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Normal radicals of endomorphism rings of free and
projective modules *
by
Michal Jaegermann (Warszawa)

Abstract. A radical IV in a class of associative rings is normal if, for every Morita
context, it satisfies a condition stated in Amitsur’s paper “Rings of quotients and Morita
contexts”, (J. Algebra 17 (1971), pp. 273-298) for the radicals of Baer, Levitzki and
Jacobson (see also — M. Jaegermann, “Morita contexts and radicals”, Bull. Acad.
Polon. Sci. 20 (1972); pp. 619-623 and A. D. Sands, “Radicals and Morita contexts”,
J. Algebra 24 (1973), pp. 335-345).

For every ring R we denote by Rr the ring of Ix I-matrices with only a finite
pumber of non-zero entries from R in each row, by (Rz, by — the ring of matrices with
a finite number of non-zero columns, and by <{ERr,f> — the ring of matrices with only
a finite number of non-zero entries in each matrix. .

It is proved that for every normal radical N we have: N (R1) C N (B): with an
equality for finite I, N<Rz, b> C (N (R)r, b> with an equality for supernilpotent normal
radicals, and N<(Bz,f> = <N (R)1,f>. Moreover all these radicals are, in some sense,
dense in a ring N (R);. We have strictly similar results for rings of endomorphisms of
projective R-modules.

As applications, a short proof of the Ware—Zelmanowitz description of the Ja-
cobson radical of a ring of endomorphisms of a projective module and a new equivalent
version of the Koethe problem are given.

Tet N be a radieal property in the class of associative rings, and
let N (R) denote an J°-radieal of a ring R. A property N is called a normal
radical property if for every Morita context (B, ¥V, W,S) we have

(V,N(8)W)CN(R), or equivalently [W,N(R)VICN(S),

where B, § are rings, V is an B-§-bimodule, and W is an 8-R-Dbimodule.
For the definition of a Morita context and for the notation we refer to [2]
and [5]. As was proved in [5] and [9], many of the classical radicals are
normal. In particular, normal are the radicals of Baer, Levitzki and Ja-
cobson (ef. [2]).

* This is a part of the author’s Ph. D. thesis, prepared under the supervision
of A. Sulifiski at the Warsaw University.
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For every ring R we denote by E; the ring of matrices indexed by I
with entries from R (i.e., functions from Ix I to E) with only a finite
number of non-zero entries occurring in each row. Operations are defined
in the usual manner. By the ring of row-bounded matrices (R;,b) we
understand a two-sided ideal of RE; which consists of those matrices which
have only a finite number of non-zero columns. The ring of finite matrices
(B;,f> contains only those matrices from E; which contain only a finite
number of non-zero entries.

For a normal property N we shall prove N (E;) C N (RB);, N<(R;, b}
= {RBy, by ~ N (R;) C (N (R);,b> (with equalities for some additional
conditions), N<By,f>= (N (R),f> and N<{(By,{>C N<E;,byC N(R,).
This generalizes the results of E. M. Patterson [8] and A. D. Sands [9].

In the second part we shall prove analogues of our theorems for
rings of endomorphisms of projective modules. As an easy application
we shall give a short proof of R. Ware’s and J. Zelmanowitz’s description
of the Jacobson radical of the endomorphism ring of a projective module
and show a new equivalent version of the problem of Koethe (see [6],
[71, [9D).

The definitions and properties of radicals are to be found in [4].
‘We shall call a radical-property R supernilpotent if no R-semisimple
ring contains non-zero nilpotent ideals. We shall extensively use the
fact that a ¢-radical of an ideal A of a ring B is a T-ideal of B (cf. [3]
and [4], Theorem 47) and hence P(4) C P(R). An ideal always means
a two-sided ideal.

Given a ring R, let R¥ denote the ring R if R has an identity element,
and let B¥ denote the usual extension of B to 2 ring with identity by the
ring of integers Z in another case. Now it is convenient to regard the
matrix rings described above as the rings of endomorphisms, acting on
the right, of a free R¥-module F with a basis {es] i e I}. Namely, if o is
a matrix then eia= 3} a(i, j)e; where (4,§) e Ix I.

