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Non-extensional equality
by

A.S. Troelstra (Amsterdam)

Abstract. Intuitionistically, two mathematical objects are said to be intensionally
equal, if they are given to us as the same object (i.e. are identical). Extensional equality
(as in classical set theory) is a much coarser equivalence relation, and there are many
equivalence relations (notions of non-extensional equality) intermediate between inten-
sional equality. This paper discusses non-cxtensional notions of equality and their
uses in proof theory of intuitionistic formal systems and foundational disceussions.

§ 1. Introduction

L1. The purpose of this paper is to present a rather detailed dis-
cussion of non-extensional concepts of equality, which arise quite naturally
in the discussion of the foundations of constructive mathematics. The
discussion is mostly self-contained, appart from the proofs of the technical
results quoted, for which the reader should consult the references.

For definiteness, the discussion may be supposed to be in terms of
intuitionistic concepts, although most of the discussion is applicable in
a much wider context. ,

There is no deliberate attempt to say anything new on the subject;
we only try to explore the concept and its possible uses from different

_ angles, and to correct erroneous views concerning the notion of intensional

equality.
I am indebted to G. Kreisel for detailed criticism of earlier versions
of this paper. '

1.2. Intensional equality may Dbe considered as the extreme, basie
form of non-extensional equality: two objects are intensionally equal,
if they are given to us as the same object. (When interpreted literally,
the preceding description of “intensionally equal” is almost tautologous,
it seems to define “intensionally equal” by “same”. Note however, that
the stress is on “given to us”. The aim is to convey to the reader the
intended hasic concept.)
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In standard intuitionistic terminology “a is intensionally equal to p»
is equivalent to saying “a and b are the same mental construction?, (The
concept of sameness as intended here involves of course already a certain
abstraction and idealization: the natural number 3 constructed today
“is the same as” the natural number 3 constructed tomorrow.)

A typical example is the following: the binary functions +, - on
the natural numbers, defined by the recursion equations (S for successor,
x,y numerical variables)

[p+0=2, |0+ y=1y,

\o48y = S(e+y), | So+"y = S(z+'y),
represent extensionally the same function, but are given to us by distinet
‘sets of equations, corresponding to distinet computation procedures,
hence not intensionally equal.

Since “intensional equality” is a concept of the same degree of
generality as “proposition”, “property” ete. we can say very little about
it, but two aspects seem to be obvious: 1° intensional equality is decid-
able, and 2° the decision should be immediate, i.e. should not require
a non-trivial mathematical argument.

1.3. Before we proceed, the following remarks are in ovder. It is
not to be expected that intensional equality as such is mathematically
manageable, or that it possesses mathematical interest. The very fact
that comsidering objects from a strictly intensional point of view means
carrying along el information about these objects, that is we are not
permitted to abstract from any of their properties, clearly indicates that,
in general, strict intensional equality is not mathematically useful. Part
of the success of set theory is in the fact that we often need consider
extensions of properties only.

On the other hand, therough-going extensional equality is usually
too “coarse” from a constructive point of view, as illustrated by the
example at the end of this section. So it is to be expected that in con-
structive mathematics there attaches a certain interest to concepts of
equality intermediate between strict intensional equality and extensional
equality.

The “applieations” of non-extensional concepts of equality can he
divided into two categories:

a) the use of the concept of intensional equality in foundational
discussions, e.g. in establishing the validity of axioms for informally
given concepts, and :

b) mathematical uses of non-extensional concepts, e.g. in proof
theory.

Ijet us illustrate how the need for a non-extensional concept of
equality appears naturally in recursion theory. Let W, denote the re-
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cursively enumerable set with gédelnumber g, It i
that there exist primitive recursive functiong ®

1) WeoWy= Wy W&

wa, y)
Wac E W'r(x, v) & Wu g TVw(m, )] &W
Tt we define intensionally W, =, W y Saet 2=y, then ¢,y may be re-

garded as effective mappings. But there are no @, satisfying (1) with
respect to extensional equality, i.e. we cannot satisty

8 & well-known theorem
» % such that

wan N Wy =@ .

— WV o= T 1% —
W= Wor & Wy = Wy Wty = W & Wiy = W

If we would permit ourselves to talk about extensional operations on
re. sets only, we could not have effective versions of the theorem.

§ 2. Hereditarily recursive operations HRO

2.1. To make the discussion more concrete, we shall now discuss
intuitionistic arithmetic in all finite types and the model of the heredi-
tarily recursive operations HRO.

We first describe a “neutral” theory N-HA® (“neutral® because it

" permits extensional as well as intensional interpretations of equality at

higher types).

