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Abstract. For a k-space X let O(X) denote the continuous real or complex-valued
functions on X; consider a uniformly closed subalgebra 4 of O(X). If B = {x ¢ X: |f(x)]
= sup|f()]} for some f ¢ 4, and if p ¢ B is isolated in the boundary of B or if X is first

teX
countable, then C(Ny) (Neo == the one point compactification of the natural numbers)
is a homomorphic image of A so that 1) the maximal ideal I, = {f ¢ 4: f(p)= 0} con-
tains 2¢ mutually disjoint infinite chains of prime ideals of 4; 2) I, is not countably
generated; 3) if 4 has a peak point nonisolated in X, then 4 has a finitely generated
ideal whieh is not principal and krull dim 4 = co.

Under further restrictions on X and 4, countably generated ideals and chains of
ideals of A are discussed. Applications to generalizations of the disc algebra are con-
sidered.

Let C(X) denote the algebra of complex-valued continuous funetions
on a space X. The relationship between X and C(X) has been studied
for a long time; it is known that if X is nontrivial in almost any sense,
0(X) has an intricate ideal structure with an abundance of prime ideals
in particular. For fixed X what aspects of this ideal structure do various
subalgebras A of C(X) share? We discover, roughly speaking, that when
A is uniformly closed and X has a modicum of compact parts, the al-
gebra of all continuous functions on the one point compactification N,
of the natural numbers is a homomorphic image of 4 and from known
properties of O (N.,), we deduce that 4 and O(X) share many qualitative
aspects (2.1 f). For example both will contain chains of prime ideals of
arbitrary length.

Tven more can be said about a class of subalgebras (§ 1) which
generalize to noncompact spaces the familiar notion of uniform algebra
[15]. Here a Silov boundary can be introduced and as with C(X) a elosed
countably generated ideal has a hull which meets this boundary in an.
open-closed get (3.6). Under further restrictions on X, chains of arbitrary
ideals are also discussed (§ 4). Our results generalize theorems in [10],
[11] and [13], and bear on the problem of characterizing C(X) among its
subalgebras discussed in [5] and [18].

The coneept of peak point (§ 1) serves as our motif. It is sueh point.;s,
together with uniform closure, which breed the intricacies which -dis-
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tinguish .4 from such subalgebras as polynomials in one or several vari-
ables where complications, while plentiful, are more laconic and controlled,

1. Preliminaries. The topology of uniform convergence on the compact
parts K of X is a locally m-convex topology on C(X) given by the
seminorms |f]lz = sup {|f(2): @ « K}. A function algebra A on X is a sub-
algebra of C(X) with identity which separates the points of X and ig
closed in this topology. Much of the theory of uniform algebras [15]
generalizes to this setting in a more or less straightforward way [9].
Here we sketch only the concept of boundary which will be useful in what
follows.

The dual of 0(X) is M (X), the complex-valued regular Borel measures
on X of compact support. A probability measure u ¢ M (X) is a positive
measure of total mass 1. Given a function algebra 4 on X, we ecall
a probability measure u a representing measure for A at @ ¢ X if f() = [ fdu

P

for all fe A. We define the Choquet boundary of A[0A] as the set of those

@ ¢ X which admit only unit mass at  for representing measures; for

example, if X is completely regular, 00(X)= X [8, p. 203]. pe X is

a peak point for 4 if for some fe 4, f(p)=1 and |f(»)] < 1 when z # p.

Evidently every peak point p is a boundary point; indeed if z is a rep-

Tesenting measure at p, f"—>ay,; boundedly so that 1= f(p)" = [ f"du
x

= p{{2})- ,
Standard arguments [9] reveal that the points of 34, considered as

elements of the dual A’ under evaluation, consist of the extreme points
of the weakly closed, convex set of those continuous functionals whose
action on 4 is described by integration against some probability measure.
If X is compact the Krein—Milman theorem guarantees that 84. is non-
void, but this will not be true in general (cf. 1.3). Nevertheless we define
the Silov boundary of A[I'4] as the closure of 84 in X. Evidently this
need not be a boundary in the sense that, say, restriction A—>A|Ty is
a topological algebra equivalence, but as we shall see, it does make geo-
metric sense in certain cases, it agrees with the notion in the compact
case and it reveals, as we wish to emphasize, where the algebraic sub-
tilties of 4 coagulate. ‘

EXAMPLES OF FUNCTION ALGEBRAS. 1.1. If 4 is a locally convex
topological .algebra with identity, the Gelfand -transforms of 4 form
a subalgebra A of C(Abs) which contains the constants and separates

the points of the completely regular space Ao4. The closure of A is there-
fore a function algebra on 4.