H
For any ring R, we denote by B* a ring which has the same additive
group as K and zero multiplication.

1. Normal radicals of matrix rings.

Leyma 1.1. Let N be o radical property. If N (Z%) 5 0 then the property
N s supernilpotent.

Proof. If N(Z*) # 0 then the additive group of N(Z*) is an in-
finite cyclic group. Thus every cyclic group with zero multiplication
which is a homomorphic image of N (Z*) is an N -radical ring.

Now, let B be an J°-semi-simple ring and let I be a nilpotent ideal
of B. We may assume I = 0. If some a eI, then a zero-ring on a cyclic
group of a is an N'-ideal of I, and 50 a « ¥ (I). But N(I) is an N-ideal
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i
of an N-semi-simple ring R. Hence o = 0 and I = 0. This means that the
property N is supernilpotent. m

Lewma 1.2. If A is an ideal of o ring R and N(R[A) =0, then N (4)
= N(R) for every radical property N.

Proof. Obvious. &

TaEOREM 1.3. Let N be a normal radical property. If N (Z) # 0 then
also N(Z*) # 0, and so property N is supernilpotent.

Proof. Let us assume that N (Z) % 0. We can consider the Morita
context

(Z,2,Z,Z%) _
with produets (#,y) = 0 ¢Z and [z, y] = ay e Z*, where e Z and y ¢ Z.

The structures of Z*-modules are determined uniquely. The property
N is normal, and so we have

0 # N(Zyr = (ZN(Z)Z)" = [Z,N(Z)ZIC N(Z*).

Hence N (Z*) # 0, and the property is supernilpotent by Lemma 1.1. &

TeeorREM 1.4. Let N be a normal radical property. If R is an N-ring,
then BT is also an N-ring.

Proof. If the property N is supernilpotent, then every ring with
zero multiplication is N -radical. Thus, by Lemma 1.1, we may assume
that N(Z*)= 0. Hence N(Z)= 0 by Theorem 1.3.

Sinee R is an ideal in B and R¥/R is either 0 or Z, it follows from
Lemma 1.2 that N(R)= N(E¥). Similarly N (R*)= N(R**). Now let
us assume R = N(R). Obviously R™ = N(R)*.

We have the context ’

(R¥, B¥, B¥, B¥*)

with (z,y)= 0 e R¥ and [2,y]= oy« B¥, zecR¥ and y< B N is
a normal property, and so we obtain
N(R¥#yF = (R¥N (BR¥) R¥)* = [B¥, N (B¥)E¥] C N (R#+).
This and the equalities above imply
R+ = N(R)* = N(B¥)* C N(B¥*) = N(B"),

but this means R+ = N (RY). m _
Lmvma 1.5. Let N be a normal radical property and let R be any ring.
Then

() N@R=NEH~R,
(i) N (By) = N (Bf) n Bz,
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(i) N(RB;, by= N<(Rf, by By,
(iv) N{(B;, f>=N<(B}, fYnR;.

Proof. If B is a ring with an identity element, then R = R¥ ang
all the equalities are obvious.

If N(Z+) # 0, then the property N is supernilpotent by Lemma 1.1.
From Theorem 2 of [5] it follows that then the N-radical of an -ideal
of some ring is an intersection of the ideal and a radical of the ring. Let
us observe that R, R;, <Ry, by and <R;, f) are ideals of B¥, R¥, (R¥, b)
and (B¥, f>, respectively. Moreover, N (E§, by n (B, by = N(RF, by n R,
and N (B¥, > ~ (Ry, > = N (BF > ~ B;. This and the remarks above
immediately imply all the equalities.

