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i-complete near-rings *
by
R. Gorton (Dayton, Ohio)

Abstract. Lot N be a near-ring. For each cardinal 4, a radical like ideal Ci(N)is
introduced and used to describe the structure of N in terms of A-complete near-rings
of transformations. The radical J,(N) of Betsch is extended to near-rings in which
On = 0 is not assumed and it is shown that Jo(N)C Oy(N) N N,. Finally, the result
of Berman and Silverman on simplicity of near-rings of transformations is extended for
infinite groups. and several illustrative examples are given.

1. Introduction. The most natural example of a near-ring is given by
the collection of all transformations of a group. Several authors (for ex-
ample [3, 4, 7, 8]) have studied the structure of near-rings by extending
well known radical concepts of rings to near-rings. In this paper a radical
like ideal C,(N) is introduced and used to describe the structure of near-
rings in terms of A-complete near-rings of transformations. The radical
Jo(N) of Betsch is extended to near-rings in which On = 0 is not agsumed
and it is shown that Jy(V)C Cy(N) n N,. Finally, the principal result
of [2] is extended for infinite groups and several illustrative examples
are given.

2. Definitions. A near-ring N is a system (containing at least two
elements) with two binary operations 4 and - satisfying

(i) (¥, +) is a group. .

(i) (&, -) is a semigroup.

(i) a(b+¢) = ab+-ac for all a,b,ceN. .

I ¥ is a nearring then an additive group I' (# {0}) is an N -group
if and only if for all y ¢ I' and n e N, yn belongs to I’ and

(i) y(m--n) = pm-yn for all y-eI and m, n eN.

(ii) y(mn) = (ym)n for all y eI and m,nelN. .

A subgroup 4 of an N-group I' is an N -subgroup if and only if
AN C A. Observe that any XN-subgroup of I' must contain Iy= 0N
(Whé;'e 0 iy the identity element of I'). If I' and I" are N -groups and
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in the capacity of an Ohio State University Regearch Foundation Visiting Research
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6: '-~I" is a group homomorphism, then 0. is an N -homomorphism if
and only if (y0)n= (yn)f for all y eI and »eN.

A subset K of a near-ring N is an ideal in N if and only if K is the
kernel of a near-ring homomorphism. Thus X is an ideal in ¥ if and only it

(i) K is an additive normal subgroup of N.

(i) NECK.

(iii) (n+k)ym—mnm ¢ K for all ke K and m, neN [5].

If K satisfies (i) and (iii), then K is called a ight ideal in N. If I' ig
an N-group and y ¢ I' (BCT) then A (y)(A(B)) denotes the annihilating
right ideal of y(B). Notice that A4 (I") is an ideal in N for any N -group I

Berman and Silverman [1] have shown that every near-ring N can
be expressed as the supplementary sum of its maximal sub-C-ring N,
and its maximal sub-Z-ring N, where N,= {neXN| On =0} and N,
= {neN| On=n}.

3. The radical C)(N). Let I" be an N -group and let 1 (> 1) be a cardi-
nal number. I" is of class A if and only if for any 2 (CI') of cardinality not
exceeding A and for any function f: I'-I" there exists n ¢ ¥ such that
ww = wf for all ® € Q. Thus if I"is an N - group of class A then I'is of class u
for all 4 << A Also, if I'is of class A= ordl then I" is of class u for any
cardinal number u.

The near-ring N is 1-complete if and only if N possesses an N -group I"
of class 4 and A(I")= (0). The ideal K in N is A-complete if and only if
N|K is a i-complete near-ring. .

THROREM 1. Let I be an ideal in N. K is A-complete if and only if
there exists an N-group I' of class A such that A(I') = K.

Proof. The proof is quite analogous to the proof of Lemma 2.6 [4].

The radical C,(I) of the near-ring N is the intersection of all annihil-
ating ideals' A (I") of N-groups I' of class A If no such ¥ -groups exist
then Cy(¥)= N. Thus if 1< g, then 0,C0,.