The basic type structure T is given by 0eT; 0,7¢T= (0)reT (0 is
the type of the natural numbers, (o)z is a collection of mappings of objects
of type o to objects of type 7).

We have variables in each type: 27 ¢°, 2°, %% 2% w°. Constants are 0
(of type 0), (suceessor), 17, . € (o) (7)o (projection), 240,z € ((0)(0)7)((0)0)(0) 7
(substitution), R, € (0)((0)(0)0)(0)o (recursor), and App,.. (application
of an object of type (o)7 to an object of type o); there are constants =, for
equality at type o. Application is indicated by juxtaposition, %, ...%,
abbreviates (...((tltlu,) ta)...)t;. Terms, prime formulae and formulae are
defined as usual; the logical operators are V, ¥, & v, = (714 is defined
a8 A1 =0).

N-HA® is axiomatized by intuitionistic predicate logic, the wusual
axioms for successor, induction, defining axioms for the constants 1,
%, R, and for equality, besicles symmetry, reflexivity and transitivity,
also substitutivity:

' -’L‘U e ‘,Unr___.,_ z(u)-rma — z(a)ryu ,
2o — y(u)r%w(u)rzc =.y(¢’)fz¢7 .

We shall usually omit type sub- and superserfpts in the sequel; types
will be assumed to be “coherent”. . -
The defining axioms for tho constants are specified as

Toy=w, Zoye=ae(ys), Rayd=wz, Ray(Se)=yRaoye)z.



Artur


310 A. 8. Troelstra

2.2. This theory is made into an intensional theory I-HA® by adding
a constant for equality E, e (c0)(0)0 satisfying

Exy=0c2c=9y, Ezy<l.

The extensional theory E-HA® is obtained by defining extensional equal-
ity =, induectively:
27 =,y e Vo (22 =, y2)

and adding to N-HA® v =yeoa=,y.

Alternatively, we may restrict ourselves to equality at type 0 ag
& primitive and treat =, as defined. ’

2.3. A model HRO (Hereditarily Recursive Operations) for I-HA®
is defined as follows. We define, for each o ¢ T, an arithmetical predicate V.

Vo) =4t ® =05 Vigo(®) = oo Vy e V, 8z ¢ V., ({5} (3) = 2))

({-}-, ~ as in [2]). Our objects of type o ave then the pairs (2, o), where
zeV,. Application is essentially partial recursive function application:

, (2, (9)7)(y, 0) = ({2} (), 7) -
By elementary recursion theory, we can find numerals 8], U7, 1%, , ],
[R], [Bc] such that ([8], (0)0), ([1Z,,.], (0)()o), ([Z,,,.], ((e)(2)7){(2) o) (o)),
([Rc,], (9)((0)(0)0)(0) o), ([B,1, (0)(0)0) represent 8, II, , X R,, B, in

0,7} “p,0,7 2
the model. Equality is interpreted -as (essentially) equality between
godelnumbers: (, o) = (¥, 0) =g 2 = ¥.

2.4. The model illustrates quite clearly that

(A} Tt makes perfectly good sense to think about a concept of decid-
able equality with intensional character, at all finite types.

(B) It is by no means necessary that every object should have a name
{description) in the language under consideration, for the concept of
intensional equality to make good sense: each ¥, (¢ # 0) contains many
elements not corresponding to closed terms in the model. This also re-
futes the hypothesis that intensional equality is really a syntactical notion,
or that there is a confusion between “use” and “mention” if intensional
equality is introduced in the language.

It should be noted that the equality in HRO is not intensional
equality in the strict senge: an object of type o is given to us by a proof
that x ¢V, for some #. We have, in defining =_ in the model, abstracted
from the proof and only taken & into aceount. Thus =, as defined in our
model only approximates intengional equality. (For a further digcussion
of this point see § 7.)

It is also not necessary to Testrict the attention to mechanically
computable funetions such as the partial recursive functions in HRO;
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one might just as well introduce a model HEA of h
arithmetic operations.

25. Since, by coding types asg numbers,
in intuitionistic arithmetic HA, and since formulae of HACI-HA® are
interpreted in HRO by themselves (modulo logical equivafence), it is
obvious that I-HA” is a conservative extengion of HA.

2.6. Let us define a term of N-HA® to be normal, if it does not contain
subterms of the form IT7%¢,, byt Ri,%,0, R#,1,(St,). It can be shown
that in N-HA® each term is equal to a normal term (e.g. [15] § 2.2). Taking
additional care in the choice of numbers for [31, [z, 1, [Z,..], [R,], it
can be achieved that closed terms in distinet normal fo g

los : TINS are represented
by distinet elements in HRO. In fact, the axioms IE, listed in 4.2 can
be satisfied.