Now let us assume that N (Z+)= 0. One can represent, in an obvious
way, all the rings ZI"‘. = (Z+)17 Zy, bt = <(Z+ )15 0> <Zl9f>+ = <(Z+)Iaf>
as a subdirect sum of Ix I copies of an N-semisimple ring Z*+. So all
these rings are J-semisimple, and by Theorem 1.4, Z, Z;, <Z;, b) and
{Z;,f> are also N-semisimple. Hence Lemma 1.2 implies that N(R)
= N(R¥), N(R;)= N(Rf), N<R;,by=DN<EFb> and N<B.,fr=
N (R}, f)>, which is more than has been stated in the lemma. m

THEOREM 1.6. If N is a normal radical property, then

N(Ey) C N (E);
for every ring R.
Proof. Let T be a free left E¥-module with a basis {es] ¢ I} and
let w; e Hom (F', B¥) be a homomorphism such that e;w; = 1 and e;w;= 0
for ¢ # j. Let us consider the Morita context

(B¥, F, Hom (F, B¥), B

where (z,w)=aw e Bf and (x)[w, o] = (+w)z ¢ BF, for v eF and w
« Hom (¥, B¥). Since the property N’ is normal, we have.

x(F ' N (RJ#)HOm(F ) R#)) C N (B#).

Thus for every matrix a< N (Rf) every entry a(i, ) = esaw; = (ez, owy)
belongs to N (B¥). This means that

¥ (Ef)C N (B#),.

But by Lemma 1.5 (ii) and (i) we have N(R;) = N(Bf) ~ R; and N (R);
= (N(B¥) ~ R); = N (R¥); ~ R;. Hence

NE)CHN(R).m

An example of the Jacobson radical, which is normal [2], shows us
that generally N(R;) ¢ N(R);. But we have
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THEEOREM 1.7. If N is a normal radical property and I is a finite set, then

N(B;) = N (R);
for every ring E.

A similar theorem was proved by 8. A. Amitsur [1] for right strong
and right hereditary supernilpotent radical properties (for the definitions
see [5]) and proved again by A. D. Sands [9] by means of Morita con-
texts. In this result it is possible to omit the assumptions of the super-
nilpotency and associativity of rings. The last remark is due to J. Krempa.

Proof. Let us consider the same Morita context as in Theorem 1.6.
One can easily observe that

[Hom (F, B¥), N (R¥)F] = N (B¥),
for a finite set I. But by the normality of the property N we have
[Hom (¥, B¥), N (R¥)F]1C N (Rf). Hence N (R¥),C N(E¥). Lemma 1.5
then implies N (RB); C N(R;), and so by Theorem 1.6 we obtain the
equality. = .

Let R be some ring and let &y be a matrix from (RF, b> such that
ey(u, w) = 1, for 4 from some finite subset U of I, and ey{4, j) = 0, for
all other (¢,j)eIx I. We define

N (Bp), o>= N (Bpey,

where the union is taken over all finite subsets U of I. This means that
(N (R;), b) consists of those matrices from (E;, b)> which we can complete
to matrices from N (R;). In this notation we can formulate

THEOREM 1.8. If N is a mormal radical property then
(i) N<(Byy by = (N (By), by = N(Ey) ~ {By, b) C <N (B)r, b5
(ii) if, moreover, the property N is supernilpotent then
N By, by = <N (R, b
for every ring R.
Proof. (i) Since (R¥, by is an ideal of R}, the four-tuple
(CEF, by, B, <BF, by, BY),
with multiplications in RF as products, is a Morita context. The property
N is normal. Therefore
RIN (B <EF, by = (BY, N (BF) BF, b)) C N B, b
But the ring BF has identity, and (Ej, b> contains elements sy for every
finite subset U of I. Thus
N(B)F ~ (BF, by C U N (BF) oy C RFN (BY) (BT, b
C N (BF, by C N (Bf) ~ <EY, b,
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where the union is taken over all finite subsets U of I. The last in-
clusion holds because (RF, b is an ideal of EF.
Particularly, this implies that

(N (B§), by n By= U NEFey n B, CN(RF)~ By = N (Ry),

ie., that we can complete every matrix from (RBF), >~ R; to a matrix
from N (By), and so <N (EF), by ~ Ry = (N (E;), b>-
Furthermore, the inclusions above give us

N(BF, by = (N (RF), by = | NV (RY)ey = N (BF) ~ (BF, b)> .

Taking intersections with R;, we obtain by Lemma 1.5 and the remark
above

N<(EBy, by = (N(Ey), b) = N(Ey) ~ <{Ey, b.

This is eontained in (N (R);, b) since N (R;)C N(R);.