CoROLLARY 1. O,(N) is the intersection of all A-complete ideals of N.

COROLLARY 2. (4(N) == (0) if and only if N is isomorphic to a sub-
direct sum of A-complete near-rings.

TeROREM 2. If I is an N -group of dlass 1 and A(T) = (0) then I' is
N -isomorphic to N,

Proof.' The mapping 6: N—+I" defined by nf = On is an N -homo-
morphism onto I. Evidently ¥, CKerf. ¥ neKerf and yel, then
y(0n) = (y0)n = On = 0. Flence 0n ¢ A(I") = (0). Thus I" is N -isomorphic
to N*—N,. Similarly, ¥, is ¥-isomorphic to Nt—N,.

CoROLLARY 3. The mear-ring N is L-complete if and only if A(N,)
= (0).

icm®
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The right ideal M is modular if and only if there exigts ¢ e N such
that n—en ¢ M for all ne N [3,4]. M is 0,-modular if and only if M is
modular and Nt—M is an N-group of class A

THEOREM 3. Oy(N) is the intersection of all C,-modular right ideals of N.

Proof. The proof proceeds in a manner similar to the proof of
Theorem 3.2 [4]. The main difference is that for any N-group I' of class 2,
yN =TI for all yel.

If B, A4 are subsets of the N-group I' then (B: A) denotes
{neN| AnC B}.

TeworEM 4. The ddeal K ds A-complete if and only if K = (M: N)
where M is a O,-modular right ideal in N.

Proof. Let K be a i-complete ideal. By Theorem 1, there exists
an N-group I" of class A such that K = (0: I'). By Theorem 2, (0:17
= (0: N*—N,) = (N,: N*). Conversely, suppose K = (M: N) where M is
a O;-modular right ideal. Then K = (0: N*—M) and by, Theorem 1,
K is A-complete.

COROLLARY 4. O)(N) = [ (M: N*) where M varies over all. C;-modular
M ,

right ideals in N.

THEOREM B. C)(N/03(IV)) = (0) for any near-ring N, ;

Proof. The proof is essentially the same as the proof of Theo-
rem 2.4 [4].

The N -group I"is minimal if and only if the only N -subgroups of I"
are I'y and I. I' is essentially minimal if and only if I” is minimal and
I'N # {0}. The radical J,(N) of N is the intersection of all annihilating
ideals A(I") of esentially minimal N-groups I. If no such N -groups
I' exist, then J,(N)= N. Notice that if ¥N,= {0}, then the above de-

" finitions coincide with those of Betsch [3, 4].

TEROREM 6. Jo(N)C Oy(N) ~ N, for any mear-ring N.
Proof. If I' is an N-group of class 1, then yN =TI for all y eI
Thus I" is & minimal N -group. Hence Jo(N)C (). If N,= {0}, then

‘obviously J(N)C N,. Otherwise N, is an essentially minimal N -group.

Thus = e.4(N,) implies 0n = 0. In either case J(N)C ¥,.

4. Examples.

(1) Let I' be any additive group (ord I'> 2) and let Ny be the near-
ring of all constant functions on I' into I Then CyN;)= (0) and
Cz(N 1) = N,. )

(2) Let I" be the additive group of any field F aa‘ld let N, be the near-
ring of all polynomials of degree 1 or less. Then N, is 2-complete whence
Oy(I;) = (0), while N, is not 3-complete. Furthermore, the only non-
trivial ideal in N, is (N,),. It follows that Cy(,) = N,.
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(3) Let I" be the additive group of any field # of characteristic 9
Let N, be the near-}'ing of all polynomials zp = @, ... 4- g, 2% + a.
over F where a;=2' (1= 0,1, ..., n—1). Since N, contains all qua,dmtic0
polynomials, Ny is 3-complete. Thus O,(N,) = (0). However, due to the
characteristic of the field, for any a eF, (a+1)p = ap~+1p-+ 0p. Thug
if 0,1, a are distinet elements of # and f: F—F has the property that

If (a41)f=0

t?len there exists no polynomial p e N, such that af = ap (z= 0,1, o a+1)
since 0p=1,1p=1, ap=1 implies (a+1)p = 14141 % 0 =’ (c;—l—l)f

Thus (F, +) is an Ny-group which is not of class 4. Now, if N, has aJL;
Na-_group I' of class 4 such that A(I')= (0), by Theorem 2 (I" —+) is
Ny-isomorphic to (N, -+). Obviously, (N, ) is Na-isomorp’hic to

] (ﬁ’, .-1—) which implies that (¥, +) is an N,-group of class 4. Thig contra~
diction shows that N, is not 4-complete.

