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Abstract. A topological space (resp. a countably subparacompact space) X is
said to be 6-expandable (vesp. subexpandable), if for every locally finite (resp. discrete)
collection {F3] A A} of subsets of X there exists a sequence

{Gn= (G Acd} n=1,2,..}

of collections of open subsets of X satisfying (1) F; C Gy, for every 1 and every n, (2) for
every point » of X there exists some # for which # is in at most finitely many members
(resp. at most one member) of G,. The main results of this paper are as follows:
(a) 6-refinable spaces, expandable spaces (in the sense of L. L. Krajewski) and sub-
expandable spaces are 0-expandable; (b) subparacompact spaces, expandable normal
spaces (equivalently, countably paracompact collectionwise normal spaces) and per-
fectly normal spaces are subexpendable; (c) a 0-refinable space is subparacompact if
and only if it is subexpandable; (d) various characterizations of expandability, 6-ex-
pandability and subexpandability in terms of coverings; (e) mapping, sum, product
and subset theorems for 0-expandable spaces and subexpandable spaces.

In [7] Kat8tov proved the following useful theorem:

A mnormal space X is collectionwise normal and countably para-
compact if and only if

(%) for every locally finite collection {F,| AeA} of subsets of X
there exists a locally finite collection {G,| A€ 4} of open subsets of X
such that 7, C @, for every 1e 4.

Recently, Krajewski [10] has called a topological space X expandable
it X gatigfies this condition (x). Smith and Krajewski [11] have introduced
some generalizations of expandability, and they have obtained various
resulty coneeining thege notions.

In this paper, we shall introduce new notions of #-expandability,
subexpandability, cte., and obtain analogous results. Furthermore, we
shall study additional properties of expandable spaces, 6-expandable
spaces, cte. The contents of this paper were announced in [9].

1. Definitions and elementary relations. First, let us recall the definitions
of the terms of paracompact, metacompact, 6-refinable and subpara-
compact. A space X is paracompact (resp. metacompact), if every open
covering of X has a locally finite (resp. point-finite) open refinement.
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X is 6-refinable [21], if for every open covering W of X there exists a se-
quence {B,] »=1,2,..} of open refinements of U such that for every
point & of X there exists a positive integer » for which B, is point-finite
at @ (i.e., @ is contained in at most finitely many members of B,). X is
subparacompact [3], if every open covering of X has a o-discrete elosed
refinement.

Let m be an infinite cardinal number. A space X i3 m-paracompact
[16], if every open covering of X with power <m has a locally finite
open refinement. Similarly, m-metacompact spaces, m-0-refinable spaces
and m-subparacompact spaces ave defined. In case m ==, these are
countably paracompact spaces, countably metacompact spaces, counlably
0-refinable spaces and countably subparacompact spaces, respectively.
A space X is finitely subparacompact, if every finite open covering of X has
a o-discrete closed refinement.

A space X is expandable [10] (resp. almost expandable [11]), if for
every locally finite collection {F,| Ae.A} of subsets of X there exists
a locally finite (resp. point-finite) collection {@G,| A e A} of open subsets
of X such that F,C &, for every e 4.

A space X is 0-expandable, if for every locally finite collection
{Fil 2ed} of subsets of X there exists a sequence {Gn = {&,,| ie A}
n=1,2,..} of collections of open subsets of X satistying the following:

(1) F,C@G,, for each 4 and each n.

(2) For each point # of X there is a positive in‘beger n for which ®, is
point-finite at .

A collection 9 of subsets of a space X is bounded locally finite, if there
exists o positive integer n such that every point of X has a neighborhood
which interseets at most » members of U. Obviously, every discrete
collection is bounded locally finite and every bounded locally finite col-
lection is locally finite.

A space X is boundedly (resp. discretely) expandable [11], if for every
bounded locally finite (resp. discrete) collection {F,| 1 e A} of subsets
of X there exists a locally finite collection {G,) 1c A} of open subsets
of X such that F,C @, for each 1ed. Almost boundedly (discretely) em-
pandable spaces [11] and boundedly (discretely) 6-expandable spaces are
now easy to be understood.

A space X is discretely subexpandable, if for every discrete collection
{F)] 2eA} of subsets of X there exists a sequence

{Bn={G,l 2edff n=1,2,.}

of collections of open subsets of X satisfying the following:
(3) F,C&,, for each 1 and each n.

iom®
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(4) For every point x of X there is a positive integer n for which & is
contained in at most one member of &,.

A discretely subexpandable space is subexpandable or boundedly sub-
expandable, it it is countably subparacompact or finitely subparacompact
Tespectively.

In the definitions of expandable spaces, 6-expandable spaces, sub-
expandable spaces, ete., if the power of the index set 4 is m, then we
have the definitions of m-ewpandable spaces, m-0-ezpandable spaces,
m-subexpandable spaces, cte., respectively. In case m =N, these are
countably expandable spaces, countably 6-ewpandable spaces, countably
subezpandable spaces, ete., respectively.

TueorREM 1.1 [10]. A space is countably expandable if and only if it
48 countably paracompact.

TaHEOREM 1.2. The following are equivalent for a space X:

(a) X is almost countably empandable.

(b) X s countably metacompact.

(¢} X is countably 0-expandable.

(d) X is countably 0-refinable.

(e) For cvery increasing countable open covering {Ua| n=1,2,..}
there is @ countable closed covering (Vo] n=1,2,..} such that Vo C Uy

for every n.

Proof. The implications (a) — (¢) and (b) — (d) are obvious. We
shall show only the implications (a) — (b), (d) — (e) and (e) — (a); the
proof of (¢) — (d) is analogous to that of (a) — ().