(if). This was proved by A. D. Sands {9]. &

We cannot prove (ii) without the assumption of supernilpotency,
as is shown by the following example. A ring § has a property G if the
additive group of § is a torsion group. One can check that G is a normal
radical property. By I we denote the set of natural numbers. Let R be
a direct sum of all rings Z,, where n € I. Of course T(R) = R. A matrix
a € {By, > = {T(R);, b> such that a(i, 1}is an identity element of Z;
and all the other entries are zero has an infinite additive rank. Thus
a ¢ T{Eyz, by This means that I'(R;, by & (T (R);, b>.

In the sequel we need the following generalization of a well-known
property of the Jacobson radical.

TemorEM 1.9. If N is a normal radical property amd e = e is an
idempotent in a ring R, then

N (eRe) = eN(R)e = N(R) ~ eRe .

Proof. It is easy to observe that for every subset X of the rmg B
we have

1.1) X~ eRe = eXe.

Thus the second equality is a special case of (1.1). To prove the first
equaliby let us consider the Morita context (R, Re, eR, eRe) with multipli-
cations in R as products. Since N ig normal, we obta.ln

(Re, N (eRe)eR) = ReN (eRe)eR C N (R)

and

[eR, N (B)Re¢] = eRN (E)Re C N (eRe) .
Hence

N(eke) = 62N (eRe)e* C eReN (¢Re) eRe CeN(R)e
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and
eN (R)e = N (R)e* C eRN (R)Re C N (eRe) .
This implies

N(eRe) = eN(R)e. ®

TerorEM 1.10. If N s a normal radical property then

N{By, fr= (N(B), >
for every ring R.

Proof. From Lemma 1.5 it follows that without loss of generality
we may assume that a ring B has identity. Let us write 8 = (B, f>.
For every finite subset U of I let us define a mafrix s; ¢ § putting
e(u,u) =1, for u e U, and (i, ) = 0, for all the other (¢,j) «IXI. We
have sy = & and Theorem 1.9 implies that N (eySey)= N(8) n ey Sep.
On the other hand, N (eySey) = ey N (R)rey = eg{N (R);, f>éy, Which
follows from Theorem 1.7, since U is a finite set and sy Sey =~ By. Thus

N (R, fy=N(8) = U (8) ~ epSey)
= |J e <V (B iy foem = <N { (B2 s

where the union is taken over all finite subsets U of I. &

Let R be any ring. Recall that a ring R; acts on the right on a free
left R¥-module F with a basis {e ¢ ¢ I}. We shall say that a subset X
of B; is dense in a subring N (R); if for every finitely generated submodule
@ of F and every matrix « e N(R); there exists a fe¢X such that
G(a—p)=0.

TemoreM 1.11. Let N be a normal radical property. Then, for every
ring R,

N<(R;, fyC N (R, by CN(B) C N (B,

and the radicals N (Ry, f>, N (B, b> and N (B;) are dense in N (R)z.
Proof. The second and the third inclusion were proved in Theorems
1.8 and 1.6. So we have only to prove that N (Ry, f> C N (R, by and that

the radicals are dense. -
Lot ey ¢ <B¥, f> be matrices defined as before for all finite subsets U

of I. Since N(R,,f)- (N (R);, >, we have
eg N<Br, frep = ‘EU<N )1y Fren = sg{ (B)r, breg -
The last equality holds beca-use U is a finite set. Furthermore

eo (N (B)y, byeg = N (B)gs
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thus Theorem 1.7 gives us ep<¥ (B)r, b>ep = N (ey<{By, byey). Taking into
account that ep{R;, byey is an ideal of aU<R’}*, by ey, we obtain, by Theo-
rem 1.9 and Lemma 1.5,

N (eg(Ras b>£0) C N (ep(RY, byeg) By = N (BF, b) ~ eg<BF, byey A By
C N(R§, by n Ry = N<(By,b).

Hence

eg N {(Br, [Yep = eg<{N (R)y, bep
= N(ep<{By, b>ep) §N<R17 by,

for every finite subset U of I. This implies that
U egN<By, fyeg = N<By, [>C N<By, b,

where the union is taken over all finite subsets U of I.

We cannot replace any inclusion in our Theorem by equality, which
is shown by the example of the Jacobson radical (cf. [8] and [10]).