1.2. For any subset X of complex n-space C", let P(X) and R(X)
dt?note the closure in C'(X) of the polynomials and the rational functions
with poles off X respectively. Let A (X) denote those continnous functions
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on X which are holomorphic on the interior of X. Evidently P(X)C R(X)
C A(X) are function algebras on X. It follows from Cauchy’s integral
formula that the Silov houndary of each is eontained in the topological
poundary of X in C"a2X]; for compact planar X, Mygy=1T' o = 0X
[15, I1. 1.3, p. 27], but even here I'ny, is typically proper in 8X.

Call X polynomial (rational) convex if X coincides with {AeC™ for
some compact K C X, [f(2)| <|fllg for all polynomials f (rational fune-
tions f with poles off X)}. In the plane every X is rational convex, and
every convex seb is polynomial convex [9, 3.2.17, 3.2.21]; in general,
X is polynomial (rational) convex if and only if evaluation X > Mopiny(Mopzy)
is a homeomorphism.

1.3. Let D be the open unit disc and for any FC T = 2D, set 4p
= A(F v D). The Choquet and Silov boundary of Ay is F, since f(z)
= (az+1) is an Ar function which peaks at a ¢ F. The boundary of the
algebra of holomorphic functions on D is therefore empty.

Notice also Ap= P(Fv D). For given feAr and §>0, fy(2)
=f (ﬁ_—(S) lies in P(F v D), since it i3 uniformly approximable even
on D by the partial sums of its Taylor series ab(_mt 0. For compact
ECFv D and ¢ >0, f is uniformly continuous on K’ = {rz: r [0, 1],
z e K}; this implies ||f;—fllz < & for all sufficiently small é. Since F v D
is convex evaluation is evidently a homeomorphism Fu D = Mo
from this it follows that Ap is a Fréchet algebra if and only if P is
open in 7.

1.4. Example 1.3 can be generalized following [3]. Suppose G is an
ordered locally compact Abelian group with non-negative elements P.
Let A4 denote the space of all nonzero continuous multiplicative maps
o: P~D (o(zy) = o(2)o(y)) with the compact-open topology. If I' is
the dual group of G then for each F CI'|P C 4, leb é r denote the closed
linear span of the functions {ws: # ¢ P} in C(F v 4) where rf)x(a) = o(x)
and 4 = A—I'|P. Because P is a semigroup, Ar is a function algebra.
As before 84y = F = I'4y; notice for G =2, Ar== Ar.

1.5. Given a family of function algebras 4, on spaces Xa, th(? closed
linear span in C(X) of products f, fa, - fo,» inberpreted as funetions on
X = IT, X,, is a function algebra on X whose Choquet and Silov ‘F)oundanes
are II,04, and IT,I"4, respectively. The polydisc algebra [26] arises from 7%
copies of the disc algebra is just this way.

OTHER EXAMPLES. We are also interested in subalgebras A of C(X)
which are uniformly closed: if fn € A and f,—>f uniformly on X, then fe 4.
Of course every function algebra is uni‘forml'y closed; th.ere are 'Z]til}.:xner
obvious examples: Cy(X) and C*(X) (the contmuous_ functions vanishing
ab oo and bounded respectively). The left (equiv. right) almost periodie
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functions on a topological group provide another well-known example
[23, Section 41, p. 165]. .

1.6. If I is a proper ideal of O(X), its uniform closure I* is a proper
subalgebra of C(X); in fact I* consists of those fe O(X) whose Stone~
Cech extension f* vanishes on a fixed nonvoid A C X [24, 2.3]. I*4C is
also a uniformly closed subalgebra of C(X) which is proper if 4 is not
3 point of X.