(a) — (b): Tet W = {Uy i=1,2,..} be a countable open covering

i-1
of X. Let #,= U, and F;= U;— |J Up for each i=2,3,.., then
B=1 .
the collection {Fy| 4 = 1,.2, ...} is a locally finite covering of X. Since X is
almost countably expandable, there is a point-finite open GOHEthOfL
{@s] i=1,2, ...} such that 7, C G for each i. Let Vo= Ui n G4 fmf each 1,
then the collection {Vi 1=1,2,..} is a point-finite open refincment
of 1. Hence X is countably metacompact. A

(@) — (e): Lot W= {T, i=1,2,..} be an increasing countable
open covering of X. Since X i3 countably §-refinable, we have a sequence
(Bn] n=1,2,..} of open refinements of I such tha,t. for-eyery point @
of X thero is n positive integer m for which B, is point-finite at 2. Let
W= {eX| Sb(w, Bn) C Ui}, where St(z, Ba) = UV eBal V2 -f}, for

each ¢ and each n, then it is easily shown W;,C Us. Let Vi =nL=JI Win

for each i, then V; is a closed subset and Vs C U for each i. To show th;t
the collection {V| i = 1,2, ...} is & covering of X, let & be a point of X.
We have a positive integer n () such that B, is point-finite at 2. Since
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B, refines I and U is an increasing covering, there is a positive integer
i(w) such that St(z, Bye) C Uiy Hence @ € Wi - Liet max {n(x), i(z)}
= m(z) , then Wy nw C Wanmnm C Vaumy- Hence {Vif ¢=1,2,..} is
a covering of X. ¢
(e) — (a): Let {Fi] ¢ =1, 2, ...} be a locally finite countable collection
of subsets of X. We put U; = X— |J Fy for every positive integer 4, then
k=i+1
it is easily shown that {U;| i= 1,2, ..} is an increasing open covering
of X. By assumption, there exists a closed covering {Vi i=1,2,..}
=1
of X such that V;C U, for each 4. Let Gy = X and Gy= X— (J Vi for
. k=1
i=2,38,..., then {&] ¢=1,2,..} is a point-finite collection of open
subsets of X. Since FinVyCF;n Up =@ whenever k< ¢, we have
F;C @ for each 4. Hence X is almost countably expandable.

TEEOREM 1.3. A space is countably subexpandable if and only if it is
countably subparacompact.

Proof. To complete the proof, it is sufficient to show that a count-
ably subparacompact space is discretely countably subexpandable. Let X
be a countably subparacompact space and let {F:) ¢ =1, 2, ...} be a dis-
crete collection of subsets of X. Put U;= X— (J Fy for each positive

e

integer 4, then W = {U{ = 1,2, ..} is a countable covering 'of X. Hence

U has a o-discrete closed refinement B. We may assume that B = | B,
n=1

Bn={V;,| i=1,2,..}, each By is a discrete closed collection and VinC Us
for each ¢ and each n. Let ¢, = X— | Vin for each ¢ and each # and
k#i
Gr = {G,,] i=1,2, ..}, then each G, is an open collection. It is easily
proved that F; C @, for each i and each n. Let @ be a point of X. Pick
up (%) and n(z) such that B € Ve me- Then, in the collection G,
Only Gy ney cOntaing 2. Thus X is discretely countably subexpandable.
The following theorem is easily proved from Dowker [5, Theorem 2}
and Theorems 1.1, 1.2 and 1.3.

TeEEOREM 1.4. The following are equivalent for a normal space X.
(a) X is countably empandable.

(b) X is almost countably expandable.

(e} X is countably 0-expandable.

(@) X is countably subexpandable.

The following theorem is ¢ direct consequence of Theorems 2.1, 2.2,
2.3 and 2.4 below.

THEOREM 1.5. (a) An m-paracompact space is m-expandadble [10].
(b) An m-metacompact space is almosi m-expandable [11].
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(¢) An m-0-refinable space is m-0-empandable.

(d) An m-subparacompact space is m-subespandable.

TeEOREM 1.6. (2) A space is boundedly m-expandable if and only if it
is discretely m-empandable [11]. .

(b) A space is almost boundedly w-expandable if and only if it is
almost discretely m-expandable [11].

(e) A space is boundedly m-0- expandable if and only if it is discretely
m- 8- expandable.

Part (a) of the theorem was proved in [11], and (b) and (c¢) are proved
by the same argument. ‘

THEOREM 1.7. (a) A space is m-expandable if and only if it is boundedly
m-expandable and countably expondable [11].

(b) A space is almost m-expandable if and only if it is almost bound-
edly m-expandable and almost countably espandable [11].

() A space is m-0-expandable if and only if it is boundedly m-0-ex-
pandable and countably 6-empandabdle.

This theorem will be proved in § 2.

ToEOREM 1.8. An m-subexpandable space is m- 0-ewpandable.

Proof. A discretely m-subexpandable space is obviously discretely -
m-6-expandable and hence boundedly m-6-expandable by Theorem' 1:6.
It is easily shown that a countably subparacompact space X satisfies
the condition (e) in Theorem 1.2. Therefore, by Theorem 1.7, an m-sub-
expandable space is m-6-expandable. - )

A space X is m-collectionwise normal if for every dlscret_e.c'ollectxon
{F,] A e A}, with power < m, of subsets of X there exists a disjoint open
collection {@,| AeA} such that F,C@; for every Aed. A space is
eollectionwise normal [2], if it is m- collectionwise normal for every cardinal
number m. Evidently every m-collectionwise normal space 13 normal.
It'is easily seen that a normal space is %,- collectionwise normal.

TErorEM 1.9 ([7] or [11]). A space is m - eollectionwise noymal if
and only if it is boundedly m-expandable and normal.

TrroREM 1.10. An m-collectionwise normal space is boundedly m-sub-
espandable.

Proof. Evidently every m-collectionwise normal space is diseretely
m-subexpandable 'a.n‘d every normal space is finitely subparacompact.

TaroreM 1.11 [7]. 4 normal space is m-expandable if and only if it
is m- collectionwise mormal and countably paracompact.

COROLLARY 1.12. An m-expandable normal space is m - subexpandable.

TrRoREM 1.13. A space X wn which every closed subset is a G;-subset
is subezpandable.
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Proof. First we shall prove that X is discretely subexpandable.
Let§ = {F,| A € 4} be a diserete collection of subsets of X. By assumption,

we have a collection {Hy| n= 1,2, ..} open subsets of X such that ﬂ H,
=UF,. Let Gy, = H,— U F, for each 1 and each n, then G, = {¢, | 7 € /1}

Aed
is an open collection for eaeh n. Since § is discrete, F, ~ U 1’ = @ for

e
each A. Hence F,C &, , for each 2 and each n. Let # be a point of X. If

@ |J F,, there is an element A(x) of A such that 4 ¢ Fy,y and w¢ (J F,.
Aed uAMz)
Hence, in any G, only Gy, , contains 2. If ¢ L_)F,1 , there is a positive

Aed
integer # (x) for which @e¢ H,,; consequently no member of @, con-
tains x. Therefore X is discretely subexpandable.
Next we shall prove that X is countably subparacompact. Let U
= {U4 1=1,2,..} be a countable open covering of X. By assumption,
for each ¢, theve is a collection {V,,| n=1,2, ...} of closed subsets of X

such that U;=|JV,,. Obviously the collection
n=1

Vel i=1,2,.50=1,2,.}

is a o-discrete closed refinement of U. Therefore X is countably sub-
paracompact.