To complete the proof we have only to prove that N{R;, f>is a dense
set in N (R);. Let @ be a finitely generated submodule of a free R#.mod-
ule 7 and let a matrix ae N(R);C N(E");. Obviously a submodule
G- Ga is also finitely generated. We fix a finite set of generators and
define: an index i e I belongs to a set U if some generator of G+ Ga has
2 non-zero ith coordinate in {e;| i ¢ I} a basis of F. Let e;; be again a matrix
with ep(u, u) = 1 for u e U, and ey(4, j) = 0 otherwise. For every g« G+
+ Ga we have: gey= g. Thus for every #e¢@ we obtain za—zeyacy
= Zo— (za)ey = go—za = 0. This means @(a—egyaey)= 0. Moreover,
egaey € eg N (R)zey C <N (B)y, f> = N <B;,f>, by Theorem 1.10. Hence
N {(R;, f> and the remaining radicals are dense subsets of N (R); ®

2. Normal radicals of endomorphism rings of projective modules. In the
sequel we shall assume that rings have identities and modules are unitary.

A left R-module V is a direct summand of an R-module W if and
only if there exists a 4 ¢ Homg(W, W) such that 4= 4 and ¥V~ W4.
It is easy to observe that the rings Homg(V,V) and 4Homgy(W, W)4
are ring-isomorphic. Then for our purpose we may identify V with W4
and Hom (V, V) with AHom (W, W)4, putting a = dad for a ¢« Hom (V,V).

A left R-module V is projective if and only if ¥ is a direct summand
of every such module W that ¥ is an epimorphic image of W. Thus for
a projective module ¥V with a set of generators {vi| 7¢I} there exists
a free module F' with a basis {e;| ¢ ¢ I} (with the same set of indexes) and
4 = A* ¢ Hom(F,F) such that V is isomorphic with 7. A couple (I, 4)
will be called a representation (with a basis {e;| i € I}) of a projective mod-

icm°®
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ule V. Recall that in such & situation we identify a ring Hom(V, V)
with AR; 4. We shall define the ring

Homg(V,V, b) = Homg(V,V) ~ (B;, by

for a projective module V. The definition does not depend on the choice
of a representation of V. This follows from the

LeMMA 2.1. If V is a projective module which has a representation
(F, 4) with & basis {e| © eI} then the following conditions are equivalent:

(1) aeHomg(V, V)~ (By, b);

(ii) there ewists a finitely gemerated submodule V' of V such that
VaC V"

The proof is easy and we leave it to the reader. m

The opening remarks immediately imply, as a particular case of
Theorem 1.9, the following theorem, which is fundamental in this section:

THEOREM 2.2. Let N be a normal radical property. If a left B-module
V is a direct summand of an E-module W then

N(Homg(V, V)) = AN (Homg(W, W))4
= Homg(V, V) ~n N{Homg(W, W)} .

Moreover, if V is a projective B-module with {v;] ¢ € I} as a set of generators
then
N{Homg(V, V)= Homg(V, V) ~ N(E;),

for a representation (F, A) with a basis {es] i< I}. A

This gives us a simple way to obtain the Ware-Zelmanowitz theo-
rem [11] on the Jacobson radical of Hom(V, V). But first we need the
following definition. A family of subsets {X,| te T} of a ring E is called
a right vamishing family if, given any sequence &, &, ... with zx « X, for
distinet tx in T, there exists an integer n for which #a, ... 2 = 0.

Recall that N. E. Sexauer and J. E. Warnock proved [10] that
a matrix o is from the Jacobson radical J(R;) of a ring E; if and only
if {44] j € I} is a right vanishing family of left ideals contained in J(R),
where A; is a left ideal of R generated by the set {a(i, )| 4 eI}

For a free R-module F with a basis {e;] i ¢ I} let us denote by w:
an R-homomorphism w;: F->R such that eqw; = 1 and e;w; = 0 for VKR

THEOREM 2.3. (Ware-Zelmanowitz [11].) Let V be a projective left
R-module and let a « Homg(V, V). Then the following conditions are equiv-
alent:

(i) o eJ(Hom(V, V).