1.7. If X, v completely regular, it has the structure of a uniform
space [22, 6.17, p. 188] and (;(X), the bounded functions on X which
are uniformly continuous with respect to a fixed uniformity x inducing <,
forms a uniformly closed subalgebra of C(X). Evidently Cy(X)C C}(X)
C 0*X); if X is metric but neither compact nor discrete, each inclusion
is proper. .

1.8. If @ is a family of bounded functions on X for which GC @?
and 4 is a uniformly closed subalgebra of ('(X), then so is Ag= {feAd:
for all g e G and s >0 there is a compact K C X so that |fg| < ¢ off K}.
For example if R} [R;] denotes those n-tuples whose entries are all
positive (negative) and 3B C EC Ry, set G = {¢*": a ¢ B} C C(R}). Then
C*(R)C C(R)eC C(R,) (strictly).

‘ 1.9. If B is any algebra of functions on X containing the constants
and A is a uniformly closed subalgebra of ¢(X), thensois Ap= {feA: |f]
< g for some g e¢B}. For instance if B is the polynomial, C*(R)w B*
COR)sC C(R) (strictly). More arcane examples of uniformly closed
subalgebras of still other genres can be found in [21, 1.21 and 1.22,
pp. 107-109]. See also {19, Section 3]. ‘

1.10. Of course, an intersection of uniformly closed subalgebras in
O(X) is also one; tensor products can be defined as in 1.5.

2. Prime ideals. Call a Hausdorff space X a k-space if its topology
is weakly induced by its compact subspaces or equivalently, if X is the
quotient of some locally compact Hausdortf space [14, X1. 9.4, p. 248].
Examples include first countable spaces, locally compact spaces and
finite products of such.

For a subset B of X and a subalgebra 4 of ¢(X), let I, denote the
ideal of funections in 4 which vanish on E; for BC A let Z(B) stand for
the set of zeros common to the functions in B. Our central insight into
the prime ideal structure of 4 is the following.

TeEOREM 2.1. Suppose X is a k-space, 4 is a uniformly closed sub-
algebra, of C(X), J is an ideal of A and B = {z < Z(J): |f(2)] = sup |f{t)[}

teX

for some f e A. Then if p is isolated in the boundary oF of B in Z(J), the
mazimal ideal I, will contain 2° mutually disjoint infinite chains of prime
tdeals of A with each prime containing J.
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Proof. The closure of B°= Z(J)—E in Z(J) is a closed subset @
of X. It follows that & is a k-space. Indeed, X is the quotient of a locally
compact space Y under some identification 75 because @ is closed in X
a restriction of p makes @ a quotient of the locally compact space p“(G;
[14, VL. 2.1 (1)]. :

It U= E° v {p}is open in @, then applying [14, VI. 2.1] we see as
above that U is a k-space. If in addition p is open in U, it is open in & so
some neighborhood of p in Z(J) misses B°: P ¢ 0E° = 2B, a contradiction.
So p cannot be open in the k-space U: p is not isolated in some compact
0 in U. We conclude that every neighborhood of p in X meets @ ~ E.

In case U is nob open in the k-space @, there is a compact set €

. in @ 80 that ¢ ~ U is not open in €. pe( (otherwise 0 A" U =E°~(C

is open in O); in fact p is not isolated in ¢ (otherwise C A U=En ( u
v {p} is open in C). So if a neighborhood W of p in X misses B ~ O,
W ~ ¢ C2E; because p is isolated in 8F, we ean choose a neighborhood ¥
of pin X so that VnoB=2p. Thus pe WAV~ (CV ~23E = p; that
is, p is isolated in ¢ — a contradiction.

It must be then, that in either case, there is 2 compact set € contain-
ing p so that C ~ E° meets every X -neighborhood of .

