[R] R. T. Rockafellar, Measurable dependence of convex sets and functions on parameters, J. Math. Anal. Appl. 28 (1969), pp. 4-25. [V] M. Valadier, Multi-applications mesurables à valeurs convexes compactes, J. Math. Pures et Appl. 50 (1971), pp. 265-297. Accepté par la Rédaction le 28. 10. 1973 ## λ-complete near-rings * by R. Gorton (Dayton, Ohio) Abstract. Let N be a near-ring. For each cardinal λ , a radical like ideal $O_{\lambda}(N)$ is introduced and used to describe the structure of N in terms of λ -complete near-rings of transformations. The radical $J_{\lambda}(N)$ of Betsch is extended to near-rings in which $O_{n}=0$ is not assumed and it is shown that $J_{\lambda}(N)\subseteq O_{1}(N)\cap N_{\sigma}$. Finally, the result of Berman and Silverman on simplicity of near-rings of transformations is extended for infinite groups and several illustrative examples are given. - 1. Introduction. The most natural example of a near-ring is given by the collection of all transformations of a group. Several authors (for example [3, 4, 7, 8]) have studied the structure of near-rings by extending well known radical concepts of rings to near-rings. In this paper a radical like ideal $G_{\lambda}(N)$ is introduced and used to describe the structure of near-rings in terms of λ -complete near-rings of transformations. The radical $J_2(N)$ of Betsch is extended to near-rings in which 0n=0 is not assumed and it is shown that $J_2(N) \subseteq G_1(N) \cap N_c$. Finally, the principal result of [2] is extended for infinite groups and several illustrative examples are given. - **2.** Definitions. A near-ring N is a system (containing at least two elements) with two binary operations + and \cdot satisfying - (i) (N, +) is a group. - (ii) (N, \cdot) is a semigroup. (iii) a(b+c) = ab + ac for all $a, b, c \in N$. If N is a near-ring then an additive group Γ (\neq {0}) is an N-group if and only if for all $\gamma \in \Gamma$ and $n \in N$, γn belongs to Γ and (i) $\gamma(m+n) = \gamma m + \gamma n$ for all $\gamma \in \Gamma$ and $m, n \in N$. (ii) $\gamma(mn) = (\gamma m)n$ for all $\gamma \in \Gamma$ and $m, n \in N$. A subgroup Δ of an N-group Γ is an N-subgroup if and only if $\Delta N \subseteq \Delta$. Observe that any N-subgroup of Γ must contain $\Gamma_0 = 0N$ (where 0 is the identity element of Γ). If Γ and Γ' are N-groups and ^{*} Research performed at the U.S.A.F. Aerospace Research Laboratories while in the capacity of an Ohio State University Research Foundation Visiting Research Associate under Contract F33615-67-C-1758. $\theta \colon \varGamma \to \varGamma'$ is a group homomorphism, then θ is an N-homomorphism if and only if $(\gamma \theta) n = (\gamma n) \theta$ for all $\gamma \in \varGamma$ and $n \in N$. A subset K of a near-ring N is an *ideal* in N if and only if K is the kernel of a near-ring homomorphism. Thus K is an ideal in N if and only if - (i) K is an additive normal subgroup of N. - (ii) $NK \subset K$. - (iii) $(n+k)m-nm \in K$ for all $k \in K$ and $m, n \in N$ [5]. If K satisfies (i) and (iii), then K is called a right ideal in N. If Γ is an N-group and $\gamma \in \Gamma$ ($B \subseteq \Gamma$) then $A(\gamma)(A(B))$ denotes the annihilating right ideal of $\gamma(B)$. Notice that $A(\Gamma)$ is an ideal in N for any N-group Γ . Berman and Silverman [1] have shown that every near-ring N can be expressed as the supplementary sum of its maximal sub-C-ring N_c and its maximal sub-Z-ring N_s where $N_c = \{n \in N | \ 0n = 0\}$ and $N_s = \{n \in N | \ 0n = n\}$. 