1
where ¢ is defined by (B.3), F (log ——) iz defined by (7.2) and has the
p _

arymptotic expansion in (7.3).
To determine the varianece we proceed somewhat differently. We
must estimate the difference between 8,(¢~™) and §;(e™* where

%
B = E “!Pml

and

P _1' {1 1}
- S SNTE ATy 1 foull P9 i
® Te“” 1+a -0 a Oga

' 1
‘We have cquation (5.10) holding however, and fe(e) = O~{a’"‘10g;}-

Hence on 1I;, I, and I, we have

la~t—ar!| = O{alogi}
. a



243 L. B. Richmond
and. it readily follows thab
‘ 1
Bi(e™™) — 8, (e7%} = O{alog “{;‘}'

- Henece we conclude:

TEEOREM 7.2. Lot

Bn) (t}:(n))z_

tp(n)

Then there exists a constant ¢ > 0 such that

a

ah(n) = 51’(22 ) [1 +0 {exp [ -alog“'-'%logmg“s“ %]}] )

where o i3 defined by (5.3).

COROLLARY. -
£ (n) wa [ 1OZT = V1t ’“[ {loglogn
AL : N7R - Rk |
oy - o )(1°g1°g“+ﬁgwpm) o ]
Furthermore
0% (n) = CP 2 )loggn[l+0{10g10g%/10gn}]

Finally let f(n) be any function of n which goes to mfmzty wzth n. Almost
all partitions of n into primes have between

~*(3n)"logn (loglogn -+ f(n))
Summaands.

Remark 1. Let 0 be the least upper bounél of the veal parts of the |

roots of the Riemann zefa function. Then

CP(

dp(n) = =4 0{n “’}

for each constant &> 0.
In the case of partitions into distinct primes one obtaing
TEroREM 7.3. There exists o constant ¢ > 0 such that

up ()

= A~ 1 .1 . 1
W =B kﬂk(logg) {1 +0 {GXP[—Glogﬂ Eloglog 3/7 ]]

icm
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where
1
H (log —~)
‘ #
_u_ '
o~ log%? % 1
- J . i (L—2 )E (l—'r 1 ) (loglogE —logu)du
log— 1| . log —
p %
XL
& (141
BT {4 + ) +0{10g~L—2_1_'.}
‘l_" loghtt s d
where

T 1—27"20) = D ae—1).
jrer
Here £ is defined by equation (6.2). Furthermore there exisis a constant

¢ > 0 such that with

By — ) _(u;(m)z

up(n)  \up(n)
7p(n) = O{nexp(—clog¥"nloglog=*"n)},

Fimally Tet f(n) be any function of n which tends to infinity with n. Then
almost all partitions of n into distinet primes have between

2log2
(o 22 iy £ 081
™ logn

summands.

Remark 2. With ¢ as in Remark 1, one obtains o = 0{n®*}
for every constant &> 0.
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