Since B is proper and nonempty, we may assume sup|f(f)] = 1.

teX

Since O is regular, there is a compact neighborhood T of p in ¢ so that
UCV ~ C. Inductively select pre U ~ E° s0 that

If(0)—F(2r)l < min{1/k+1, |f(P)—Ff(Pei)l} -

p is the only possible accumulation point ¢ of the set {pi}. For f{g) is
an accumulation point of the distinet points {f(px)}; since |f(px)|—1f(2),
geB. In fact then ge Un0ECV n o8 = p.

Because {pz} C ¢ must have an accumulation point, we conclude
that K = {pz} v {p} is compact, f is a homeomorphism of K onto f(K)
and finally that pr—p.

8= {f(pr)} v {0} is a subset of the open unit dise D and passing to
a subsequence, we may assume § is a Carleson-Newman interpolating
sequence for the bounded analytic funetions H* on A: H®|S = I [20,
D. 204]. From this we conclude A|K = C(K). For if ge 0(E), gof* has
a continuous extension s to the closed unit dise so that s(0) = 0. Ae-
cording to [20, Ex. 7, p. 208], there is some % ¢ H* matehing s on S which
has continuous boundary values. h can be approzimated uniformly on
the closed unit dise D by polynomials p, which have no constant term.
Thus pu(f) ¢ 4 and for @ e X, |pa(f(2)—h(f(@))] < [pr—hl5—>0 so that
actually h(f)ed. But h(f)| K= g ff(E)=g.

K is homeomorphic to N, the one-point compactification of the
positive integers, and composing the induced isomorphism C(K) 2 C(¥)
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with restriction A—A4|K, we obtain an algebra homomorphism @ of 4
onto C(N,,) so that &(I,) = I, and J C ker®. Exactly as in [13, Thm, 1]
and [12, 1.2] we can now exploit properties of C(N,) [16, 14G, p. 213]
to find the required primes. ‘

Remark. If X is first countable we obtain such primes in I, for
every p 0B, since in that case we -can easily choose px ¢ Z(J)—F con-
verging to p. But even in the compact case, the isolation of p in oF is
necessary in 2.1. Consider for instance the compact, connected F-space
BRT— R* [16, 6.10]. If fe A= C(BRT™— R™) has nonconstant modulus
and J = 0, then 8F # @ but since the primes of O(SRT— R™) contained
in any maximal ideal form a chain [16, 14.25; 12, 1.1], 2.1 fails for this
f,4 and J. : .

Remark. If 4 is a real subalgebra of C,(X) (the real valued continu-
ous functions on X) the proof of 2.1 takes a very simple form: f(X) lies
in [—1, 1] and the classical Weierstrass approximation theorem guarantees
that A|K = ((K); everything else goes as before. Thus mutatis muiandis,
2.1 and its applications below can be phrased for uniformly closed real
subalgebras of C(X).

The following improves [13, Theorem 1] even when A is a uniform
algebra.

CoROLLARY 2.2. Suppose A is a function algebra on a k-space and
J is an ideal of A. If p is a peak poini for A which is not isolated in Z(J),
there are 2° pairwise disjoint, infinite chains of prime ideals of A with each
prime containing J and contained in I,. Further there is an infinite ascending
sequence of primes containing J which are densely contained in I,. In par-
ticular, the krull dimension of AlJ is infinite.

Proof. The first statement is clear from 2.1. If fe A peaks at p,
I=(1—f)I,+d is dense in I,: for ge I, and K C X compact, (1—f™g
= (A= A+f++ . +*)g eI and ||1—f")g—glg = [|f"gllz—0. [10,
2.1, p. 65] yields a prime @ of C(¥,,) strictly between & (I) = &(1—f) I,
and I [P as in 2.1], and successive application of [10, 3.2] provides an
infinite asecending sequence {§,} of primes between @ and I..: {&HQn)}
provides the required dense chain of primes in A.

If X is separable 4 has cardinality ¢ so 2.2 with J = 0 implies that
the maximal ideal at each non-isolated peak point will contain ewactly
2° primes.

In the function algebra Ar (1.3) every p ¢ F is a nonisolated peak
point: krull dimAr = oo whenever ¥ is nonvoid. Actually the krull di-
mension of Ag = H (D) is also infinite [1], but the conclusion of 2.2 fails:
the primes of H (D) contained in a given maximal ideal form a chain [1].

