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by Fubini’s theorem. Replacing §; (1 = j <
to be oo in (6), we can infer

2} by 0 and letting ¢; (1 < j < )

Lim, f f {Fltay, oy bt w) —f(@, .00,
—00 2 _

(Iszg<in)

)} <

. X, (1) o
for the function defined as (8). Thus we get

TEEOREM 6. Let f(ty, ..., 1,) be o function defined as (3) over the whole
space T. Then the Fourier inversion formule

%1n{tn) dt] v dtn == ()

(15} lim j f (Bry enny B @ i@bT e tonbnd gy gl == f(y, L, @0,)
oo 3 —g
(Lf=<n)

holds.

Noting the relation (9), we also have

THeoREM 7. Let f(1,, ..., §,) be o funcltion such that
aﬂ]+--;+17n
attr ... ot

are confinuous and wnegmble over T, lee% the Fourier inversion formule
{15} also holds.

VACTRP tn)‘ (?j =0 or 1)
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The Diophantine equation ¥* = Dz* +1, I

by
J. H. N. Comy (London)

Ljunggren [4] has shown by a deep and complicated method that
the equation of the title, where D is a pesitive integer not a square, has
at most two solutions in positive integers », ¥. Elementary methods have
been employed for special values of D which specity the solutions more
dlosely ([1], [37). ,

Conditions of a simple type ha.ve been found under which there are no
such solutions ([2], [5], [6)). We prove

THEOREM. Let D s 2 be am integer such that 42 — Dv? = 28 has solutions
where ¢ = +1. Then neither y* = Da*+1 nor 3 = 4D2*+1 has a solulion
with & > 0 unless at least one of the equations X*— DY* = Ze or 4 X*—DY*
== 2¢ has solutions.

We shall require the followmg result Whmh is due to Nagell ([7],

Theorems 8, 11).

LL_MMA Let D > 2 be an infeger, nol o square. Then
1) if the equation w*—Dv® =2 has solutions in integers u, v then
there w exactly one eclass of solumons, which 4s therefore ambiguous; if o
= T+ V.D' i3 the fundamental solution, then ka? is the fumdamenital solution
of u?—Dp? =1;

(ii) ditio for the equation u®—Dv* = —2;

(1ii) ot most one of the equations u® — Do = —1,2 and —2 has solutions
in dntegers.

Proof of the theorem, Let a = U+ V.D" be the fundamental
solution of 4?--Dp? = 2z and let 8 = }at If either y® = Da'+1 or y*
= 4Da* --1 has any solution with # > 0, let # be the smallest positive integer
which provides a solution of either of them. Then

y+ar D" oor y 422DV =g, =1,
i.e.
g —pg"
Y

.

a2 or 2% =
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I n were even, say n = 2m, then

G BrEBT B —p
9 9 _Dllz

o% or 2u? = = 2hk,

say. :
Now eclearly both A and % are integers and h*—DEk* = 1, whence
(h; k) = 1. Thus we must have % ==af or 2uf, whence b2 = Daf+1 or
4Dz} +1. But this contradicts the assumption that > 0 was the least
integer for which either of these equations had solutions, since it is easily
seen that 0 < », << #. Thus this case does not-arise.
Thus % = 2m-+1, say, where m = 0. Then
52m+-1 — ﬁ'ﬂm+1 .
2D = gim-t2 _Dilz_
a2m-i.-l + ﬁf2m4-1 a2'ﬂH~1 _ a’2m+1

= - 2m+1 - _2m+1D1/2 —_—-"Hff, .

/. Y
AT _ 2

2% or 2 =

say. _ , .
Again, sinee a® = 28, it is easily seen that both H and K are integenrs,
and - '
H'—~DE* = 42753 (g1 oo 9,

 Thus K must be odd and (H, K) = 1. Thus K = ¥* and H = X°
or 2.X% and so X'—DY' =2 or 4X*—DY* =2, which concludes
the proof. ‘ _ R
Cororrawy. Neither of the equations y* = Da+1, y* = 4Da 11 has
any solutions in positive integers if
(i) w®—Dp* = 2 has soldﬂtﬁqm in indegers u, v and either D has any
prime factor of which 2 18 o biguadratic non-residue, or D = 2,
14, 18, 62, 63, 78 or 79(mod80); ' ‘
nor if g . . _
() u%—Dr* = —2 has solutions in integers wu, v and either D has amy
prime factor of which —2 is a biquadratio non-residue, or D # 2, 3,
6, 18, 22, 66 or 67(mnod80). :
This follows immediately from the theorem on consideration of
residues modulo 5 and 16.
-As an illustration we obgerve that gines 132—19-82 = —2 it follows
?haﬂv neither y? = 19¢* +1 nor y* = 764" L1 possesses solutions in positive
Integers. Neither of these equations is eovered, by [2], [B] or [6%
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