CorOLLARY 1.14. A perfectly mormal space is subewpandable.

From the results in this section together with well-known results,
we have the following diagram:

paracompact —metacompact— f-refinable + subparacompacte— paracompact > fully

and normal  normal
¥ 4 + + } 4
expandable — almost ->0-expandable« subexpandable « expandable “strongly
expaudable ' and normal  normal
bou.ndedly - a.lmost —boundedly « boundeidly — bounc\}iedly o coﬁo-ﬂ
expandable boundedly 6-expandable subexpandable expandable ) tionwise
' ex_p?gda,ble . and normal normal
discretely  — almost adiscret(il'y - diseretily
expandable discretely 6-expandable subexpandable
expandable :

2. Characterizations in terms of coverin
is an A-covering (resp. B- covering) [8], it it has a locally finite (resp.
bounded loeally finite) refinement. Notice that the refinement is not

necessarily open. Every B-covering is an A - covering and every count-
able open covering is an A- covering [8].

gs. An open covering of a space
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An open covering {U,;] AeA} is a C-covering, it it satisfies that

= UU, for every led. Every (-covering is a B- -covering.
HFEA vFER

Indeed, for a -covering U = {U,| 1 e A} the collection B = {V,] 1e Ay o

u{X— U V) is & bounded locally finite refinement of i, where ¥, = X—
Ae

~-yUbu, I01 every le/. Obviously every binary open covering is

a F-Zcovermg.

A-coverings and B - coverings were used in [8] to characterize strongly
normal spaces (i.e. countably paracompact, collectionwise normal spaces)
and collectionwise normal spaces, respectively.

In this section, by using A -coverings, B-coverings and (-coverings
respectively, we shall give various characterizations of

(A) expandability, almost expandability, 0-expandability,

. (B) bounded expandability, almost bounded expandability, bounded
6-expandability, and

() bounded subexpandability.

For m-expandability, ete., too, quite analogous characterizations
will be obtained under the condition the powers of coverings << m; these
will be omitted, however.

A covering W is directed [12], if it is directed by set inclusion.

THROREM 2.1. The following are equivalent for a space X:

(a) X is empandable (boundedly expandable).

(b) Boery A-covering (B-covering) of X has a locally finite open
refinement.

(¢) Bwery directed A-covering (B—co'vermg)l of X has a locally fimite
open refinement.

(4) Bvery directed A.-covering (B-covering) of X has an open, locally
star-refinement (*). .

(e) Hovery divected A.-covering (B-covering) of X has an open, cushioned
refinement [15]. _

TaeormM 2.2, The following arve equivalent for a space X:

(0) X 4s almost ewpandable (almost boundedly expandable).

(b) Bwery A -covering (B-covering) of X has a point-finite open
refinement.

(c) Twery divected A-covering (B-covering) of X has a point, finite
open refinement.

(1) Eovery directed A- covermg (B-covering) of X has an open A-re-
finement.

() Let U and B he two coverings of a space X. If every point & of X has a neighbor-
hood W () such that St(W (z), B) C U for some U e U, then we say that the cox:ﬁer;_;t)g
B is a locally star-refinement of the covering . Obviously, every open stm-leﬁneme? [)0 ]|
is a locally star-refinement and every locally etar- refinement is a 4 -refinement [20].
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(e) Ewvery directed A-covering (B-covering) of X has a cushioned
refinement.

THEOREM 2.3. The following are equivalent for a space X:

(a) X is 0-cxpandable (boundedly 0-expandable).

(b) For every A-covering (B-covering) U of X there emists a sequence
{8Bai n=1,2, ..} of open refinements of U such that for every point » of X
there exists a positive integer n for which By is point-finite at x.

(e) For every directed A-covering (B-covering) W of X there ewisis
a sequence {Bn| n=1,2,...} of open refinements of W such that for every
point x of X there exists a positive integer n for which By, is point-finile ai .

(Q) For every direcied A-covering (B-covering) U of X there ewists
a sequence {8Ba] n=1, 2, ...} of open refinements of W such that for every
point x of X there ewists a positive imteger n and some Uell with
St(z, Bn) C U.

(e) BEwery directed A-covering (B-covering) of X has a o-cushioned
refinement. -

We prove only Theorem 2.3; the proofs of Theorems 2.1 and 2.2 are
quite parallel to that of Theorem 2.3.

Proof of Theorem 2.3. (a) — (b): Let 2 be an A-covering of X.
Then U has a locally finite refinement § = {F,] i e A}, Since X is 0-ex-
pandable, there exists a sequence {G, = {Ginl Aedl n=1,2,.} of
collections of open subsets of X which satisfies conditions (1) md (2) in
the definition of 6-expandability. Since § is a refinement of the open.
covering U, we may assume that every G, is also a refinement of 1.
Thus {6n] n=1,2,..} is a required sequence of refinements of 1.

(b) — (e): This is evident.

(e) — (d): Let U be a directed covering of X and B a refinement
of 1. If B is point-finite at a point # of X, then there is some U e U such
that St(z, B)C U.

(@) — (e): It U and B are two open coverings of X, then the col-
lection {W(U)| U eU} is cushioned in U, where

W(U) = {w ¢ X| St(z,B)C U}

(€) = (a): Let F= {F,| e A} be a locally finite collection of sub-
sets of X', and let I" be the set of all finite subsets of 4. Put U,=X—UTF,

Aty
for each y eI, then I = {U,l y eI} is evidently a directed open ¢over-

ing of X. If let H = ﬂ F, for each y e T, then it is easily shown that

{U,~nH)yellisa loeally finite refinement of 1f. (If % is bounded locally
finite, then 50 also is it.) Hence U is a directed A eovemng of X. By as-

sumption, ¥ has a ¢-cushioned refinement B = U 23% such that every
B, is cushioned in . Without loss of generality

n=1
we may assume that
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By = V4l v eI} for every m, and U V,,,,,C U U, for every I CI'. Let
@ =X— UV')/% for -each 1ed4, then (Sn_{GM] led} is an open

collection for each n. Since F, n U, = @ whenever 1¢ y, we have F,CX—
— U U, for each 4 4. Hence, for each A €A and each n,
y$4

G = X— UV 2X-yU,DF,.
v$a
Now, let # be a point of X. Since B is-a covering of X, we have a positive
integer m(z) and an element y(x) of I' such that @ eV, .. Hence,
if @ € Gy then i ey (2); consequently @, is point-finite at x, because
y(®) is a finite subset of A. (If B is an open eovermg, ®,,, is locally finite
at ».) Thus X is 6-expandable.