2.7. A quite interesting property of HRO is given by the following
theorem ([13] 8.5 and § 7 below): It is consistent relative HA to assume
that HRO satisfies the axiom of choice AQ,, for all ¢, 7, where

ereditarily hyper-

HRO is in fact definable

AC,, » Vo*ly® Az, y)— BX"Ve* A(n, 2w).

This contrasts with the properties of the term models, discussed in § 4
below, where even AG, , does not hold.

§ 3. Some applications to proof theory
3.1. In this section we present some examples of proof-theoretic

" results which are established quite naturally with the help of HRO, its

variants and analogues, in cases where the corresponding extensional
models (such as the hereditarily effective operations HEO and its analo-
gues, cf. [13] § 7 ox [15] 3.6.15) would not do. We have selected examples
of results not referring in their statement to a concept of non-extensional
equality.

3.2. HA+IP+-CT, is conservative over HA with respect to negative
formulae (i.c. formulae in the V, &, - fragment) (See [13] 6.3 (iv)).
Here IP denotes the following schema:

r (1 A—Hy B)—-Hy ("1 4—~B)
(y not free in 4), and OT, is a form of Church’s thesis:
CT, Vo Wy A(w, y)— UeVo Tu(T (2, 2, v) & A(z, Uu))

(T Kleene's T-predicate, U the result-extracting function).

The proof uses moditied realizability. Modified realizability assigns
to each formula A of I-HA® & formula Hadt... Har A (®y, ..., #) (4’ nega-
tive); negative formulae are loft unchanged by the assignment. If we then
interprete the objects of finite type in the assigned formulae as elements of
HRO, all theorems of HA +4-IP4-CT, become modified realizable (prov-

2 — Fundamenta Mathematicae, T. LXXXII
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‘ably in HA), i.e. the formulae assigned o theorems of this theory become
provable in HA on interpretation in HRO. HEO, the hereditarily effective
operations would not do, since OT, is not modified-realizable w.r.t. HEO.

3.3. HA+M-+IP,+4 CT, is conservative w.r.t. prenex formulae of HA,
This is proved in a similar way, using the Dialectica-interpretation instead
of modified realizability ([13] 6.3 (v)). Here M is Markov’s schema, and
IP, a weaker version of IP:

M Vo(Av14)& 11 He A-Hao 4,
1P, Vao(Av4)& (Vo A— Hy B)—» Wy (Ve A—B)
(y not free in A).

3.4. Extending HRO to a model HRO? with “second-order types”
(ef. [15] 2.9.7; [14] § 4) one obtains, similarly to the result in 3.2: HAS+
4+ IP+CT,+UP is conservative over HAS with respect to negative first
" order formulae. Here HAS is intuitionistic second-order arithmetic with
species variables and full impredicative comprehension, IP, CT, are as
before, and UP is the schema

105 VXHx A(X, 2)— Ho VX A(X, x)
(z a numerical variable, X a species variable).

3.5. For a suitable closed term F® of type 3 of N-HA® (where type
n-+1 is defined as (n)0):

) not N-HA® - o® =, > T = F?,

where =, is defined extensional equality. This expresses that the closed
terms of N-HA®, although extensional on extensional arguments, are not
absolutely extensional. To establish (1) by a counterexample, take for
B3 Qo[ 220 22(dud -2%)], and take for #2 and %2, in the model HRO as
described in 2.6, (n,2) and (m, 2) respectively; u, m godelnumbers of
extensionally equal, total, 1-1 recursive functions, » = m. 1 is interpreted
as the combinatorially defined A- operator. The example is due to H. P. Ba-
rendregt and R. Statman.

3.6. Let EL denote a system of elementary intuitionistic analysis,
with variables for numbers (#,y,#,..) and unary number-theoretic
functions («, f,y,..), equality between numbers only, definition of
functions by A-abstraction, a constant for defining unary functions primi-
tive recursive in given functions, with the appropriate axioms for this
constant, & pairing function with inverses and pairing axioms, and besides
t]}l;e{axioms and schemata of intuitionistic arithmetic, a weak axiom of
choice:

Vely Az, y)>HaVa A (z, av)
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(4 quantifier-free) (cj?. [15] 1.9.10). EL is a conservative
as can be seen by interpreting the function variableg
total recursive functions.

Let us define continuous funection

extension of HA,
a8 ranging over
application - by

alp =y =qee Vollz(a(<nd = B2) # 0) &

& Vala(<a) * Blminfa(<a) « Br) % 07)

where (&, ..., #»> codes the finite sequence @y, .
catenation, f2 =44, <f0, ..., f(z—1)>. '

Then, relative to an w-model U of EL, we can de
ECF (W) which are exactly analogous to HRO,
recursive function application replaced by
cation.