3. The radical $C_{\lambda}(N)$. Let Γ be an N-group and let λ ($\geqslant 1$) be a cardinal number. Γ is of class λ if and only if for any Ω ($\subseteq \Gamma$) of cardinality not exceeding λ and for any function $f\colon \Gamma \to \Gamma$ there exists $n \in N$ such that $\omega n = \omega f$ for all $\omega \in \Omega$. Thus if Γ is an N-group of class λ then Γ is of class μ for all $\mu \leqslant \lambda$. Also, if Γ is of class $\lambda = \operatorname{ord} \Gamma$ then Γ is of class μ for any cardinal number μ . The near-ring N is λ -complete if and only if N possesses an N-group Γ of class λ and $A(\Gamma) = (0)$. The ideal K in N is λ -complete if and only if N/K is a λ -complete near-ring. THEOREM 1. Let K be an ideal in N. K is λ -complete if and only if there exists an N-group Γ of class λ such that $A(\Gamma) = K$. Proof. The proof is quite analogous to the proof of Lemma 2.6 [4]. The radical $C_{\lambda}(N)$ of the near-ring N is the intersection of all annihilating ideals $A(\Gamma)$ of N-groups Γ of class λ . If no such N-groups exist then $C_{\lambda}(N)=N$. Thus if $\lambda\leqslant\mu$, then $C_{\lambda}\subset C_{\mu}$. Corollary 1. $C_{\lambda}(N)$ is the intersection of all λ -complete ideals of N. COROLLARY 2. $C_{\lambda}(N) = (0)$ if and only if N is isomorphic to a subdirect sum of λ -complete near-rings. Theorem 2. If Γ is an N-group of class λ and $A(\Gamma)=(0)$ then Γ is N-isomorphic to N_z . Proof. The mapping $\theta\colon N\to \varGamma$ defined by $n\theta=0n$ is an N-homomorphism onto \varGamma . Evidently $N_c\subseteq \operatorname{Ker}\theta$. If $n\in\operatorname{Ker}\theta$ and $\gamma\in\varGamma$, then $\gamma(0n)=(\gamma 0)n=0n=0$. Hence $0n\in A(\varGamma)=(0)$. Thus \varGamma is N-isomorphic to N^+-N_c . Similarly, N_z is N-isomorphic to N^+-N_c . COROLLARY 3. The near-ring N is 1-complete if and only if $A(N_s)$ = (0). The right ideal M is modular if and only if there exists $e \in N$ such that $n-en \in M$ for all $n \in N$ [3, 4]. M is C_{λ} -modular if and only if M is modular and N^+-M is an N-group of class λ . THEOREM 3. $C_{\lambda}(N)$ is the intersection of all C_{λ} -modular right ideals of N. Proof. The proof proceeds in a manner similar to the proof of Theorem 3.2 [4]. The main difference is that for any N-group Γ of class λ , $\gamma N = \Gamma$ for all $\gamma \in \Gamma$. If B, Δ are subsets of the N-group Γ then $(B:\Delta)$ denotes $\{n \in N | \ \Delta n \subseteq B\}$. THEOREM 4. The ideal K is λ -complete if and only if K = (M: N) where M is a C_{λ} -modular right ideal in N. Proof. Let K be a λ -complete ideal. By Theorem 1, there exists an N-group Γ of class λ such that $K=(0:\Gamma)$. By Theorem 2, $(0:\Gamma)$ = $(0:N^+-N_c)=(N_c\colon N^+)$. Conversely, suppose K=(M:N) where M is a C_λ -modular right ideal. Then $K=(0:N^+-M)$ and by Theorem 1, K is λ -complete. COROLLARY 4. $C_{\lambda}(N) = \bigcap_{M} (M: N^{+})$ where M varies over all. C_{λ} -modular right ideals in N. THEOREM 5. $C_{\lambda}(N/C_{\lambda}(N)) = (0)$ for any near-ring N. Proof. The proof is essentially the same as the proof of Theorem 2.4 [4]. The N-group Γ is minimal if and only if the only N-subgroups of Γ are Γ_0 and Γ . Γ is essentially minimal if and only if Γ is minimal and $\Gamma N \neq \{0\}$. The radical $J_2(N)$ of N is the intersection of all annihilating ideals $A(\Gamma)$ of esentially minimal N-groups Γ . If no such N-groups Γ exist, then $J_2(N) = N$. Notice that if $N_z = \{0\}$, then the above definitions coincide with those of Betsch [3, 4]. THEOREM 6. $J_2(N) \subset C_1(N) \cap N_c$ for any near-ring N. Proof. If Γ is an N-group of class 1, then $\gamma N=\Gamma$ for all $\gamma \in \Gamma$. Thus Γ is a minimal N-group. Hence $J_2(N) \subseteq G_1(N)$. If $N_x=\{0\}$, then obviously $J_2(N) \subseteq N_c$. Otherwise N_x is an essentially minimal N-group. Thus $n \in A(N_x)$ implies 0n=0. In either case $J_2(N) \subseteq N_c$. ## 4. Examples. - (1) Let Γ be any additive group (ord $\Gamma \ge 2$) and let N_1 be the nearring of all constant functions on Γ into Γ . Then $C_1(N_1) = (0)$ and $C_2(N_1) = N_1$. - (2) Let Γ be the additive group of any field F and let N_2 be the nearing of all polynomials of degree 1 or less. Then N_2 is 2-complete whence $C_2(N_2)=(0)$, while N_2 is not 3-complete. Furthermore, the only nontrivial ideal in N_2 is $(N_2)_z$. It follows that $C_3(N_2)=N_2$. (3) Let Γ be the additive group of any field F of characteristic 2. Let N_3 be the near-ring of all polynomials $xp=a_nx^{a_{n-1}}+\dots+a_1x^{a_0}+a_0$ over F where $a_i=2^i$ $(i=0,1,\dots,n-1)$. Since N_3 contains all quadratic polynomials, N_3 is 3-complete. Thus $C_3(N_3)=(0)$. However, due to the characteristic of the field, for any $a \in F$, (a+1)p=ap+1p+0p. Thus if 0,1,a are distinct elements of F and $f\colon F\to F$ has the property that $$0f = 1$$, $1f = 1$, $af = 1$, $(a+1)f = 0$ then there exists no polynomial $p \in N_3$ such that $xf = xp \ (x = 0, 1, a, a + 1)$ since 0p = 1, 1p = 1, ap = 1 implies $(a+1)p = 1+1+1 \neq 0 = (a+1)f$. Thus (F, +) is an N_3 -group which is not of class 4. Now, if N_3 has an N_3 -group Γ of class 4 such that $A(\Gamma) = (0)$, by Theorem 2 $(\Gamma, +)$ is N_3 -isomorphic to $(N_{3z}, +)$. Obviously, $(N_{8z}, +)$ is N_3 -isomorphic to (F, +) which implies that (F, +) is an N_3 -group of class 4. This contradiction shows that N_3 is not 4-complete. (4) Let Γ be the additive group of integers and let N_4 be the nearring of all constant functions on Γ . Let N_5 be the near-ring of all functions f on Γ such that f is constant outside a bounded set Ω_f . Let N_6 be the near-ring of all transformations of Γ . It is known that N_6 is simple [2]. Theorem 7. $N_{\rm 5}$ is simple. Proof. Let K be a non-zero ideal in N_5 . Then K must contain a non-zero element k. Thus there exists an integer a_0 such that $a_0k = \gamma_0 \neq 0$. If $\overline{\gamma}$ denotes the constant function whose range is $\{\gamma\}$, then $\overline{a}_0k = \overline{\gamma}_0 \in K$. Let $m \in N_5$ be defined by: $$\gamma m = \begin{cases} 0 & \text{if} \quad \gamma \neq \gamma_0, \\ \gamma_1 & \text{if} \quad \gamma = \gamma_0 \end{cases}$$ where $\underline{\gamma}_1 \in \Gamma$. Then $\overline{0}m = \overline{0}$ whence $(\overline{0} + \overline{\gamma}_0)m - \overline{0}m = \overline{\gamma}_0 m \in K$. But $\overline{\gamma}_0 m = \overline{\gamma}_1$. Hence K contains all constant functions. Furthermore, for any β , $\delta \in \Gamma$, let m_{β} , $n_{\delta} \in N_{\delta}$ be defined by $$\gamma m_{\beta} = egin{cases} 0 & ext{if} & \gamma eq 3 \ \beta & ext{if} & \gamma = 3 \ , \ \ \gamma n_{\delta} = egin{cases} -1 & ext{if} & \gamma eq \delta \ , \ \ 1 & ext{if} & \gamma = \delta \ . \end{cases}$$ Then $(n_{\delta} + \overline{2}) m_{\beta} - n_{\delta} m_{\beta} \in K$. But $$\gamma[(n_{\delta}+\overline{2})m_{\beta}-n_{\delta}m_{\beta}] = \begin{cases} 0 & \text{if} \quad \gamma \neq \delta, \\ \beta & \text{if} \quad \gamma = \delta. \end{cases}$$ $$\gamma f_{eta,\delta} = egin{cases} 0 & ext{if} & \gamma eq \delta \ , \ & ext{if} & \gamma = \delta \ , \end{cases}$$ then $f_{\beta,\delta} \in K$. Now, let $f \in N_5$. Then there exist $\beta_1, \beta_2, ..., \beta_n, \delta_1, \delta_2, ..., \delta_n, \gamma \in K$ such that $$f = f_{\beta_1,\delta_1} + f_{\beta_2,\delta_2} + \dots + f_{\beta_n,\delta_n} + \overline{\gamma}.