(i) There ewists a representation (F,A4) of V with a basis {e:] i eI}
such.that {Va(dwy)| § « I} is a right vanishing family of left ideals of B con-
tained in J (R). )
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(iil) Given any representation (F, 4) of V and any iis basis {e:] i< I},
the family {Va(dw;)| eI} is a vight vanishing fomily of left ideals of B
contained in J(R).

Proof. The implication (iii) = (ii) is obvious. So we have only to
prove (i) = (iii) and (ii) = (i).

(i) = (iif). Let a e J(Hom (¥, V)). The property of Jacobson is & normal
radical property (cf. [2], [5], [9]); thus for every representation (¥, 4)
of V with a basis {ej 7¢I} we have, by Theorem 2.2, o«= dad
e Hom (V, V) ~nJ (R;) CJ(R);. Thus Va(dwy) = F(dad)w; C (J (R)F)w; is
g left ideal of R contained in J(R). Furthermore, one can easily check
that Va(dw;) is generated by the set {a(4,j)] i e I}. Hence the Sexauer—
Warnock theorem implies that {Va(dw;)} is a right vanishing family.

(ii) = (i). Let a e Hom(V, V) and let (F, 4) be such a representation
of V that {Va(dw;)} is a right vanishing family of left ideals of R con-
tained in J (R). Since a = dad, we have Va(dw;) = Fdodw; = Fow; and
left ideals of R, Faw; C J (R), are generated by suitable sets {a(¢,j)] 1 < I}.
The Sexauer-VWarnock theorem gives us

a e Hom(V, V) ~J(R),
but this equals J(Hom(V, V)) as follows from Theorem 2.2. ™

Theorems 1.6, 1.7 and 2.2 together give us

THEOREM 2.4, If N° is a normal radical property and if V is a projective
R-module then

N{Homp(V, V) C Homg(V, N(R)V).
Furthermore, if a module V 1is finitely gemerated then
N{Homg(V,V)) = Homg(V, N (R)V)}.
Proof. Let a projective module V have a representation (F, A)
with a basis {e/ 7 ¢ I}. Then we have
N{Hom(V,V))= Hom(V, V) ~ N(B;) C Hom(V, V) ~ N(R);

with equality for finitely generated modules. Thus it is enough to observe
that Hom(V, V)~ N(R); = Hom(V, ¥ (R)V). But this is obvious if we
consider @ ¢ Hom(V, N(R)V) as a matrix
dod e Hom(F, N(R)F)= N(R);. m
To characterise ring Hom(V,V,b) we need the following

Lmnma 2.5. Let N be a normal radical property. If A is an ideal of
a ring § and a e A implies a e ad, then

N(ede) = eN(d)e
for every idempotent e = e ¢ 8.
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Proof. Let A be an ideal of a ring 8 with the required property
and let ¢= e? e 8. Let us consider the Morita contexts

M=(4,8¢e,ed,ede) and M = (4, de,eS,ede),

where all ‘products are multiplications in §. Sinee N is 2 normal property,
we obtain- from the context M

(2.1) (Se, N (ede)ed) = SeN (eAe)ed = SN (cAe) AC N (4),
and from the context M’
(2.2) [e8, N(A)Ae] = eSN(A)Ae C N (ede) .
Since N (¢4e) C A and NV (4) C 4, by our condition on A4 we obtain N (e4e)
CN(ede)A and N(A)C N(4)4. Thus (2.1) implies
N(ede) = ¢2N (ede)e C oSN (ede)Ade CeN(d)e,
and (2.2) implies
eN(A)e= e*N(A)eC eSN(A)AeC N(ede).
This means
N(ede)=eN(4)e. m

THEOREM 2.6. If N is a normal radical property and (F, 4) is a rep-
resentation of a projective z-module V then

N(Homg(V,V, b)) = AN (Homy(F, F, b)) 4
= N(Bomg(F, F, b)) ~ Homg(V, V).
Thus
N(Homg(V,V, b)) = N (Homg(V, 7)) ~ Homg(V, V, b)
C Homg(V, N(R)V, b)
and the last inclusion is an equality if the property N is supernilpotent.
Proof. Let (F, 4) be a representation of ¥ and let X be some sub-
set of a ring R. Since « = dad ¢ Hom(V, V) belongs to Hom (¥, F, b) if
and only if Fa= FAda= Vo is contained in a finitely generated sub-

module of a module F~V =7V and Fa=FodC XF4= XV for ae
4 Hom (f, XI')4, we have

Hom(V, XV, b) = AHom (¥, XF, b)4
for every subset X of R. In particular, we obtain
(2.3) Hom(V, N (R)V, )= AHom(F, N (R)F, )4
and
(2.4) Hom(V,V,b) = AHom(F, F, b)4 .
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Now we shall prove
N(Hom(V, 7V, b)) = AN (Hom(F, F, b)4 .