TeEorEM 2.4. The following are equivalent for a space X:

(a) X is boundedly subexpandable. ‘

(b) For every 0-covering W of X there ewists a sequence {Bu|n =1,2,...}
of open refinements of U such that for every point » of X there exisis o positive
integer n for which only one member of B contains .

(¢) For every C-covering W of X there ewists a sequence {Bn| n=1,2,...}
of open refinements of W such that for every point & of X there exists a positive
integer n and some U e W with St(z,Bs) C U.

(d) Bwery O-covering of X has a o-discrete closed refinement.

(e) Ewery O-covering of X has a o-locally finite closed refinement.
. (£) Bvery O-covering of X has a o-closure-preserving closed refinement.

(8) Bvery C-covering of X has a o-cushtoned refinement.

Proof. The implications (b) — (¢) and (d) — (e) — (f) — (g) are
obvious, and the proof of (¢) — (g) is identical with that of (d) — (e) in
Theorem 2.3. ]

(a) — (b): By assumption, X is discretely subexpandable and finitely
subparacompact. Let W = {U,] AeA} be a C- covem.lg of X, and let
F,=X— U U, for each e A. Then {F,| e} is a discrete closed col-

lection. Bﬁ;zthe diserete subexpandability of X, there ~exis.’ﬁs a sequence
{Gn={G,l e d}|n=1,2, ...} of open collections satistying (3) and (4)
in the definition o[ 2 (11scletely subexpandable space. Sinece F,C U, for
each 4, we may assume G,, C U, for each A and each #. Let Gy = U G

for each n and let H = X— U F,, then {G, H} i3 a binary open covenng

of X for each n. Since X 1s ﬁmtely subparacompact, we have a count-
able closed covering Sn= {E;,| i =1,2,..} v {Iy,l i=1,2,..} for
each » such that K, C @,, L, CH and K, ~ Ly, = g for eaeh i. Liet
us Put' VZ'L = Gln —L'HL ELI].(]. %GW = {Vi.'»nl }'GA}U {H— np} for
each ¢ and e,ach n. It is easily shown that every B,, is an open covering
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of X. Next, let @ be a point of X, and let n (@) be a positive integer such
that # is eontained in at most one element of G, . Since K, is a cover-
ing of X, there is an i(#) such that @ € Ky ni OF @ € Dy iy Then o is
in exactly one element of the covering B;u nw- Finally, let us show
that every %B,, refines . To do this it is enough to show that some
member of U contains H. Really, every member U, of U contains H; for

H=N(X-F)CN(EX-F)=N UU,=T,.

[ros: . ned B BFEAVEL
Thus the sequence {B,,| 4, n=1,2, ...} is what we require.
{b) — (d): Let U be a C-covering of X, and let {Bn| n=1,2,..}
be a sequence of open refinements of U with the property that, if # ¢ X,
there is an # such that « is contained in exactly one member of B,. We
define, for every VeBa, W(V)=X— J{V' eBul V' # 7}, and let W,

= {W(V)| V e By} for every n. Then |J W, is a o-diserete closed refine-

n=1
ment of 1.
(8) — (a): First let us shown that X is discretely subexpandable.
Let § = {F,| 4 ¢ 4} be a discrete collection of X. If we put U, = X— (J 7,

nEL
for each 4 e, then U = {E[ Ae A} is obviously an open covering of X.

Since § is diserete, () U F, = F, for each 1, and hence, N uu,=r1,
R vEL X nFEA vER
for each 4. Therefore U is a O-covering, so that, by assumption, it has

& ¢-cushioned refinement B = | B,. We may index By == {V, | 1 ¢4}

%=1
for each # such that, for each A'C 4, | VuCUU,. Let ¢,=X—
e’ rea’ .
— L%VM and & = {G,,| i<A} for each n, then each @, is an open
) uEL .
collection. For each z ¢ X, if we choose 1(z) and n(z) such that z ¢ V. Ka)n(a)?

then, in &,,), ab most Gy CONbAINS 2. Furthermore, for each 1 and
each n, we have : .

Grp=X— UﬁnDX— UT,=N UFRDT,.
a#

nEd HFED v

Hence X is discretely subexpandable.

Next let us show that X is finitely vsubpm‘aeompact. Sinee a binary
open covering is a C-covering, every binary open covering of X has
a ¢-cushioned refinement by assumption. Hence every finite open cover-
ing of X has also a o-cushioned refinement. As is eagily shown, a finite
(more generally, countable) open covering with a cr-cus}iioned refinement
has a a—fiiscrete closed refinement. Hence X is finitely subparacompact.
Thus X is boundedly subexpandable, and this completes the proof.
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In connection with Theorems 2.1-2.4, we raise the following problems:
ProBrEM 2.5. Are the following equivalent for a space X?

(a) X 18 paracompact.

(b) Bvery directed open covering of X has an open, locally star-refinement.

(c) Dwery divected open covering of X has an open  cushioned
refinement.

PROBLEM 2.6, Are the following equivalent for a space X

(a) X is metacompact.

(b) Twery dirccted open covering of X has an open A-refinement.

(¢) Bwery directed open covering of X has a cushioned refinement.

ProOBLEM 2.7. Are the following equivalent for a space X%

(a) X 4s 0-vefinable.

(b) For every directed open covering U of X there ewists a sequence
{8ul n=1,2,..} of open refinements of W such that for every point w
of X there ewist some n and some U e W with St(z, By) C U.

(¢) Every directed open covering of X has a o-cushioned refinement.

PROBLEM 2.8. Are the following equivalent for a space X%

(@) X is subparacompact.

(b) Ewery open covering of X has a o-cushioned refinement.

The implications (a) — (b) — (¢) in Problems 2.5-2.7 and the impli-
cation (a) — (b) in Problem 2.8 are easily proved. An affirmative answer
to Problem 2.7 would imply affirmative answers to the others (ef.
Theorems 3.1 and 3.2 below).