) (4) Let I'" be the additive group of integers and let N, be the near-
ring of all constant functions on I'. Let N, be the near-ring of all functions f
on I' guch that f is constant outside a bounded set 2;. Let N, be the
near-ring of all transformations of I'. It is known that ¥, is Si];lple [2]

THEEOREM 7. N; is simple. .
Proof. Let K be a non-zero ideal in ¥, 5- Then K must contain a non-
zero element %. Thus there exists an integer o, such that agk = v, # 0.

If p denotes the constant function whose range i - &
ange is then o=
Let m e Ny be defined by: g h ok =y, c K.

|

where y,el. Then Om=0 whence

of=1,

1, o=1,

0 if

if

Y # Yo,

Y1 Y ="
W (O+%)m—0m = yym « K. But
Yot = y;. Hence K containg all constant function 3 .

8. Furthermore, f
any f,9 el let my, n, e N, be defined by o

Vmﬁ={0 Tf v#3,
/9 if 'y=3,
y%az{—l ?f 7o,

1 i y=94.

Then (n,4-2)m;—n,m, « K. Bﬁt

y#0,

P+ 2)mp—mymy] = { 0
; y=

if

icm®
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Thus if f;, ¢ Ny denotes the function defined by
0 if
g it

y#EO,

pr,a:{
y=29,

then f;, ¢ K. Now, let f ¢ N;. Then there exist i, By ...y fny 81y 82y ocy Oy
y ¢ K such that

f = fﬂl,dl+fﬂn.d:+ one +fﬂ,.,o,‘+5"— .

Hence f ¢ K. Thus N, is simple.
Let N be the direct sum N,+ N;+ N, and let 1 be any integer greater
than 1. Also let x be any infinite cardinal. It follows then that

(0) = C(I) C O4(W) € C() -

In fact C,(N) is e(iual to N, and C,(N) is equal to the direct sum
N+ Ny.

(5) Let I" be an additive group of infinite order A. For every infinite
cardinal x not exceeding A let N, denote the near-ring of all transfor-
mations f of I" such that ran f contains at most x elements. Set N equal
to the direct sum Y N, where u ranges overall infinite cardinals less than

B

or equal to A
TEEoREM 8. N, is simple.

Proof. Let K be a non-zero ideal in N,,. As in the proof of Theorem 7,
K contains all constant functions. Let fe,. Define an equivalence

relation L on I' by:

If 5, y, € I' then y; _L_ y, if and only if y;f = y.f. Let the L equivalence
classes be denoted A, i € £ where # is an indexing set. From each equi-
valence class 4; select an element y;. Let B = {yi—ys| 4,] € #£)}. Evidently
the cardinality of B cannot exceed u. Since the theorem is true for u
= } [2] we may assume u <C-A. Then there exists § e I\B. Define functions
g, h: I'—>T as follows: For any ¥ eI', yg = ys where y e A; and

A {O if ?’é{'}”i‘*‘ﬁl":e’%}y
Tl i y=pits.
Then ¢, h e N, and 3 ¢ K. Henee (g 0)h—gh « K. However, if y eI then

y(g+0)h—ygh = (yi+8)h—yih = pif = yf. Thus feK;ie, K=N,.
Tt follows therefore if % < v, < %, < A, then C, () g C,(N). In fact,

O0,() is isomorphic to the direct sum >, N, where pranges over all in-
B

finite cardinals less than » (i=1,2).
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