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An insertion theorem for real functions
by
J. M. Boyte and E. P. Lane (Boone, North Carolina)

Abstract. Charactorizations of countably paracompact spaces and of normal count-
ably paracompact spaces in terms of insertion of extended real-valued semi-continuous
and confinuous functions are given.

Dowker [L] and Katstov [2] proved that a topological space X is
normal and countably paracompact if and only if for real-valued fune-
tions fand g defined on X such that fis lower semi-continuous and g is upper
semi-continuous and g(z) < f(2) for each there exists a continuous real-
valued function 7 on X such that g(z) << h(z) < f () for each x. Mack [3]
proved that a space is countably paracompact if and only if for each lower
semi-continuous function g on X such that g(@) > 0 for each x there exist
a lower semi-continuous function 7 and an upper semi-continuous funetion
w such that 0 < I(z) < u(#) < g(@) for each 2. This note generalizes these
results by using extended real-valued functions.

The abbreviations lsc (resp. usc) for lower semi-continuous (resp.
upper semi-continuous) are uged, and we write g < f (resp. g < f) in case
g(@) < f(w) (vesp. g(w)< f(=)) for each z. Denote by L (vesp. U) the set
of extended real-valued Isc (resp. use) functions defined on X. If f and ¢
are extended real-valued functions defined on X, we write g < f in case
g<fand if either g(») or f(z) is a real number, then g(z) < f(2)-

Tumorum. The following are equivalent:

(@) The space X 1is normal and countably paracompact.

(B) If feL, ge U, and g <f, then there emist functions f e L and
g e U such that g < <g <f

(y) The space X is normal, and if feL, ge U and g < f, then there
exists o function h e L such that ¢ < h < f.

() If feL, ge U, and g < f, then there emists an extended real-valued
continuous fumction b on X such that g < b <f.

Proof. Observe that (3) implies (B) trivially, The proof that (®)
implies (o) is established as in the proof of Theorem 4 of [1]. In order to
see that (y) implies (3), let feL, g< U, and g < f. By (y) there is a func-
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tion kel such that g <% <f. Then —he U, —gel and —h € —yg.
Again by (y), there exists a function —k ¢ L such that —b < —% < —y.
Then ¢ <k <h <f If h*@)=h()/(1+|h(@)]) when h(z) is finite,
W*(#) = 1 when h(z)= 4oo, and A*w)= —1 when #(x)= —co, then
B* is Isc. If &* is defined similarly in terms of %, * is use and k* < h»,
By Theorem 2 of [4] there is a continuous function b* on X such that
B < b* < B*. It b(z) = b*(@)[L—b*(#)) when [pM@)<1, b(e)= +oo
when b*(x) = 1, and b(») = —co when b*(z) = —1, then b is an extended
real-valued continuous function on X. Since % << b < h, it follows that
g €<b <f. Thus (3) holds. It therefore remains to prove that («)
implies (y).

Let f ¢ L, let g ¢ U, and assume that ¢ < f. Then 4 = {x: f(#) = g(s)
= +oo} and B = {m: f(#) = g(x) = — oo} are closed sets, and the sets
U(n)= {z: f(x)>n} and V(n)= {w: g(z)< —mn} are open for each
natural number n. Since X is normal it follows that there cxist closed
sets A(n) and B(n), n=1,2, .., such that A(1) ~B(1)=@ and

Um)DAMm)D An) D An+1)D A,
V(n)DB(#n)DB(n)DBr+1)DB.

Take A' =) {4(n): n=1,2,..}, B=N{B®n): n=1,2,..} and W
.=X~—(A’uB’). For w¢ W, put u(e)= —occ if ¢ A(L) and u(z)=n
it ze A(n)—A(n+1). Then « is usc and f(z) > u(xz) for each o in W.

Hence also uVg is use and for e« W, (uvg)(z) < f(x). Since W is an

F_-subspace of X, the space W is countably paracompact and normal;
hence there exists a continuous function » on W such that (uvg)(x)
< v(w) < f(x) for  in W. If h(x) = — oo when e B’, h(z) = v(x) when
weW and h(x)= 4 oo when weA’, then & is lsc and g € h < f.

The authors are indebted to the referee for the significantly shorter

a;ln)d more elegant proof of the implication («) implies (y) which is given
above.
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Cech cohomology and covering dimension
for topological spaces
by
Kiiti Morita (Tokyo)

Abstract. For a topological space X let us define the covering dimension of X
and the Sech cohomology groups of X by using only normal open coverings of X instead
of arbitrary open coverings. Then it will be ghown that some of the basic theorems
concerning the Gech cohomology groups and covering dimension of CW complexes or
paracompact spaces, such as the Hopf classification theorem.and the product theorem
on dimension for the case of one factor being ¢-compact, can be generalized to the
case of arbitrary topological spaces.

Tn discussing the topological invariants for topological spaces, such
as the Cech cohomology groups and the covering dimension, which are
defined by using open coverings, it seems natural to make a modification
by restricting open coverings to normal ones.

Tor the covering dimension of Tychonoff spaces (= completely
regular Hausdorff spaces) such a modification was made by M. Katétov [8]
and Yu. Smirnov [20]; & nice exposition of their results is given in En-
gelking [4]. Applying their modification to a general case, we shall define
the covering dimension of a topological space X, denoted by dimX, to
be the least integer m such that every finite normal open covering of X
admits a finite normal open covering of order <n-+1 as its refinement.
In case X is 2 normal space, dim X defined here coincides with the cover-
ing dimengion of X in the usual sense.

Ag for the mth Cech cohomology group H™(Xj @) of a topological
space X with coefficients in an abelian group @, we shall define it by using
only normal open coverings of X. Tn case X is paracompact Ha.usdprﬁ,
H"(X; @) is the usnal Gech cohomology group based on all open coverngs.

The purpose of this paper is to show that with these definitions we

' can génemlize some of the basic theorems concerning the (ech cohomology

groups and dimension of paracompact Hausdorft spaces or CW complexes

to the case of topological spaces. ) »
Let X be a topological space, ¢ an abelian group, and. Z th'e additive
group of all integers. Let |K(G,n)| be the geometric realization of the
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