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Relations on lines as primitive notions
for Euclidean geometry

by

W. Schwabhiiuser (Stuttgart) and L. W. Szczerba (Warszawa)

Abstract. Euclidean geometry is usually treated as a theory of relations on
points. It is proved that this geometry may be formulated as a theory of relations
on lines. The simplest systems of primitive notions for dimension-free, two-dimensional
and n-dimensional (with » > 3) geometries are given. For n= 3 the problem of defining
such a system remains open. '

The possible systems of primitive notions for geometry were studied
by Royden [5], Beth and Tarski [1], Seott [6]. Some negative results are
contained in Robinson [4] and Tarski [8]. In all these systems variables
are ranging over points, i.e. geometry is treated as a theory of structures
with universa consisting of points only. In Menger [3] two universa are
used: that of points and an additional one of lines. In Tarski [7] elements
of the universum are open discs. In this paper we are concerned with pos-
sibilities of taking as the universum the set of lines only and relations on
them as primitive notions (*). ’

We shall prove that the binary relation of perpendicularity -together
with the ternary relation of copunctuality may be used as a system of
primitive notions for dimension-free elementary Tuclidean geometry. Per-
pendicularity alone suffices for all dimensions higher than three. In dimen-
sion two, a ternary relation is essential: there is no system of primitives for
plane Buclidean geometry consisting of binary relations only. In the three-
dimensional cage, we know that perpendicularity together with the binary
relation of intersection lines may be used as system of primitives. However,
we d0 not know whether the notion of intersection of lines is superfluous
or not. !

We do not know whether exists at all a binary line-relation, which
may be used as the only primitive notion for space Euclidean geometry-

(*) Most of the results have been obtained when both authors a.irb.ended thg Meeting
on Foundations of Geometry in Oberwolfach 15-21. 7.1973. We wish to express our
thanks to the organisers of that meeting.
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§ 1. Preliminaries. Let §= <F, 0,1, +,., <> be an ordered com-
mutative field. We assume that the field § is Buclidean, i.e. that for any
e eF, if 0 < a-then there exists a f ¢ F' such that o= f2 and 0 < p. T,
element f will be denoted as usual by Va. Later on, when referring to
a field, we shall always mean an ordered commutative Buclidean field &,

The elements of F™ will be called points and denoted by small Latin
letters a, b, ¢, d,®, y, 2. As is well known, F'* with appropriate operationg
forms an - dimensional linear space. We shall denote the sum of ¢ and }

by @ @ b, the difference of @ and b by o © b, the inner product of « and p-

by ¢ © b and the product of @ and b by ab. As usual, we shall wirte g
instead of ¢ © a. By the norm of ¢ we mean la] = Va2 e .
The n-dimensional Cartesian space over & is the structure
(1) %= <F%,B%{D%>
where
' Bylabe)er o O b+ b Q¢ = |a e ¢
and
Difabed)> o © b= lc O d].
By a line in €% we mean any set of points
(2) L(ab) = {a ® §(a@b): e}

where a # b. The point a © b is called the direction vector of the line L(ab).
Lines will be denoted by capital Latin letters K , L, M, N. The set of all
lines in €% will be denoted by L%.

Let B = <Py, ..., P> be a sequence of relations on L%. We put
‘%(;‘B) = <I'§, Py, ..., o -

By a geometrical notion we mean either a point-geometrical notion,
i.e. a function assigning to a field & and a number n = 2 a relation on F™,
or aline-geometrical notion, i.e. a function assigning to afield ¥ and a number
n>2 a relationon I%. Thus, for example B, is the point-geomsetrical
notion of betweenness, and Bg is the betweenness relation in ;. We
shall usually omit subsecripts § and superseripts n. This should not cause
any misunderstanding. We shall write = instead. of D.

We shall use several line-geometrical notions defined as follows (2):

(*) In the following we put a dot over a sy
that lines have a point in common. In cage a n
the sign ™ over the symbol, For an arbitrary bin:
viations:
We often write 2Py instead of P
We write oy, ... Zn Pypy, ..
‘We write Pz, ... @a)
symbols to denote mathem:

mbol of a geometrical notion if it requires
otion requires lines to be digjoint, we put
ary relation P we.uge tho following abbre-

(zy).

- Yn Whenever z; Py, for all 5.< m and j < n.

Whenever ; Pay for all 4, § < n with 4 # j. We use the same

atical objects and their symbols.
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Lines L(ab) and L(a’'d") are weakly perpendicular:
3) L(ab) 1 L(a'b) > (6 QB O (¢ ©b)=0.
Lines K,L are (strongly) perpendicular:
(4) ' Kj_L«—»K_LL/\Ha aeKnL.

Lines L(ab), L(cd) are parallel:

(5) T(ab)|L (od) > Jap [a+ 2 # 0na(a©b) = fc© )],
in other words, two lines are parallel iff their direction vectors are linearly
dependent.
Lines K ,L are strongly parallel:
(6) KL E|IAK #L.