$$ Hence $f \in K$. Thus N_5 is simple. Let N be the direct sum $N_4+N_5+N_6$ and let λ be any integer greater than 1. Also let μ be any infinite cardinal. It follows then that $$(0) = C_1(N) \subset_{\neq} C_{\lambda}(N) \subset_{\neq} C_{\mu}(N) .$$ In fact $C_{\lambda}(N)$ is equal to N_4 and $C_{\mu}(N)$ is equal to the direct sum N_4+N_5 . (5) Let Γ be an additive group of infinite order λ . For every infinite cardinal μ not exceeding λ let N_{μ} denote the near-ring of all transformations f of Γ such that ran f contains at most μ elements. Set N equal to the direct sum $\sum_{\mu} N_{\mu}$ where μ ranges overall infinite cardinals less than or equal to λ . THEOREM 8. N_{μ} is simple. Proof. Let K be a non-zero ideal in N_{μ} . As in the proof of Theorem 7, K contains all constant functions. Let $f \in N_{\mu}$. Define an equivalence relation $\stackrel{f}{\simeq}$ on Γ by: If $\gamma_1, \gamma_2 \in \Gamma$ then $\gamma_1 \stackrel{f}{\simeq} \gamma_2$ if and only if $\gamma_1 f = \gamma_2 f$. Let the $\stackrel{f}{\simeq}$ equivalence classes be denoted A_i , $i \in A$ where A is an indexing set. From each equivalence class A_i select an element γ_i . Let $B = \{\gamma_i - \gamma_j | i, j \in A\}$. Evidently the cardinality of B cannot exceed μ . Since the theorem is true for $\mu = \lambda$ [2] we may assume $\mu < \lambda$. Then there exists $\delta \in \Gamma \setminus B$. Define functions $g, h \colon \Gamma \to \Gamma$ as follows: For any $\gamma \in \Gamma$, $\gamma g = \gamma_i$ where $\gamma \in A_i$ and $$\gamma h = \left\{ egin{aligned} 0 & ext{if} & \gamma \notin \{\gamma_i + \delta | \ i \in \mathcal{A}\} \ , \ \gamma_i f & ext{if} & \gamma = \gamma_i + \delta \ . \end{aligned} ight.$$ Then $g, h \in N_{\mu}$ and $\bar{\delta} \in K$. Hence $(g + \bar{\delta})h - gh \in K$. However, if $\gamma \in \Gamma$ then $\gamma(g + \bar{\delta})h - \gamma gh = (\gamma_i + \bar{\delta})h - \gamma_i h = \gamma_i f = \gamma f$. Thus $f \in K$; i.e., $K = N_{\mu}$. It follows therefore if $\aleph_0 \leqslant \nu_1 \leqslant \nu_2 \leqslant \lambda$, then $C_n(N) \subsetneq C_n(N)$. In fact, $C_n(N)$ is isomorphic to the direct sum $\sum_{\mu} N_{\mu}$ where μ ranges over all infinite cardinals less than ν_i (i=1,2). ## R. Gorton ## References - G. Berman and R. J. Silverman, Near-rings, Amer. Math. Monthly 66 (1959), pp. 23-34. - [2] Simplicity of near-rings of transformations, Proc. Amer. Math. Soc. 10 (1959), pp. 456-459. - [3] G. Betsch, Struktursätze für Fastringe, Inaugural-Dissertation, Eberhard-Karls-Universität zu Tübingen (1963). - [4] Ein Radical für Fastringe, Math. Z. 78 (1962), pp. 86-90. - [5] D. W. Blackett, Simple and semi-simple near-rings, Proc. Amer. Math. Soc. 4 (1953), pp. 772-785. - [6] N. Jacobson, Structure of rings, Amer. Math. Soc. Coll. Publ. 37, Providence, R. I. - [7] D. Ramakotaiah, Radicals for near-rings, Math. Z. 97 (1967), pp. 45-56. - [8] A. P. J. van der Walt, Prime ideals and nil radicals in near rings, Arch. Math. 15 (1964), pp. 408-414. UNIVERSITY OF DAYTON Dayton, Ohio Accepté par la Rédaction le 5. 11. 1973