None of the primes constructed in 2.1 can be finitely generated
(cf. [12, 1.2 ££]). Nonetheless we observe
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COROLLARY 23 (Compare [16, 14.257.) A function algebra on a %-space
which has a nonisolated peak point has g Sinitely generated ideal which is
not principal.

Proof. Otherwise the primes contained in a fized maximal ideal
form a chain [16, 14L] in violation of 2.9.

In the first countable case 2.1 yields

COROLLARY 2.4. If X is first countable and a uniformly closed sub-
algebra A of C(X) contains a function which attains its maximum modulus
at points which do not form an open set in X, then A has infinite krull di-
mension and not every finitely generated ideal is principal.

For example every uniformly closed subalgebra of C(R,) (or CR,))
which admits a nonconstant funection attaining its maximum modulus
will have infinite krull dimension and exactly 2° nonmaximal prime ideals.

Suppose now 4, p and X satisfy the conditions of 2.1 for some fed
and J C A. Let Fp denote the ideal of funetions in 4 which vanish on
some neighborhood of p. Using the homomorphism A—C(¥N,), the
following two results can be verified exactly as in [12, 1.4, 1.5].

PROPOSITION 2.5. If I is an ideal of A strictly between Fyp and I, R
there are ideals I and I of A so that F; CICICIC I, (strictly).

By repeated use of 2.5 we see that I is a member of infinite ascending
and descending chains of ideals of 4 lying between F, and I,,. Although
in general J will not be prime, it ‘can be chosen so if J is countably
generated.

ProprostrioN 2.6. If IC I, is o countably generated ideal of A, there
is a prime ideal of A strictly between I and I,. In particular, the mazimal
ideal I, is mot countably generated.

There is a way to construct primes in I, which does not depend on
interpolation (see also Theorem 3.5).

ProPOSITION 2.7. Suppose B is a peak set for a function algebra A on
any space X. If I 4s a closed ideal of A properly contained in Iy, there is
a prime ideal P of A so that ICPAIESIE.

Proof. Choose fe A with flE=1 and |f| <1 off E. The multi-
plicatively closed set S = {(1—f)*: n=1,2,..} does not meet I since
(L—f)*Ig is dense in Iz for each %. Indeed (1—f)*+'Ig will be dense in Ig
it both (1—f)*Iz and (1—f)Iz are, so it suffices to show (1—f)Ig is.
But for gelp and K C X compact, (1—f"g= 1— )1+f+..+)g
e(1—f)Iz and |[(1—f") g— gllz = |f"gllz—0. Applying Zorn’s lemma, we
can find a prime P containing I and disjoint from §: plainly ICP ~
nlg g Ig.

If Z(I) is a peak point p and X is compact, then Z(P)=p an(% we
conclude that there is a prime ideal between I and every nonmaximal
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closed primary ideal at p. In the disc algebra 4, the nonmaximal closed
primary ideals at any p e T form a chain [20, p. 88] and applying the
above argument to the unjon I of this chain, we actually find a prime
of A, properly in I, which contains every other closed primary ideal
at p. Such a prime is necessarily dense in I,; it is not known if every proper
non-zero prime in A, is dense in some maximal ideal.

3. Countably generated ideals. Here we extend [10, 2.1, p. 65] and
[11, 3.9, p. 72] to function algebras on certain k-spaces in two different
ways (3.3, 3.5).

LeMMA 3.1. In a Banach algebra every maximal ideal which has a bounded -

approzimate identity lies in the Silov boundary.

Proof. Adjoin an identity to the algebra 4 if necessary. The Gelfand
transforms of a bounded approximate identity for a maximal ideal A
in A are an approximate identity for Iy in the uniform algebra cld
C O(M4) with the same bound. Thus [7, 4.1, p. 178] M €dcldA C Iy

THEOREM 3.2. If A is a Banach algebra and J is a closed, finitely gener-
ated ideal of A with bounded approximate identity, the hull of J is open in
the mawimal ideal space of A.