Lines K, L intersect each other:

(7) EXLe dal{a} =K ~L].
Lines K,L, M are co-punctual:

(8) p(KLM)—~Ta [ae EnL~M].

Lines K,L, M are co-planar (there is a two-dimensional hyper
plane in € containing all of them):

9) P(KLM)< dabe [K, T, MC {a®ab@po: a, B eF}].

Tet us restrict ourselves to €% — the n-dimensional Cartesian space
over the field of real numbers. We assume it _is k.nown W]'laib the mea}ssvrz
of an angle between two lines (not necessarily intersecting) mea,ns.v N
shall write K X T if the lines K and I do Entersect and the mf?a,sure of t ;
angle between them is a, analogously K X, I if t]}ey do not mtegiz(;t an
the measure of the angle between them is a. It is easy to see tha

(10) ' K_]_L“’ KXnIZL ’
(11) K Lo X pIVEX oL -

‘We shall use point-geometrical notions:
Points a, b, ¢ are co-linear:

(12) " L(abo)e»3K [a, b, 0 cK].
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Points a, b, ¢ form a right angle:
(13) - [ _(abc)e>AKL [K 1 LAa,beEAb,cel].

By the n-dimensional Huclidean geometry E" we mean the non-
elementary theory of Cf. We shall write E"< for the common part of
all E™ with # < m. By EE® we mean the elementary theory of all (s:g where
F is any ordered, commutative Buclidean field. We shall write EE*< for
the common part of all EE™ with n << m.

A set of points is a line iff there are two different points ¢ and b
such that it is of the form L (ab). Thus instead of lines we may gpeak of
pairs of different points, and of relations on such pairs instead of line-
relations. A line I may be determined by different pairs of points;
thus in such an approaeh we have to treat some pairs as equal, namely

caby = ¢a'b’ > L{aba’) AT {abb’) .

In other Words there is a one-to-one correspondenee between lineg and
elements of the quotient set S’/ where

8 = {Kaby: a # b}.

This approach is especially convenient to describe the notion of a definable
line-relation (line-notion). We say that the sequence P of line-notions
Py, ..., Py i8 definable in EE" if and only if there are the formulas @, ..., D,
formulated in terms of B and D such that for any field ¥ we have

(14) ’%(SB) = <(Fn)27 -P(;; e Pgla> p S//=’

where Pg, ..., P, are relations defined in €f by the formulas &, ..., 0;.
We say that the sequence P is definable in E™ if (14) holds at least for
¥ = R. We say that it is definable in EE™S< (respectively E™<) if (14)
holds for every n = m.

 On the other hand, we say that the notions of betweenness and equi-
distance are definable in a structure (a class of structures) L% (P) if there

is a natural number % and formulas Dy, Dp, ¥, T from the la.ngmge of
() such that

§} = (TR), B, DI

where B’ and D' are relations defined in E"(EB) by formulas @5 and @y,
8" C (Ig)* is defined in Q2(P) by ¥, and =’ is the equivalence relation
defmed by &

We say that a sequence of line-notions P is a system of primitives
for EE® (E", EE™<, E™<) if P is definable in EE (E*, EE™<, E™<) and
moreover the no’mom of betweenness and equidistance are defina.ble in
an appropriate class of structures of the form QY%P).
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§ 2. Possible systems of primitives. We shall use the following two
lemmas:

LemmA 2.1. The line-geometrical notions

1,1, XD
are definable in EE*S,

Proof. It will be enough to indicate formulas @ 0P, P and D,
guch that isomorphism (14) holds for all Buclidean fields and all n = 2.
The required formulas are provided by the following equivalences:

L{abc) < B(abe)v B(bea)V B(cab) ,
L (abe) < do B(abe) Aab = beava = ac,
L(ab) L L(ed)«> Iay [L(abz) AL (cdy)A L (azy)A L (awe) A L (azd) A
A L (bay) A L (bac) A L (bad) A L (czy) A L(cya) A L (eyb) A

_ A L (dyz) A L (dya)A L_(dyb)Aa £ bac # d]
(see Fig. 1),

Fig. 1

L(ab) 1T (ed)«> 3w [L (abz) AL (cdw) A L (aze) A L (azd) A L (bze) A
AL (bad)ra # bAc # ],
L(ab) %I (ed) < 31w [L(abz) AL (cdw)] ,
P{T{ab)L(@'b")T(a"b"))e» 3o [T (abo) AL (a'b'w) AL (a""b"0)] -
This completes the proof.