Specifically we define

= 7a41)

-3 Tn, % indicates con-

fine models ICF (W),
I.S[EO, but with partial
continuous funetion appli-

1) = .
Vo(x)‘ Sat =2, Vila)=gpa= a,

and with ¢ % 0

V%o')o(a) Ege VY€ Vi&[m(a(y) ad ‘”)
. where

al(y) o =gy afpmina(pe) # 0])=az+1.

V(lo)a( a) = det VWHV € Vi(alﬂzt” ~ y) ’
and for o, 7 # 0

V%a)t(a) Edef Vﬂ € VUHV € Vr(a‘ﬁ = '}’) .

Objects of type 0 are then pairs (z

(o) withs e » 0), objects of type ¢ # 0 are pairs
y i €V,

Application is interpreted by (o # 0,7 = 0):
(a,1)(x, 0) = {az, 0) , (as (0)0)($7 0) = (aldz-z, o),
(o, (0)0)(B, o) = (a(B), 0) (2, () 7)(B, 0) = (al B, 7).

Bquality is interpreted as (a, o) = (8, o)V (aw = fz). From the for-
malized theory of recursive functionals ([31; [15], 2.6.2) one then obtains

Interpretations for [07, [], 7,05 [ 2,000, [R,]; thus we have obtained

a mOd.GI for N-HA®, definable in EL. So N-HA® is also a conservative
extension of EL..

et §imilz‘u‘ly, one defines ECF (W) (extensional continuous funetionals),
finmg simultaneously with the objects of each type a relation of ex-

tensional equivalence at each type ([15], 2.6.5).
o ulBy'me&ns of these models we can obtain analogues to some of the
sults in 3.2-3.5, a continuity axiom schema replacing CT,.

9%
»

s T
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3.7. EL TP 4 CONT is conservative over EL w.r.t. negative formy-
lae. Here the schema CONT is given by

CONT Va¥p A(a, f)— HyVad(a,yla).
TP! is now the second order form of IP:
P! (14— "a B)— Ha(T1.4—B)

(a not free in A). TP is a special case of IP'. This result is analogous to 3.2
([15], 3.6.18 (ii)).

3.8. EL+M'4+IP;+ CONT is conservative over EL w.r.t. prenex
formulae. Here M', TP} are second-order generalizations of M, IP,, function
variables taking the place of numerical variables (3.6.18 (iii) in [15]).

3.9. The preceding results may be extended to cases where EL is
replaced by stronger systems such as EL-BIy (bar-induction of type 0
for decidable predicates).

§ 4. Term models; comparison with FHRO

4.1. N-HA” possesses a property which is logt by extension to I-HA:
each closed term i° of type 0 can be shown to be equal to a numeral 7
in N-HA®, i.e. N-HA® I {* = 7. This result does not hold for I-HA®: we
can find two closed terms i}, i} of type 1, representing extensionally equal
functions, and two versions HRO’, HRO" (i.e. defined as in 2.3, but
with different choices for the numbers representing S, I7, ., X ., R)
such that in HRO' i1, #; are interpreted by the same object, and in HRO"
by distinct objects (ef. [15], § 2.5); therefore in the first model B, 4 is
interpreted as (0, 0), and in the second model by (1, 0); therefore E, £}
cannot be evaluated in I-HA®.

4.2. A term of I-HA® is said to be in normal form, if it does not con-
tain a subterm of one of the following forms:

Itty,  Zhtty, R0,  Rit,(Sty) ,

Bt t, with 4,4, closed.
If we add the following rule IE, to I-HA®

1E, Bt — {1 if 4,1, ave closed, normal and distinet,
0 if ¢, 7, are closed, normal and identical,

then it can be shown ([15], § 2.3) that each closed term of I-HA®--IE, is
provably egua,l to a term in normal form. Since the only closed terms
of type 0 in normal form are numerals, in I-HA®-+-IE, we again have
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the property that each closed term of type 0 can be shown to be equal
to a numeral. .