For expandable spaces, furthermore, we have the following characteri-
zations:

THEOREM 2.9. The following are equivalent for a space X:

(a) X is expandable.

(b) For every directed A-covering W of X, there ewists a locally finite
open covering B of X such that {V| V e B} refines U.

(¢) Bvery directed A -covering of X has a locally finite closed refinement.

(d) Bwery directed A -covering of X has an open o-cushioned refinement.

Proof. The implieations (b) — (¢) and (b) — (d) are obvious. The
proofs of (a) — (b) and (¢) — (a) essentially due to Mack [12].

(a) — (b): Since X is expandable, every direeted A -covering Uof X
has a locally finite open refinement {&,| A< 4} by Theorem 2.1. Let I" be
the set of all finite subsets of A. Put H, = X— UJ G, for cach y e I', and

Ay

let = {H,| y «I}. Then $ is evidently a directed open covering of x.
Since { (N G, ~H,| y eI} is a locally finite refinement of §, $ is an

Ae .
A-coveri)gg. Again, by the expandability of X, § has a locally finite
open refinement B. Now, since U is directed, there is some U e U such


GUEST


242 Y. Katuta

that H,CX—JG,CUG,CU. Therefore {H] He$H}, and hence
Agy dey
{V| V ¢ B} refines 1.
(c) — (a): Let W= {U,| AeA} be a directed A-covering of X, then
by assumption there is a locally finite closed refinement {F,| 1 e A} such
that F,C U, for each 1. As above-mentioned, if we put H, = X— |J F,

Ady
for each y, then {H,| y ¢ I'} is a directed 4-covering of X. And it hag
also a locally finite closed refinement {K,| y ¢ I} such that K, CH, for
each y. Put V= U,— |J K, for each ie4, then B = {V,| 1e 4} is an

2
open colleetion which r@ines U. Since F; ~nK,CF,~H, =@ whenever
Aép, F,CV, for each A. Hence B is a covering of X. To establish the
locally finiteness of B, let 4 be an arbitrary point of X. Pick up y(#) in I
for which @ e K. If ¢V, then A is in y(x) which i3 a finite subset
of 4. Hence B is locally finite. :

(d) — (a): For’ the moment, assume that X is countably para-
compact. By (d), every directed A-covering U of X has an open
o-cushioned refinement. As is easily shown, an open covering of a eount-
ably paracompact space with an open o-cushioned refinement has an
open cushioned refinement. Therefore I has an open cushioned refinement,
and hence, by Theorem 2.1, X is expandable. Thus, to establish the
implication, it is enough to show that X is countably paracompact. To
do this, let U= {U;] i=1,2,..} be an increasing countable open
covering of X, then it is obviously a directed .4-covering. By as-

(4]
sumption, U has an open o-cushioned refinement | J Bn; we may index
=1

Br={Vinl i=1,2,..} such that V,,C U; for each i and each n.
i 3
Define Wi = {J U V;,, then {W: i=1,2,..} is an open eovering of X
1

__JI=1a=
satisfying W, C U, for each 4. Hence, by Ishikawa [6], X is countably
paracompact.

Here we establish Theorem 1.7 which is left unfinished.

Proof of Theorem 1.7. We shall prove only parts (b) and (e)
part (a) will be proved in parallel to part (b).

(b) To prove the nontrivial half, let X be almost boundedly m-ex-
pandable and almost countably expandable. Let I be an A-covering
of X with power < m. Then I has a locally finite refinement F = {F,| 1 e A}
with |4} < m. For each positive integer 7, let Gy be the seb of all points
of X contained in at most n members of §, where F={F| 1c A}, It is
easy to show that {G,| n=1,2 , -~} i8 an increasing countable open
covering of X. Since X is almost countably expandable, by Theorem 1.2
there exists a countable closed covering {H,| n=1,2,..} of X such
‘that Hy C @ for each n. Then, for each #, the collection {F, ~ H,| 1 ¢ 4}

H

icm®
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is bounded locally finite. Hence, by the almost bounded w-expandability

of X, for each n there exists a point-finite open collection By = {V;,| 4 € 4}

guch that Ty ~ Ha CV,, for each 1. Since § refines U, we may assume
oo

that each B, refines . Then |J Bn is obviously a o-point-finite open
n=1

refinement. of . Hence U has a point-finite open refinement, because

X is countably metacompact by Theorem 1.2. Thus X is almost m-ex-

pandable by Theorem 2.2.

(¢) To prove the nontrivial half, let X be boundedly m-0-expand-
able and countably 6-expandable. Let § = {I',] 4 « A} be a locally finite
collection of subsets of X with |4] < m. For each positive integer n, as
stated in (b), let G be the set of all points of X contained in at most »
membery of 5, then {Gs| n=1,2,..} is an increasing countable open
covering of X. Since X is countably 6-expandable, by Theorem 1.2 there
is a countable closed covering {Hn| n=1,2,..} of X such that H,C @,
for each n. Then, for each n, {F, ~ Hyl 1 4} is a bounded locally finite
collection. Hence, by the bounded m-0-expandability of X, for each =

. there exists a sequence {B,, = {Vi.,| 1e A} p=1,2, ...} of collections

of open subsets of X such that F;~ Ha C V4, for each 1 an_d each ?;
and such that for each point # of X there is some p for which B,, is
point-finite at @. Put Wy, ="Vinp v (X—Hy) for each triple (1, n,p),
and let W, , = {W, 0l 4 € 4} Obviously Winp 18 open and F,C W‘)’”’:ﬂ'
To show that the sequence {W, .| n=1,2,..; p= 1,2,...}'samsﬁes
condition (2) of the definition of §- expandability, let & be a point of X.
Take out positive integers n(2) and p(z) such that 2 € HM@ anq _me),p(z)
is point-finite at . Then it is obvions that Wywpe I8 point-finite at .
Hence X is m- §-cexpandable.

3. A characterization of subparacompact spaces. In _colleetionwise
normal spaces, it is known. that paracompactness is equivalent to the
following properties: .