Proof. We may assume 4 has 1 (cf. [11, 2.4]). J+ C is a Banach

algebra and restriction #: Mog—>AMor+c is an identification which collapses -

the hull of J to a point ¢ € Ms+c [15, p. 12]. Actually J is the maximal
ideal of J 4 C which corresponds to ¢ and is finitely generated over J -+ C.
(ef. [11, 2.2]). Since J e I'z+c (3.1), Gleason’s theorem [17, 2.1] makes g
isolated in Ms+c, whence 7 }(q) is open in 4.

For example Ig is not finitely generated if B is a nonopen peak set
for a uniform algebra. Actually we have

THEREOREM 3.3. If X s locally compact or first countable and E is a non-
open peak set for a uniformly closed subalgebra A of C(X), then Iy is not
a countably generated ideal of A.

Proof. If X is first countable the proof of 2.1 can be modified to -

produce an algebra homomorphism of 4 onto C(N,) which takes Ig
onto I; if I is countably generated, I, is also: a violation of [10, 2.1].

If X is locally compact and Ir has generators {b,}, choose ¢ <dE
and take some compact neighborhood € of ¢. Since {bn/2"|bsl|c} generate Iz,

we may assume [by| < 1/2" on €. @ = 3’ |b;| defines a continuous function
2

=1
on C; since () Z(ba) = Z(I5)C Z(1—f) = B, Z(@)= B ~ 0. Select pp e 0
80 that 0 <@ (pa)<1/2" and 0 < [I—f(ps)| < 1/n. Passing to a sub-
sequence we may assume {f(ps)} v {0} CD is an interpolating sequence
for H™: there is some ke A, with h(f(ps)) = n@(ps) and 1(0) = 0 [20,
P. 2081. h(l)=iim n@(pn) = 0, so there are polynomials p, which ap-
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proximate & uniformly on D and which af vanish at 0 and 1. S
. . Since
pulf) e Le and Ipa(f)=2(f)lx < |pa—hl5—>0, A(f) Les in Ie: R{f)

k
=2 (ss+ai)bi, si€ A, as¢C. We reach the absurd conclusion:

i=1

"= M (n) < Zk [Be(pn)| :
= B < s si(Pn)+ ai!*—%g(pn) < 2[!8,1{,;_}. lag} .

Other restrictions on X and 4 produce 3.3 for any closed ideal of A4
whose zero set meets I'y with boundary in I'y. Call 3 Hausdorff space X
hemicompact when it is the union of an ascending sequence of compact
parts {K»}, and every compact K C X les in some K. Every function
algebra on X is a Fréchet algebra if and only if X is a hemicompact
L-space [27, Thm. 2, p. 267]. Given a function algebra 4 on X and subset
BC A, let BA denote the ideal of finite sums 2 figi, fieB, gic A,

TEEOREM 3.5. Let A be a function algebra on a hemicompact space X
which is either locally compact or first countable. Suppose J is a closed ideal
and BC A is countable. If B = Z(B) ~I'y has a nonempty boundary oF
in I's and if B contains Z(J) ~ I'a, then for some q € 0B, there are infinitely
many prime ideals P of A so that BACP CI, but J ¢ P.

Proof. If B= {b,} and we set B’ = {Bn/2"|bullg,} (Kn as above),
then BA = B'A: we may assume [|by||K, < 1/2%, Thus the series § 1b4]
i=1

converges uniformly on the compact parts of X; since X is a k-space,
it represents some continuous function @ on I'y whose zero set is E.

* We claim that for some g <2H there is a sequence of distinet points
{px} on 84— H, contained in a fixed compact set ¢, so that ¢ is a cluster

‘point of {px}, the px’s ean be surrounded by pairwise disjoint neighbor-

hoods {Vx} in X and 0 << @(pz) < k! for each k. I X is first countable,
take any ¢ « 85 and select from 84— B some sequence of distinet points {g,}
converging to ¢ « Z(@). (A— F is dense in the open subset I's«— B of I'y.)
0<@(gn)—>0: pick a subsequence {pz} so that 0< @(px)< 1/k! and
set 0= {pr} v {¢}. Plainly the distinct elements of this convergent
sequence can be surrounded by pairwise disjoint neighborhoods {Vi} is
the Hausdorff space X.