The somewhat syntactieal-looking schema IE, can be replaced by
the following axioms IE, (which imply TE,), the negative diagram as it
were of intensional equality ([15], § 2.3):

1B, Let #;, 1%, be two distinct terms with the same type taken from the

set of terms containing 11'(,1,,,2 s ZL,MM, 8, k., E,, I, .,
Sﬂm,ﬂ'uaﬂmmm Rﬂlams’ Eﬂu.m“ Zﬂls,ﬂ‘mgﬂlvwﬂmw Rn'uw'zmsv for all Oy eee
vy 01g € T. Then #; 3 1, is an axiom. © # o'vy # y'—>Ray # Ra'y’;

@2 VY # Yy —Zoy # Zo'y’. I o # o', then 2o, s Y F Ty Y

As has been remarked in 2.6, a variant of HRO can be defined in which
IE, is satisfied. From this version of HRO it is also immediate that the
normal form of a closed term of I-HA®+IE, is uniquely determined,
since closed terms in normal form are interpreted by distinet elements
in the model.

4.3. We are now in & position to describe the term models for I-HA® -
+IB, (cf. [9]; [6] Appendix I; [15], § 2.5). In the first term model, the
objects of type o are the (godelnumbers of) closed terms in normal form
of type o. Application is defined as follows: ¥ is interpreted as the
uniquely determined term ff in normal form such that #7# = iZ. Equality
is interpreted as (literal) identity; the constants constitute their own
interpretation.

Some of the principal differences with HRO are: the domain of
objects of type o is recursive (in fact primitive recursive, for a standard
gidelnumbering); each object of the model has a name (description) in
the theory I-HA®+IE,; equality is also primitive recursive, but appli-
cation is not; in fact the application operation in the model is recursive
but not provably recursive in arithmetic.

4.4. The second term model is obtained by taking the closed terms
of type o as objects of type o, application as juxtaposition. Equality is
interpreted as equality of normal form; otherwise as the first model.
Now application is primitive recursive, but equality, although recursive,
is not provably recursive in arithmetic.

4.5. Neither term model satisties AC, in contrast to the consistency
of AC for HRO relative HA. The invalidity of AC for the term models
is seen ag follows. Let % be a numeral which is a gédelnumber for a recur-
sive, but not arithmetically provably recursive function. Then Valy Traoy
holds; the validity of AC in the model would require a closed term #* of
type 1 such that Va T (@, w,tw), which is impossible, all closed terms
of type 1 being interpreted by provably recursive functions of HA.
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§ 5. Foundational “applications” of intensional equality

5.1. Axioms of choice. If # is a numerical variable, D some intuitionistic.
ally meaningful domain, and N—D is the species of all mappings from N
to D, then we can justify a countable axiom of choice

1) Voly « D(A (z,y)— &f ¢ N>DVa(A(z, fz))

as follows. On the intuitionistic meaning of the quantifier combination
Vaoly ¢ D, giving a proof of Vally ¢ D 4 (x, y) means that we have a con-
struction of y ¢ D from » such that A (», ¥), for any . This construction
is nothing else than the required mapping from N to D.

That intensional equality enters implicitly into this consideration,
is seen by a comparison with another more general axiom of choice

{2) Vo eD Uy e D'(A(w, )8y e D+D'Va e D(A(z, ya));

here D, D’ are arbitrary intuitionistically meaningful domains. (2) ecannot
be justified in the same manner as (1): a proof of Vo e D Hy D’(A(w, g/))
implies that for each xe.D we can find a y ¢ D’ such that A4 (xz,y); but
this does not necessarily imply the existence of a function v, since the
procedure for constructing a y ¢ D’ from any given # ¢ D might also depend
on the proof that » e D. ]

This problem does not enter into the justification of (1), for if we
view natural numbers as very special mental constructions, obtained by
iteration of the process of adding abstract units, then not only does the
usual equality between natural numbers correspond to intensional equality,
but also it is decidable (in an absolute sense) whether a construction
given to us is a natural number or not. Natural numbers carry, in a manner
of speaking, their own proof that they are natural numbers.

Note also that for the justification of (1) it is essential that N—D
consists of all mapping from N to D. (Of course, special restrictions on

the premiss in (1) carry over to the conclusion: if 4 (%, y) does not contain -

choice parameters, f may be assumed to be lawlike, i.e. also not to depend
on “choice”.)

5.2. Axioms for lawlike sequences. One of the essential axioms for the
theory of lawless sequences LS, as deseribed e.g. in [4] or in [10], § 9, is
formulated as
1) Va(ar = fo)v 1 Va(er = f2) ,

if we choose a formulation of LS with equality between terms of type 0
only. Although in this form LS does not explicitly refer to intensional
equality, intensional equality enters quite essentially in the justification
of (1). For let us write = for intensional equality between lawless se-
quences, then obviously a = fv 7 a = f. If « = g, then Vo(az = px). Now
assume a # § and Va(aw = fz). Since for any lawless sequence at any
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moment only an initial segment is known, it would follow that for distinet
lawless sequences a, § Va(ax = Br) would have to be asserted from our
kmowledge of initial segments of «, p only, which is obviously impos-
sible. Hence a # f—71Va(az = fa). This yields (1). .