Let {ei i eI} be a basis of F. Denote by A an ideal Hom(F,F,b)
= (Ry, by of a 1ing 8§ = Hom(F,F)= R;. If a e A then U is a finite sef
of such § eI that there exists an ¢el and a(i,j) # 0. Then a= aey,
where ep(u,w)=1, for uwe U, and ey(i,j) = 0 otherwise. Then ey ¢ A,
The ring S, the ideal A and A= A®e§ satisfy the assumptions of
Lemma 2.5. Hence, by (2.4), Lemma 2.5 and (1.1)
(2.5) N(Hom(V,V,b))= N(AHom(F,F,d)4)= AN (Hom(F,F, b)4

= N(Hom(F,F, b)) ~ Hom(V, V).
Theorem 1.8 gives us
(2.6) N(Hom(F,F,b)) = N<By,b>=N(B) (B, >

= N{Hom (F, F)) ~ Hom (¥, , b) C <N (R);, b>

= Hom(F, N(R)F,b).
Now, applying successively (2.5), (2.6), Theorem 2.2 and (2.3), we obtain
2.7y N(Hom(V,V,b)) = N{Hom(F, F)) ~Hom(V, V) ~ Hom(¥, F, b)

= N(Hom(V,V, b)) ~ Hom(F, F, b)

= N{Hom(V, V)|~ Hom(V, V,b)

C AHom(F, N(R)F, b)4d = Hom(V, N(R)V, b).

For supernilpotent normal properties the inclusion in (2.6) is an
equality; thus in this case we have only equalities also in (2.7). @
THEOREM 2.7. If N is a normal radical property and V is a projective
R-module then
N(Homg(V, ¥, b)) C ¥ (Homg(V, 7)) C Homp(V, N (R)V)

and N{Homg(V,V,b)} is dense in Hompg(V, N(R)V) in the following
sense: for every finitely generated submodule G of V and every
a e Homg(V, N(R)V) there cwists a feN(Homg(V,V,b) such that
Fla—p)=0. |

Proof. Let (F, 4) be a representation of V. The first part of the
Theorem we obtain from Theorem 1.11 multiplying by 4 the correspond-

ing inclusions from the left and the right side and using (2.5) and Theo-
rems 2.2 and 2.4.

Now, let ¢ be a finitely generated submodule of V CF, and let
@ = dad e Hom(V, N(R)V)C Hom(F, N (R)F). By Theorem 1.11 there
exists such a fe N(Hom(F,F,d)} that G(a—pf)= 0. Since GCV, we
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have @4 = G and G(a—A4p4) = G({dad—A84) = GA(a—p) A= Gla—p)4
— 0. So 4p4 ¢ AN(Hom(F, F,b))4 = N(Hom(V,V,b)) (cf. (2.5)) is the
required homomorphism and ¥ (Hom(V,V, b)) is dense in Hom(V, N (R)V).

Remark. One can define

Homg(V,V, f) = Homg(V, V) ~ <Ry, >

for a projective module V with a representation (¥, 4) with the. Dbasis
{ei] ©eI}. It is easy fo see that this definition does not depend on the
choice of (F', 4). The technique described here allows us to prove for
a radical N (Hom(V,V, 1)) analogues of Theorems 1.10 and 1.11. But
instead of Lemma 2.5 one has to use the following

LEvMA 2.8. Let A -be a subring of a ring S and let e = ¢* e § be such
that AeA C A. If N is a mormal radical property and every element o belong-
ing to A belongs also to Acd, then

N(ede)=eN(d)e.