If X is locally compact, fix a neighborhood V of some % ¢ 9% whose
closure ¢ is compact. For each 6 >0, U;={zeV n I 0< B(z)< 6}
is an nonvoid open set in I's. Select px €94 N Uy, inductively so that
O(p1) >B(py) > ... >0(Ps) >... by taking Py €04 A Umin ot ety
Select pairwise disjoint open intervals {I;} around the @ (pi) and, eon-
sidering @ as a continuous map on all of X for the moment, set Vi = O~ (Ix).
Since € is compact, {pr} has some cluster point g; evidently g < 2%.
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Sinee Z(J) ~ I'4 C B, there is some tred Wi?h‘ tx(px) = 1. Because 4
separates points it is eagy to see that for each finite .set FC X and each
@ ¢ F, there is some g ¢ A which vanishes on F but is 1 ab 2. Selegt for
each k, then, some sk e A so that si(px) =1 and sx(p:) = 0 if 1 <i<k
Set gn = Snin ed, Wp=Vnn [gn]_l (—2,2) and Cp= .Kﬂ v C.

Observe that for each nm there is some f,ed Wwith fu(ps)=1,
[fllo, < 2 and |fal < 1/2lgallc, on Ca—Wy. Indeed for K = Cn, pne K A
~8A CoAg is a strong boundary point for the algebra Ax [4, 2.3.4]:
select se Ag with s(ps)=1= [z and |s(#)| <1 on the compa,fgt set
E—W,. By raising s to a high enough power we can assume |s] is less
than the positive number &= 1/2(|gallc, on K—W,. There is a sequence
{s;} on A converging to s uniformly on K; since s{pn)—>$(ps) =1, we
may assume §{ps)= 1 for each 7. By taking r large enm-lgh we have
I8, e—rs < l18,— sll -+ IS, < & sinee [islz—>(sllx = 1, taking r perhaps
even larger we also have ||sdlx < 2: seb fa= 8. )

Finally let hy = fugn ¢ J. Observe that hx(p:) =0 if 1<i<k ha(pr)
=1 and for i >k, [h(pa)] < |fu(p)lgallc < 1/2. Further |hallc, < 4 since
it 2eWnn Cny [ha(@)] < 21fa(@)] < 2Mfille, <45 I e Co—Wa, |ha(z)]

< llgnllcnél—;—”— < 4. Because evefy compact part of X lies in some Oy,
nliCy

the series 5’ -1; T converges in A to some element f in the closed idealJ.
= 2
fn=1

Notice
F(pe)| > 128 —| 3 12hg(pe)] = 1j2F— D) 1/ = 1/28+

n>k n>k
Consider the multiplicatively closed set § = {f™g: m is a nonnegative
integer, g(q) # 0}. We observe that § does not meet BA. For if instead
M= 5: bsas, aie A, find a neighborhood V of ¢ and a 6 >0 so that

=1
|g(@)] = & for x ¢ V. Sinee ¢ is a cluster. point of {px}, pi lies in V infinitely
often and for such %, :

5 kL S(REY™ |fMpg(pr) N be(p)] <
TS ot <200 o < -

i=1
But this is quite impossible since k!/a*—~-+co for all a > 0.