'5.3. Discussion of intensional identity of proofs. Congider first elementary
intuitionistic arithmetic formulated with zero, successor, addition and
multiplication. Each closed term can be Interpreted as a deseription of
a natural number; the numerals are eanonical descriptions of the natural
numbers which reflect directly the construction of the natural numbers
themselves. A not entirely trivial argument is necessary to show that
each closed term can be evaluated (i.e. proven to be equal to a numeral).
It is this non-trivial argument (which amounts to showing that addition
and multiplication as operations on natural numbers are élways defined)
which permits us to regard closed terms ag descriptions of natural numbers,
(This also explains why the syntactical equivalence relation between
deseriptions corresponding to intensiona]l equality between objects need
not be trivially decidable, although intensional equality is: in comparing
the descriptions, we have to rely on the non-trivial proof that certain
operations on the objeets’ are always defined.)

It is also possible to interpret the closed terms as descriptions of
computations (namely the standard evaluation procedure for closed
terms). Then obviously intensional equality between the computations
corresponds to literal equality Detween their deseriptions (i.e. closed
terms), and arithmetical equality ¢ = t' corresponds to: the computations
¢and ¢" have the same result. Arithmetical = is, on this interpretation (1),
coarser than intensional equality.

After these preliminary discussions, we are in 2 position to discuss
briefly a conjecture on intensional identity between proofs which has
been put forward in the literature ([8], 3.5.6).

We distinguish between proofs (the objects) and deductions; deductions
are syntactical objects: descriptions of proofs. For example, let us consider
& natural decduction system for intuitionistic implieational logie, with
a single reduction rule for deductions: —» contraction. (For all terminology

see [8].) For thig example the conjecture may be stated as follows:

two proofs corresponding to deductions =, #’ are intensionally the
same <> m, w reduce to the same normal form.
In one direction (=) the conjecture is doubtful: if it is possible that dif-
ferent formulae express the same proposition, then it is also possible that
different normal deductions represent the same proof. But even if we
assume =, the conjecture also present difficulties in the other direction.

(*) We do not wish to suggest that these interpretations are the only possible ones!
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Tf we think of the objects of the theory as “direct proofs” whoge
canonical descriptions are normal deductions (cf. numbers and numeralg
in the case of arithmetic), then the inference rules —I, —E correspond.
to certain operations on direct proofs; the normalization theorem then
establishes that these operations are always defined, and permits us to
regard any deduction as a deseription of a direct proof. The conjecture
in the direction < then becomes trivially true.

But if the deductions are seen as descriptions of a more general
concept of proof (see footnote (*)) (in the same manner as closed terms
are descriptions of computations in the case of arithmetic) it may be
atgued that intensional equality should correspond to (literal) equality
of deductions; and then the conjecture is false.

So, without further information about the intended concept of
proof, the conjecture in the direction <« is meaningless because, as just
explained, ambiguous (2). ' ‘

Finally it should be added that for a natural deduction system for
arithmetic, where, besides proper reductions, also induction reductions
are considered, the conjecture is manifestly false, as pointed out by
G. Kreigel. Firgt proving Vay (¢+ v = y-+ =), then specializing to 27452
= 52427 is a proof basically different from the proof of 274 52 = 524-27
obtained. by evaluating both sides of the equation; basically different
inasmuech as the second argument does not use the-insight that addition
in general is commutative. Nevertheless, the deduction corresponding to
the first proof reduces to a numerical computation.

§ 6. Non-extensional, decidable equality for incomplete objects

6.1. Our principal example of a decidable, non-extensional notion
of equality was provided by HRO. It might be instructive to present
another model, involving “incomplete” objects (objects which are nof
completely fixed in advance, such as choice sequences and lawless se-
quences). We do not claim any mathematical interest for the non-exten-
sional equality in the model below, only pedagogical interest.

6.2. Let o denote a single lawless sequence, and let us pub (a)
Sgee MJ(n,y) (j a pairing function onto the natural numbers). Then
W =gep { % (0)u| n e N} is a model for LS, the theory of lawless sequences
(without species variables). Here n # (a), indicates the sequence obtained
by concatenating n and (a)n. Now % * (a)s = m * (a)n (intensional equality
in our model) is interpreted as n = m ([12]).

Therefore (although of course the enumeration of U cannot be ex-
pressed in LS) we have an easily visualizable idea of “intensional equality”

) () A similar discussion is found in [7]. However, the discussion there takes its
pon.:t of qepai'ture from a syntactical notion of definitional equality, whereas our concept
of intensional equality is a relation between objects, and not between their descriptions.
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in this ease. The example might help to remove the doubts of those who
feel uneasy about the idea of many distinet lawless sequences.