(i) metacompactness (Michael [14;[ or Nagami [17]),
(i) 0-refinability (Worrell and chke 21D,

(iii) subparacompactness (Burke [31). e
(Sinee metacompactness as well as subparacompactness implies 6 refin
ability [4], case (ii) covers the others.) ' o

In |'_16] and [11] Krajewski and Smith proved the followmg.. ;

TomoreEM 8.1 ([10] and [11]). (a) 4 space X is paracompact if an

refimable.
only if 4t is ewpandable and 0-refinab o |

(110) A space X 45 metacompact if and only if it s almost ewpandable
and 0-refinable. ’

Similarly, using the techniques of Michael [14], we shall prove the
following: ‘

4 — Fundamenta Mathematicag LXXXVII
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TEEOREM 3.2. A space X is subparacompact if and only if it is sub-
empandable and 0-refinable.

First we prove the following: '

TEMMA 3.3. Let X be o discretely subexpandable, and let N be the set
of all positive integers. Then for every open covering U = {U,| Aed} of X,
there exists a family {B(iry vy in)| 1y oy in eN; neN} of collections of
open subsets of X satisfying the following:

() B(iyy ey n) = {V, (01, ey in)| ¥ e I'n}, where I'n denotes the set of
oll sets consisting of exactly n elements of A (i.e. I'n= {y C 4| |y| = n}).

(1) V, (i1, oy in) C (N Uy, for every y eln.

ey

(¢) If @ € X belongs to at most n members of W, then, for every (iy, ..., i),

k3
B e\ Vg, ooy i), where Vi, ooy in) = U V,(i, ..., &)

k=1 vely

(d) For every z e X and every (iy, ..., 0,_y) there exislts some in € N such
that @ is in at most one member of B (iy, ..., by_q, by)-

Proof. Suppose that' {B (i, ..., ix)] %y .eyineN; E=1,..,n—1}
has been constructed, and let us construct {B (i, ..., %) 1y ..., e N}
For every (i, .., &,_;) and for every y Iy, define

B gy ) = (X— Qm i) A (X— U T,

Agy
(In case n=1, Fp= X— |J U, for every {i} el7.) Let us prove that
p#d ;

F = {F, (i1, -y 9yy)| ¥ €Iw} is diserete for every (iy,..,%,—,). Let & be

. . .. w1
a point of X. If » is in at most n—1 members of U, then w « |J V (44, ..., ix)
n—1 Jo=1

by (e). Hence kU V (i, ..., i8) is & neighborhood of # which intersects no

=1
member of §. If  is in at least # members of U, there exists some y (x) e Iy
such that ¢ (| U;. Then (" U, is a neighborhood of @, and it inter-

Ley(x) iey(x)
sects at most F (i1, ..., 4,_;) in § Thus § is a discrete collection.
Since X is discretely subexpandable, for each (4, ..., 1, ,) there
exists a sequence {B(4;, ..., i,_1,%)| in ¢ N} of open collections satisfying
conditions (a), (d) and the eondition F(i,,...,4,_,)C Voligy ooy ey )
‘for. eaeh.y eI’y and each i, ¢ N. From the definition of By ey in_l),
it is obvious that F (4, ..., 4, 4) C lﬂ U, for each y. Hence we may sup-
€
pose that (b) is satisfied. To see (c)v, fix (i, ..., 4s) and let @ be a point
. . n~1
of X contained in at most n members of . If a.¢ UV iy, .., iz), then
. . k=1
glzf;;(z%],l el’,f’(';;}) for some y eIy and hence @ eV (i, ..., ). This com-

Next, using Lemma 3.3, we prove the following:
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LeMMA 3.4. Hvery poini-finite open covering of o subespandable space X
has a o-discrete closed refinement.

Proof. Let W= {U,| 1¢4} be a point-finite open covering of X.
To show that U has a o-discrete closed refinement, it is emough to
construct a sequence {Hs s=1,2,..} of open refinements of I such
that for every » ¢ X there is some s for which # is in at most one member
of $s (see the proof of the implication (b) — (d) in Theorem 2.4). Since
X is discretely subexpandable, there exists a family {B (i, ..., tn)] 41, -y in
¢ N; n e N} satisfying (a)~(d) in Lemma 3.3. Set 2 = {(iy, ..., tn)| 41, ov., in
eN: neXN}, then it is a countable set.

Tor a moment, fix = (i}, ..., %) ¢ 2. For each ke N and y eI%,
put W, (@) = V,lis, .y iz) and Wi(w) = V(iy, ..., ix); where, if k> n,
in=lpyy = ... = t. Of course Wi(w)= L% W, i(w). Remembering that

ye

U is point-finite, we sec that MW(w)= {W:(w)\ kE=1,2,..} is a count-
able open covering of X by (¢) in Lemma 3.3. Since X is countably sub-
paracompact, VW (w) has a o-diserete closed refinement. Hence, as is easily
shown, there exists a sequence {®y(w)| p=1,2,..} of open coverings
of X such that Gplw) = {G(0)] k=1,2,..}, Gy{0)C Wio), and,
moreover, for each @ ¢ X there is some p for which # is in exactly one
member of Gy(w). For each k, each p and each y eIy, define H ;. (w)
= Gyple) N W, 5 (0) and Hplw) = {H, (o) y eIk, k=1,2,..3 Then
every $Hp(w) is obviously an open covering of X, and it is a refinement
of U by (b) in Lemma 3.3.

Now, for every o ¢ 2 we construet {$(w)| p e N} as described above,
and let us prove that for every z « X there exist some w e and some
p e N such that # is contained in exactly one member of $y(w). By the
point-finiteness of U, @ is contained in at most finitely many member
of U; assume that @ is in exaetly » members of I. By using (d) in Lemma 3.3
repeatedly, we can select positive inbegers 4, ..., ¢ such that z in at most
one member of B(iy, ..., 1) for every k with 1<k<n. Let o(®)
= (41, very in), and for this w(w) pick up k(»), p(x)eN such that @
€ Gyl (@) and @ ¢ Gy pip(e (@) for all j # k(). Then & e W, (0 (@)
for some y e Iy, and @ ¢ () U, by (b) in Lemma 3.3, Hence, from the

A

€y 5
assumption for a, wo have k(#) << n. Therefore, from the way of selecting
w(@) and p(w), it tollows that # belongs to exactly one member of the
COVEring Hpc(w (®)). Thus {Ha(w)] o ¢, pe N} is a required sequence
of open refinements of 2 (observe that X N is a countable set).- This
complets the proof.

TFinally, using Lemma 3.4, we establish Theorem 3.2.
Proof of Theorem 3.2. If X is subparacompact, then it is sub-
expandable by Theorvem 1.5 and it is O-refinable by Burke [4, p. 283].