LeMMA 2.2. The point notions of collinearity L and right angle . may
be used as primitive notions for EE.
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Proof. Tt will suffice to give the following equivalences (the firt
one is due to Jenks [2]):

B{abe)— Az [ L (axe) A L (abz) A L (ebz) AL (abe)]
(see Fig. 2),

Fig: 2

ab =" acodAwy b # eA L (abz) A L (acx) A L {ayb) AL (ayz) AL (byc)
(see Fig. 3),

a
Fig. 3
ab ="ace 3w [ab =" avAac =" ax] .
M(abo)e> (o =Dbva # c)Aba = be AL (abe)
(midpoint relation),

ab = cd> 3wy [M (azy) A M (bve) Aod =" cy)
(see Pig. 4). This completes the proof.
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THEOREM 2.3. It is possible to use perpmdwulamty 1 andeo -punctuality
p as a system of primitives for EE*<.

Proof. Because of Lemma 2.1 it will suffice to prove that the poiut
notions of collinearify and right angle are definable in the theory of
all structures &% 1, p) with any field § and » > 2. We put k¥ — 2. Thus
we shall cons1der pairs of lines, in fact not all pairs, but only pairs of
different intersecting lines:

8" = {(K,L): K # LAp(KEKL)} .
We shall identify all pairs of lines having a common interseetion point:
(KL ="' {MN) o p(ELM)Ap(ELN).

In other words, by a “point” we mean, loosely speaking, pencils of co-
punctual lines. We shall denote these points by small Latin letters, just
like points in €F. Thus it may happen that for some L we have (KL) ¢ a.
This is to be undergtood as “the point a is lying on the line K” and will
be denoted by a e’ K. Let

L(abe)«+3K [a, b, c e K]

(points a, b, c are collinear)
L (abe)«3AKL [K ] LAab ¢ EAbe e L)

(points a, b, ¢ form & right angle). This by Lemma 2.2 proves the theorem.
THEOREM 2.4. The pair of line-notions 1, X may be used as a system
of primitives for EE'S,
Proof. Because of Lemma 2.1 and Theorem 2.3, it will suffice to
define the ternary relation of co-punctuality p. First we shall define the
notion of co-planarity in terms of perpendicularity and intersection:

P(KLM)«~3INN'N" [_'L(NN’N")AKLMXN’N”A
ATTEXNATLXNATI M XNAKLM # N,
and then the notion of co-punctuality: )
p(ELM) K =L = MV (K = LALXM)V(E = MAMXI)V
V(L= MAMXE)V {+# (ELM)A\[P(ELM)~ 3N (ELM I N)} .
This completes the proof of the theorem.
THEOREM 2.5. The notion of perpendicularity 1 may be used as the
only primitive mnotion for EE*<.

Proof. Because of Theorem 2.4 it suffices to give a definition o:ﬁ X in
terms of ] :

KXLe3MN [EL] MNAMINAK #1I].
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3. Negative results. Now we intend to prove some results on the impog-
sibility of taking some sequences of notions as systems of primitives for
certain geometries. In fact, we shall prove these theorems for E» only,
since this implies analogous results for E"<, EE" and EE"<. To prove
these theorems, we first have to give a classification of all binary relationg
on lines in &F.

Let P be any binary relation (in particular the identity relation);
we pub :

PO—@G, PY=P,

Thus, e.g. K =® K always holds and K =®TL never holds.
In GF, all definable binary line-relations are of the form Py, where
4,§=10,1, AC(0,=/2) CE and

(15) Pya(EL) o> [E =9 L]V [K[9L]vAola e ANEX,T] .

In fact, let P be any binary definable relation. Since it is definable, it
has to be closed under similarity transformations, i.e., if P(KL) holds
and ¢ is a similarity fransformation of €%, then P(cKoL) has to hold.
Let P(KK) for some line K. For any line I, there is a similarity
transformation mapping K on L, P(LL) holds for any line I. Similarly,
we may prove that if the relation P holds for two distinct parallel
lines, it holds for any two distinet parallel lines, and that if P holds for
two lines intersecting at the angle a, then P contains >'<a.

Employing similar’ methods, we may prove that for all dimensions
higher than 2, all definable binary line-relations are of the form Piyap
where 4,j= 0,1, 4, BC (0, n/2) CR and

(16)  Pyap(KL)o [K =9 LV[K[OL]vIala e ANK X, L]V
VEREE B/\-K>'<p1;] .

THEOREM 3.1. There is no system of primitives for E* consisting of
binary line-relations only.

Proof. Let K, be a fixed line and o any one-to-one mapping such
that K| oK for each K and oK, # K, (e.g, a translation). We put

K i KK
K =17 09
4 { K otherwise .

Iﬁ is‘ easy to see that the mapping preserves all definable binary line-
Telations (see (15)) but does niot preserve co-punctuality. Thus, by Padoa's

method, the notion of co-punctuality is not definable in terms of definable
binary line-relations. ‘
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By an analogous argument, for n = 3, copunctuality is not definable
in terms of the relations Py, (ie. Py, for 4= B). As a corollary
we geb

TrEOREM 3.2. For any n == 2, it is not possible to use CLol> as a system
of primitives for E". , .
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