6.3. We may go one step further, and consider the species
qL* = dof {{W}I"’u(ali syt @heK ue N, ey, g, €U, 8,y 8

u
all distinct} .

Here K is the species of (lawlike) Brouwer operations (i.e. neighbourhood
functions of continuous functionals, ef. [6], § 3), {x} is the (partial) recursive
function with godelnumber #, |- is the continuous function application
already defined in 3.6, », is a standard coding of u-tuples of sequences
into a single sequence.

Two elements of U*

{x}l ’pu(eli ety gu) b {‘Z:/}l 'Vv(é'{, ey 81’7)
are intensionally equal in our model, iff

’

p=0, wu=0v, g=¢ for I<i<u.

U* provides an w-model for a substantial fragment of intuitionistic
analysis with choice sequences (see [11]), modulo the assumption of
a generalization of Church’s thesis (to be precise: ECT, for IDB; for ECT,
see 7.3, for IDB see [6], §3, where it is shown that ECT, is consistent
relative IDB).

§ 7. Concluding remarks about HRO

7.1. The natural intended model for N-HA® (cf. [1], “Berechenbare
Funktion”) consists of the constructive functiomals of finite type. The
natural numbers are the objects of type 0. Suppose we have already
understood the concept of a constructive functional of type o and of
type . Such functionals are assumed to be given as such, and for‘ any
construction it should be clear whéther it is presented as such a functional
or not. The constructive functionals of type (o)r then comsist of all
mappings (completely described by a rule) from objects off type ¢ to
objects of type v with respect to (strict) intensional equality.

For this notion, the axiom of choice AC should hold (by arguments
similar to those used in the special case of 5.1).

7.2. HRO it not a precise rendering of this informally. des;crib_ed
model: as we remarked before, the mappings of V., are mappings which
depend, for any argument «  V,, on # only, not on the proof that z e V.

Hence it is also not obvious that HRO should satisfy ‘A-.C. .On the
intended intuitionistic interpretation of implication, an implication

zeV,~A
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o

is established giving a rule transforming proofs of @ ¢ V, into proofs of 4,
However, if we can find a re-interpretation of the logical operations such
that implications @ « V,—>A can be assumed to be established by rules
depending on the truth of # ¢ V, only, not on the proof of ¢ V,, we might
expect to show consistency of AC for HRO relative to this interpretation,

7.3. This is achieved by Kleene’s numerical realizability (cf. [137;
[15], § 8.2). Let us call a formula of HA almost negative if it does not con-
tain v, and ® only in subformulae Hz (¢ = s). Let BOT, (Extended Church’s
Thesis) be the following schema:

ECT, Vo[ Az—Hy Bryl—HuVa|Ae—0o(Tuzw & Bz, U))|
(4 almost negative).
Then ([15], § 3.2; [13]), if #rd expresses “a realizes A”, we can show:
HA-+ECT, — A<HA  Hz(zrd),
HA+ECT, - Ao Ha(zrd) .

Since 2 eV, is also expressible by an almost negative formula, the
realizability interpretation is an interpretation of the required kind, and
one easily shows that AC for HRO is derivable in HA+RECT,. AC, , is
obviously false for the corresponding extensional model HREO, since

Vo'Hy'Vu'Ho' [ Tyue & o'u = Uw)
but we cannot find an extensional 22 such that
Vo' Vul o[ T (2%, «, v) & z'u = Uv] .
§ 8. Digressions

8.1. “Fixpoints” of the Dialectica intexpretation. Let us call a theory H
a fizpoint of the Dialectica interpretation if, for any sentence A such that
H —~ 4, with Dialectica translation . '

Uy oo B VY oo Y Ap(Lyy eny Tny Y1y oory Yrm)

(Ap quantifier-free), we can find a sequence b, ...,% of closed terms
of H such that

H - A.D(tu ey tn: Yis ooy ym) ¢

N-HA® is not a fixpoint, as we can see by taking for A the formula
T8 = 0 2° = y°), suggested by an example of W. A. Howard.
N-HA® |- 4 since, of course, — ] 7(2° = 4°va® # 4°) and

N-HA® |- (2° = y°va® # y°)— H2(2* = 0o a° = 1°).
But

N-HA® |- [t2°y° = 0 7177 (2° = 4°)]
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is false, for each ¢ of type (o)(0)0, since otherwise we would have
N-BA® = 717" = y°)v 71(0° = 9) .