F
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Conversely, suppose that X is subexpandable and 6-refinable. Let
1 be an open covering of X. By Worrell and Wicke [21, p. 824], there
exist a countable closed covering {Fa| n=1, 2,...} of X and a sequence
{Ba| n=1,2,..} of open yefinements of 1l such that for every n B, is
point-finite at every point of F,. Since every closed subset of a sub-
expandable space is also subexpandable as a subspace, Ty is subexpand-
able for every n. Hence, by Lemma 3.4, the point-finite open covering
[>e]
U 2;,,. Then
0 o . =1
U U, is obviously a o-discrete closed refinement of 3. Therefore

n=1 i=1
X is subparacompact, and this complets the proof of Theorem 3.2.

Theorem 3.2 as well as the result of Bennett and Lutzer [1, Theo-
rem 5] covers the result of Shiraki [19, Theorem 5.97, because a space
in which every closed subset is a &,-subset is subexpandable by Theo-
rem 1.13. However, each of our Theorem 3.2 and the vesult of Bennett
and Lutzer does not cover the other.

Tn Theorems 3.1 and 3.2, we may attach “m-” to paracompact,
metacompact, subparacompact, 0-refinable, expandable, almost ex-
pandable and subexpandable.

{V ATy V eBy} of Fy has a o-diserete closed refinement

4. Mapping, sﬁm, product and subset theorems. All mapping in this
section are continuous and onto.

THEOREM 4.1. Leét f: X—Y be a closed mapping.

(a) If X is almost (discretely) expandable, then so also is Y ([11]).

() If X is (discretely) 0-expandable, then so also is Y.

() If X is (discretely, boundedly) subewpandable, then so also is Y.

Part (a) of the theorem was proved in [11], and parts (b) and (e)
are proved by the same argument. (It is nearly obvious that the image
of a countably (finitely) subparacompact space under a closed maypping
is so also.)

THEOREM '4.2. ([10]). Let f: X—Y be a quasi-perfect mapping (i.e.
a close{l mapping such that f~Xy) is countably compact for every y e Y).
If X is (discretely) expandable, then so also is Y.

THEOREM 4.3. Let f: X—Y be a quasi-perfect mapping.

(a) If Y is expandable, so also is X ([10]).

(b) If Y s almost empandable, so also is X ([11]).

(e) If Y is 0-expandable, so also s X.

Pa}‘r’cs (a) and (b) of the theorem were proved in [10] and [11],
respectively, and (c) is proved by the same argument.

TerEOREM 4.4. Let {4;] i=1,2,..} be a countable closed covering
of a space X. ‘

(a) If all A; are (discretely) 0-empandable, then so also is X.

icm
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X(b) If all Ay are (discretely, boundedly) subempandable, then so also
is X.

Proof. (a) Let {I) ./l e A} is a locally finite (discrete) collection of
qubsets of X. For every ¢, by the (discrete) 0-expandability of 4;, there
exists a sequence {®;, = {Gy;.} Aed}| n=1,2,..} of collections of
open subsets of Ay guch that Fy ~ 4,C6,,  for every .and every n,
and such that ﬁor every @ ¢ X there is some » for which ®,,, is point-finite
at @ Define H,,, = G, (X—4)) and $,,={H;;,| 1ed}, then
F,C H,,, for overy triple (4,7, n). And, since all 4; are closed in X,
all H, ., are open in X. Now, let @ € X, and choose i (z) such that z ¢ 4,,.
Then, for this (»), there is some n(x) for which iz i point-finite
at @ Therefore X is (discretely) 0-expandable.

(b) We can prove the case of “discretely subexpandable” by the
same argament as in (a). It is obvious that if all A; are-countably (finitely)
subparacompact, then so also is X.

TuRoREM 4.5. Let A be o locally finile closed covering of a space X.

(a) If all members of A are (discretely) empandable, then so also is X [10].

() If all members of U are almost (discretely) expandable, then so
also s X [11].

(c) If all members of A are (discretely) 0-expandable, then so also is X.

(@A) If all members of A are (discretely, boundedly) subexpandable, then
so also is X. ‘

Parts (a) and (b) of the theorem were proved in [11], and (¢) and (d)
are proved by the same argument.

COROLLARY 4.6. Let 9 be a o-locally finite closed covering of a space X.

(a) If all members of A are (discrelely) 0- expandable, then so also is X.

(b) If all members of U are (discretely, boundedly) subexpandable, then
so also is X.

TumorEM 4.7. Lot X be a space and ¥ be a compact space.

(a) If X is empandable, then so also is X x ¥ [10].

(h) If X is almost ewpandable, then so also 48 X x Y [11].

() If X is 0-capandable, then so also is XX Y.

Proof. Sinee Y iy compaet, the projection X X Y-X is a (quasi-)
perfect mapping. Hence the theorem ig an immediate consequence of
Theorem 4.3. .

CoroLLARY 4.8, [11]. Let X be a space and Y be a locally compact,
paracompact Hausdorff space.

(a) If X ds expandable, then so also is X x Y.

(b) If X is almost ewpandable, then so also is Xx Y.

COROLLARY 4.9. Let X and Y De spaces and {4 i=1,2,..} be
a countable closed covering of Y. If X is 6-ewpandadle and all Ay are locally
compact, paracompact Hausdorff spaces, then X XY is 0-expandable.
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Proof. As is easily shown, a locally compaet, paracompact Haus-
dorff space has a locally finite closed covering whose every member ig
compact. Therefore this corollary is an immediate consequence of Theg-
rem 4.7 and Corollary 4.6.

THEOREM 4.10. Let X be an T -subset of a space Y.

(a) If X is almost expandable, then so also is X.

(b) If X is (discretely) 0-expandable, then so also is X.