Outline of the proof. From the Morita context (4, Ae, eA, ede)
we have .
(Ae, N (ede)ed) = AeN (ede)ed C N(4)
and i
[ed, N (A)Ae] = AN (4)Ae C N (ede).

Using the properties of A, we obtain the required equality. M

One can check that the rings 8§ = Hom(F, F), 4 = Hom(F,F,f)CS
and an idempotent A= A% § satisly the assumptions of Lemma 2.8,
and so one can prove the required results.

3. Remark on the problem of Koethe. We shall say that a riﬁg S is
a Jo-radical ring it § is a nil-ring. It is an open problem whether every
left %-ideal of a ring R is contained in K(E), i.e., whether X is a strong
radical property. This is the problem of Koethe [6]. We shall give an
equivalent description of this problem.

TaEOREM 3.1. The following conditions are equivalent.

(i) For every ring R with identity and every projective left R-module V
we have

K (Homg(V, V) C Homg(V, E(R)V);
(i)
K (eRe) C K (E)

for every ring B with identity and every e = ¢* € B;
(iii) the problem of Koethe has a positive solution.

4— Fundamenta Mathematicae, T. LXXXVI
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Proof. Implication (iii) = (i) is an immediate consequence of Theg-
rem 2.4 because if X is strong then ¥ is a normal property (ef. [5] Theo-
rem 1, or [9] Theorem 1).

‘We shall prove (i) = (ii). If B is a ring with identity and ¢ = e2 ¢ B
then Re is a projective R-module with the representation (R, e) and
Hom(Re, Re) = eRe. Thus

K (eRe) = K(Hom (Re, Re)) C Hom(Re, K (R)Re)
C Hom(R, K (R)R)= K(R).

To prove (ii) = (iii) let us consider a nil-ring 4 and let us put R = 4%

Of course A= K(R). We write ¢ = (3 g) eR,. It is easy to see that

¢= ¢t and that a ring ed,e isomorphic with 4 is a X-radical of a ring
eRye isomorphic with R. Hence

Ay = ByedyeB, = R, K (¢R,e) R, C B, K (Ry) R, CE(R,).

This means that a matrix ring 4, is nil for every nil ring A. In this case
the problem of Koethe has a positive solution, as was proved by J. Krempa
[7] and A. D. Sands [9]. m
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On shapes of topological spaces

by
Kiiti Morita (Tokyo)

Abstract. A new approach to shapes of topological spaces and its applications
will be given. ’

The notion of shape was originally introduced by K. Borsuk [1]
for the case of compact metric spaces. Since then, this notion has been
extended to the case of compact Hausdorff spaces by 8. Marde§ié and
J. Segal [12] (cf. also W. Holsztiynski [7]) and to the case of n.aetrie spaces
by K. Borsuk [2] and R. H. Fox [4]. More recently the notion has been
extended to the case of arbitrary topological spaces by S. Mardegié [11].

In this note we shall discuss shapes of topological spaces in the sense
of Mardegi¢ from another point of view. )

For any. category @, let us denote by Ob € the class of all ob;_ects
of €, and by fe €(X, ¥) we mean that f is a morphism from X to ¥ in G.

1. Let § be the homotopy category of topological spaces. Its objfacts
are topological spaces and its morphisms are homotopy classes of. continu-
ous maps; the homotopy class of a continuous map fi: XY will be. de-
noted as usual by [f]. Let 98 be the full subeategory of § whose objects
are all topological spaces having the homotopy type of a CW complex.
Throughout this paper, by an ANR we shall mean an ANR for t’h’e class
of metrizable spaces. The following result is known (cf. Mardeiié [11]).

TemmA 1.1. For a space X the following conditions are equivalent.

(a) X has the homotopy type of a CW complex. .

(1) X has the homotopy type of a simplicial compler with the weak
topology (or with the metric topology).

(6} X has the homotopy type of am ANR.

DeFINITION 1.2. Let {X,, [Du], 4} e an inverse system in t;e
category $ or B; thatis, 4isa directed set, continuous Maps Poqrt X o> ifu
are defined for any a, o with a<d, and [PuwllPee]= [P
a< o' < o''. We shall say that an inverse system {X,, [Poar]s A} In §H oOT
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