In fact the matural proof of the soundness theorem for the Dialectics
interpretation has to appeal to the decidability of prime formulae to
show the interpretability of A—A & A.

I'HA® is a fixpoint for the Dialectica interpretation, and so are
LHA®+ IE,, I'HA®+-IE, (IE; is described in 4.2). .

On the other hand, E-HA® formulated as a theory with equality of
type 0 only, is not a fixpoint: W. A. Howard has shown that already
Varye(Vu(mu = yu)—>22" = 2%y*), the simplest non-trivial instance of the
extensionality axiom, does not have a Dialectica interpretation by means
of functionals of E-HA®. To obtain a fixpoint, one has to weaken the
extensionality axiom to a rule, in the simplest form given by

Ft=,8=> -T[t] = F[s]

(=, is defined extensional equality, as before). The resulting theory is
called WE-HA®. .

If we interpret the objects of finite type by ECF (extensional continu-
ous funetionals), then the extensionality axiom becomes interpretable;
but the axiom stating that functionals of type 2 are continuous is itself
not interpret&blé relative to ECF ([15], 2.6.7, 3.5.12).

However, there is a natural sub-theory of N-HA” which is a fixpoint;
let us call this theory HA“. HA® is formulated with equality of .type 0
only, and instead of the defining axioms for the functional constants
we have schemata

Fldwyl = Flw], F[Zoyz]=Flaz(ye)], F[Ray0]=F[,
F[Ray (S2)] = Iy (Rayz)] -

8.2. A Bn-conversion variant of HRO. The theory T-HA” as described
before was based on combinators, and the reduction relation and normal
form corresponded to weak reduction and weak normal form in combi-
natory logie.

T we consider instead o theory AI-HA® with 1 instead of II, X as

a primitive, and with a rule: if t reduces to ¢/, then ¢ = t', where reduction
" i interpreted as reduction w.r.t. fné-conversion for typed terms, then

HRO ag it stands is not o model for this theory; but it is possible to
construct an HRO-like model for AIHA® too (i.e.= is, for each type,
interpreted by equality between natural numbers, and the model eontm‘ns
many objects besides those denoted by closed terms of 2I-HA®). For details,
see [15], 2.4.18.
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Multirelation et dge Il-extensifs
par

Roland Fraissé (Marseille)

Résumé. Une relation B’ extension d'une autre B, est dite une l-extension lorsque,
pour toute formule logique universelle ou combinaison booléenne d’universelles, Ia
valeur de vérité est la méme pour R et R’, les individus libres étant substitués par des
ééments de la petite base |[E{. Nous obtenons iei une condition algébrique d’existence
dune 1-extension commune 4 deux relations (3 Uisomorphie prés). Comme application,
deux chaines, ou ordres totaux, de bases infinies, admettent toujours une 1-extension
commune.

1. Rappels sur la 1-extension. Rappelons qu'une multirelation, ou suite
finie de relations de base commune, soit R, admet B’ comme 1-extension,
lorsque R’ est une extension de R et que, pour toute partie finie F de la
Dbase |R'|, il existe un isomorphisme f de la restriction R'[F sur une restric-
tion de R, avec f(#)=x pour chaque z de lintersection F n |E|.

Rappelons qu'un isomorphisme local d*une multirelation E vers une
autre R, est un isomorphisme d’une restriction de E sur une restriction
de R'. Btant donné un entier naturel p, un isomorphisme local f est dib
um (1, p)-isomorphisme de R vers B’ lorsque, pour tout ¢<p et tous
éléments ay, ..., a, de la base |B], il existe aj, ..., g de |R’| la transforma-
tion f augmentée de la transformation de chaque a; en a; (i=1,..,9
4tant un isomorphisme local de R vers R', et inversement en échangeant R,
R’ et vemplacant f par f~%. On voit qu'une extension R’ de R est une
1-extension si et seulement si, pour toute partie finie # de |R|, et tout
entier p, Pidentité sur I est un (1, p)-isomorphisme de R vers R

Une traduction logique de la définition précédente, dit que R’ est
e 1-extension de R lorsque, pour toute formule logique P du premier
degré: formule prénexe universelle, ou existentielle, ou combinaison
Dbooléenne des deux; avee des prédicats substituables par R ou par son
extension R'; et avec n individus libres substitués par des éléments quel-
conques d, ..., an de la petite base |&[; leg valeurs de vérités pour F et
pour R’ sont les mémes: P(R)(a, ..., ) = P (E')(a, veey On)-

Si B’ est une 1-extension de R, il en est évidemment de méme de
toute restriction de B’ & un ensemble intercalé entre |Ef et | R

Pour toute R de base infinie, il existe une restriction dénombrable
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