{e) If X is (discretely, boundedly) subempandable, then so also is X.
Proof. (a) Since X is an F,-subset of ¥, we have a collection

{0l n=1,2,..} of closed subsets of ¥ such that X = (J O,. Let 1
n=1

= {U,] 14} be an A-covering of X. Choose open subsets V, of ¥ such
that V; » X = U, for all 2, and leb B, = {V,| he A} v {¥T— Cn} for every n.
Obviously every B, is an open covering of Y. Furthermore every B, is
an A -eovering of ¥; for, let ¥ be a locally finite (in X) refinement of 11,
then the collection {F  Oy| FeF}w {¥Y—(,} is a locally finite (in ¥)
refinement of B,. Hence, by Theorem 2.2 and by the assumption Y is
almost expandable, there exists a point-finite open covering {W, | 1« A}.u
v {Dy} such that W,, CV, and D, C ¥— O, for each 4 and each n. Then
it is easily proved that the collection (WinnX| ded, n=1,2,..} is
a o-point-finite open covering of X refining 1. Therefore, if we assume
that X is countably metacompact, U has a point-finite open refinement,
and hence X is almost expandable by Theorem 2.2,

It remains to show that X ig countably metacompact. Let
{Gili=1,2,.) be an increasing countable open covering of X. If we
pub Hy, = G v (Y~ Cy), then {H,,| i=1,2, ...} Is an increasing open
covering of Y for each n. Since Y is almost expandable, it iy naturally
alxpost countably expandable. Hence, by Theorem 2.1, for each % there
exists a closed covering {K,,| i=1,2,..} of ¥ such that x,, CH,,

2 T N ’ ’
for each 4. Define I; — U u (K, ~ Oy) for each iy then {L;] i = 1, 2, o}

. 3 k=1 n=1
is a closed covering of X such that Li C @ for each 4. Hence X is count-
ably metacompact by Theorem 1.2,

Parts (b) and (c) are immediately proved from Theorem 4.4. (It is

evident t?lat the. Droperties of 6-expandability, subexpandability, ete.
are hereditary with respect to closed subgets.) ‘

COROLLARY 4.11. Let X be 4 generalized F,-subset [13] of a spuce Y.
(@) If ¥ is almost expandable, then so also is X. |
0y If Y s (discretely) 6-empandable, then so also is X.
(¢) If ¥ is (discretely, boundedly) subespandadle, then so also is X.

The corollary follows immediatel ‘
) . y from Theorem 4.10 s -
Ing easily proved lemima: A0 nd the follow

EBxpandability and its generalizations 249

Lmvma 4.12. Let X be a subset of o space Y. Let & be a collection of
subsets of X which is locally finite (discrete) in X. Then there emists an open
subset of Y such that X C G and § is locally finite (discrete) in Q.

THEOREM 4.13. Let X be an I,-subset of a space Y. If Y is expandable
and X is countably paracompact, then X is expandable.

The theorem is proved by the same argument as in the proof of
part (a) of Theorem 4.10.

THEOREM 4.14. (a) Hvery subset of X is (discretely) expandable if and
only if every open subset of X dis so [10].

(b) Buery subset of X is almost (discretely) empandable if and only if
every open subset of X is so [11].

(c) Bwery subset of X is (discretely) 6-expandable if and only if every
open subset of X is so.

(4) Bwery subsel of X is (discretely, boundedly) subezpandable if and
only if every open subset of X is so.

The theorem follows immediately from Lemma 4.12.

All results in this section are true, even if we attach “m-? to expand-
able, 0-expandable, etc.

5. Examples.

ExampLE 5.1. A boundedly expandable space which is not count-
ably 0-expandable.

Let X be the space constructed by Rudin [18]. This space is collection-
‘wigse normal but not countably paracompact. Hence X is boundedly ex-
pandable by Theorem 1.9, and X is not countably 6-expandable by
Theorems 1.1 and 1.4.

ExampPLE 5.2. An almost expandable space which is mot subex-
pandable.

Let X be the space described by Burke [3, Example 4.2]. This space
is metacompact but not subparacompact. Hence X is almost expandable
by Theorem. 1.5, and X is not subexpandable by Theorem 3.2.

BExamrrm B5.3. A subexpandable space which is not almost ex-
pandable.

Let X be the space F of Bing [2, Example H]. This space is perfectly
normal but not ecollectionwise normal. Hence X is subexpandable by
Corollary 1.14, and X is not expandable by Theorem 1.9. Michael [14,
Example 1] pointed out that every point-finite open covering of X has
a locally finite open refinement, so that X is not almost expandable by
Theorems 2.1 and 2.2.

BxAMPLE 5.4. An almost expandable, subexpandable space which
18 not expandable.
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Let X be the space G of Michael [14, Example 2] which is a closed
subset of the space F' of Bing used in Example 5.3. This space is meta-
compact and perfectly normal but not collectionwise normal. Hence X is
a space with the required properties.
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Some properties related to [a, bl-compactness
by
J. E. Vaughan (Greensboro, N, C.)

Abstract. In this paper, three properties are studied which are closely related
to [a, b]-compactness in the sense of complete accumulation points ([a, b]-compact’).
and [a, b]-compactness in the sense of open covers ([a, b]-compact).

§ 1. Introduction. The concept of [a, b]-compactness, which appears
in many interesting results today, dates back to the work of P. Alexandroft
and P. Urysohn in 1929. Since then many mathematicians have studied
[a, b]-compactness, and several authors have introduced natural pro-
perties which they asserted were equivalent to [a, b]-compactness. Some
of these properties, however, are not equivalent to [a, b]-compactness,.
although they arve closely related to it. The purpose of this paper is to
study the relations among several such properties, and to give some con--
ditions under which they are equivalent. We believe that the consider-
ation of these properties will aid in understanding [a, b]-compactness,,
in particular, [a, b]-compact product spaces. We will also point out some
errors in the literature concerning three of these properties.

Let the letters a, b,m, and n denote infinite cardinal numbers with
a<Db, and let [a, ] stand for the set of all cardinals m such that.
a<m=b. Let |B| denote the eardinal number of a set B, and let mt
denote the first eardinal strictly larger than m. The cofinality of m is
denoted by cf(m). Use of the generalized continuum hypothesis will be
denoted by [GCH]. :

DrriNrrions. A space X is called [a,b]-compact” if every open
cover Al of X such that W] is a regular cardinal in [a, b] has a subcover
U’ C U with |W'| < ||, This concept was introduced by Alexandroff
and Urysohn [1]. The superseript » is a reminder of the “restriction of”
regulaxity” in the definition (see [5]). A space X is called [a, b]- compact:
if every open cover U of X with |W| < b, has a subcover of cardinality
strietly less than a. This idea was introdueed in 1950 by Yu. Smirnov [13].
Essentially the same property was studied independently in 1957 by
I. 8. Gaal [3]. The work of Gaal mentioned in this paper [3, 4] has been:
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