It follows that BA ~§ =@ and applying Zorn’s lemma, we find
a prime ideal P of A containing BA and disjoint from S. Clearly BA
CPCI, and J ¢ P. To obtain infinitely many such primes repeat the
process with B successively enlarged by elements from J\P. That is
for the f eJ constructed above, set B, = B v {f} and @, = @+ |f|. Since
|f(px)| < 1/2%7 we may choose a subsequence {ps} so that 0< @(p,,)
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< 1/k! in such a way that ¢ remains a cluster point of N
the above argument to obtain a prime P, and some fl{f:}%P ;v;thm%e?
cP,CI,. ?lr,é P, sr];lee fePN\P. Continuing in this way (B, ; B v {}}
@, = G, + f1l), we obtain infinitely many primes P,, 5o that B T
=Dt 1 n ACP,CI,
The following easy corollary generalizes [11, 3.91.
COROLLARY 3.6. Let A be a fumction algebra on a hem
which is first countable or locally compact, If J is a closed, co
: ; . uniably gener-
ated ideal of A, then Z(J) ~ Iy is open-closed in I's. In, parti,mlar the zai.megl
ideal I requires uncountably many generators when 2 18 nonisolated in Iy
The argument in 3.5 applies to the example Az (1.3) for 'tra(ry.
-5 ap R arbi
FCT at least when B is finite. For in this case we can take Pn~>q € 0B;
since .-A'T inferpolates C(K) on the peak set K — {Pn} v {g} with prez
servation of norm [15, 12.6, p. 58], we can choose the hned in 3.5 to be

globally bounded, so that f= 3'1/2"h, still defines an element of Ap.
n=1

Following 3.6 we have in particular

CorOLLARY 3.7. If J is a closed, finitely generated ideal of Ap, then
Z(J) ~F is open-closed in F.

A clgse reading of 3.5 further reveals that I, will contain infinitely
many primes whenever p is nonisolated and lies in the discrete boundary
in I'4 of some countable intersection of zero sets from 4; in particular I,
captures infinitely many primes if p is the zero set of some fedA.

4. Chains of ideals. Using Cohen’s factorization theorem [6] we ob-
tained the following in [11, 1.10].

TeroREM 4.1. Let A be a wniform algebra on a compact space. If ICJ

. . #
are ideals of A with Z(I)= Z(J)C04, there is an ideal stricily between
them whenever one of them is closed.

In the present setting we have the following version of this.

THEOREM 4.2. Let A be a function algebra on a hemicompact k-space,
and suppose Il is a set of peal points or itself a peak set for A. If ICJ are
I3 . .. . . * »
ideals of A with Z(I) = Z(J) = B, if either I or J is closed and if I contains
finitely many functions fi, ..., f» whose Gelfand tramsforms have a compact

icompact space

+ set K of common zeros in Mo, then there is an ideal of A strictly between

I and J.

Proof. If not, we can find a maximal ideal M containing I so that
MJCI [11, 1.1]. F = {Z(g) ~ K: ge M} has the finite intersection
:

property: if @ = () Z(g;) ~ K, a theorem of Arens [2,1.32,p. 178] produces
7=1
hiykye A 5o that 1= 3 hifi+ > kigse M, a contradiction. Since K is
7 7
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compact, Z(M)=[) & contains some pebg; thus M =T,. Since
peZ(I)= B, we have IzJ CIpJ CI. .

If fIB = 1 and |f| <1 off B, {1—f"} is an approximate identity for I
and [[1—fx < 2 for every compact K C X. Thus if I is closed, J C ¢lIzJ
C I; if J is closed, viewing J as a Fréchet module over Ig, we may apply
a generalization [25] of Cohen’s factorization theorem to also obtain
J = IgJ C I, a contradiction. If p is a peak point for A, the argument
is the same.

Since for FC T open, Ar is a Fréchet algebra with maximal ideal
space F v D for which every p « ' iz a peak point, 4.2 becomes

COROLLARY 4.3. Suppose F CT is open and I g J are ideals of Ap

with Z(I) = Z(J) CF. When either I or J is closed and I contains functions
Juy ey Jn whose set of common zeros is compact, there is an ideal of Ar strictly
between I and J.

Remark. 4.2 improves 4.1 sinee there are uniform algebras which
have peak sets not contained in the Choquet boundary — for example
each fiber {@ e Mog=: @(2) = a} is a connected peak set for H™ {20,
Chap. 10]. Also we only need assume that I and J share a hull contained
in F when J is closed. If both I and J are closed, successive application
of 4.2 produces infinite ascending and descending chains of ideals of A
between I and J. Using 3.6 and an idea from 2.7, one can also produce
infinite ascending and descending chaing of ideals of A which are all
densely contained in I if F is a nonopen peak set and X is hemicompact
and first countable or locally compact. The unenlightening details are
left for the interested reader.
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