

[R] R. T. Rockafellar, Measurable dependence of convex sets and functions on parameters, J. Math. Anal. Appl. 28 (1969), pp. 4-25.

[V] M. Valadier, Multi-applications mesurables à valeurs convexes compactes, J. Math. Pures et Appl. 50 (1971), pp. 265-297.

Accepté par la Rédaction le 28. 10. 1973

## λ-complete near-rings \*

by

R. Gorton (Dayton, Ohio)

Abstract. Let N be a near-ring. For each cardinal  $\lambda$ , a radical like ideal  $O_{\lambda}(N)$  is introduced and used to describe the structure of N in terms of  $\lambda$ -complete near-rings of transformations. The radical  $J_{\lambda}(N)$  of Betsch is extended to near-rings in which  $O_{n}=0$  is not assumed and it is shown that  $J_{\lambda}(N)\subseteq O_{1}(N)\cap N_{\sigma}$ . Finally, the result of Berman and Silverman on simplicity of near-rings of transformations is extended for infinite groups and several illustrative examples are given.

- 1. Introduction. The most natural example of a near-ring is given by the collection of all transformations of a group. Several authors (for example [3, 4, 7, 8]) have studied the structure of near-rings by extending well known radical concepts of rings to near-rings. In this paper a radical like ideal  $G_{\lambda}(N)$  is introduced and used to describe the structure of near-rings in terms of  $\lambda$ -complete near-rings of transformations. The radical  $J_2(N)$  of Betsch is extended to near-rings in which 0n=0 is not assumed and it is shown that  $J_2(N) \subseteq G_1(N) \cap N_c$ . Finally, the principal result of [2] is extended for infinite groups and several illustrative examples are given.
- **2.** Definitions. A near-ring N is a system (containing at least two elements) with two binary operations + and  $\cdot$  satisfying
  - (i) (N, +) is a group.
  - (ii)  $(N, \cdot)$  is a semigroup.

(iii) a(b+c) = ab + ac for all  $a, b, c \in N$ .

If N is a near-ring then an additive group  $\Gamma$  ( $\neq$  {0}) is an N-group if and only if for all  $\gamma \in \Gamma$  and  $n \in N$ ,  $\gamma n$  belongs to  $\Gamma$  and

(i)  $\gamma(m+n) = \gamma m + \gamma n$  for all  $\gamma \in \Gamma$  and  $m, n \in N$ .

(ii)  $\gamma(mn) = (\gamma m)n$  for all  $\gamma \in \Gamma$  and  $m, n \in N$ .

A subgroup  $\Delta$  of an N-group  $\Gamma$  is an N-subgroup if and only if  $\Delta N \subseteq \Delta$ . Observe that any N-subgroup of  $\Gamma$  must contain  $\Gamma_0 = 0N$  (where 0 is the identity element of  $\Gamma$ ). If  $\Gamma$  and  $\Gamma'$  are N-groups and

<sup>\*</sup> Research performed at the U.S.A.F. Aerospace Research Laboratories while in the capacity of an Ohio State University Research Foundation Visiting Research Associate under Contract F33615-67-C-1758.



 $\theta \colon \varGamma \to \varGamma'$  is a group homomorphism, then  $\theta$  is an N-homomorphism if and only if  $(\gamma \theta) n = (\gamma n) \theta$  for all  $\gamma \in \varGamma$  and  $n \in N$ .

A subset K of a near-ring N is an *ideal* in N if and only if K is the kernel of a near-ring homomorphism. Thus K is an ideal in N if and only if

- (i) K is an additive normal subgroup of N.
- (ii)  $NK \subset K$ .
- (iii)  $(n+k)m-nm \in K$  for all  $k \in K$  and  $m, n \in N$  [5].

If K satisfies (i) and (iii), then K is called a right ideal in N. If  $\Gamma$  is an N-group and  $\gamma \in \Gamma$  ( $B \subseteq \Gamma$ ) then  $A(\gamma)(A(B))$  denotes the annihilating right ideal of  $\gamma(B)$ . Notice that  $A(\Gamma)$  is an ideal in N for any N-group  $\Gamma$ .

Berman and Silverman [1] have shown that every near-ring N can be expressed as the supplementary sum of its maximal sub-C-ring  $N_c$  and its maximal sub-Z-ring  $N_s$  where  $N_c = \{n \in N | \ 0n = 0\}$  and  $N_s = \{n \in N | \ 0n = n\}$ .

3. The radical  $C_{\lambda}(N)$ . Let  $\Gamma$  be an N-group and let  $\lambda$  ( $\geqslant 1$ ) be a cardinal number.  $\Gamma$  is of class  $\lambda$  if and only if for any  $\Omega$  ( $\subseteq \Gamma$ ) of cardinality not exceeding  $\lambda$  and for any function  $f\colon \Gamma \to \Gamma$  there exists  $n \in N$  such that  $\omega n = \omega f$  for all  $\omega \in \Omega$ . Thus if  $\Gamma$  is an N-group of class  $\lambda$  then  $\Gamma$  is of class  $\mu$  for all  $\mu \leqslant \lambda$ . Also, if  $\Gamma$  is of class  $\lambda = \operatorname{ord} \Gamma$  then  $\Gamma$  is of class  $\mu$  for any cardinal number  $\mu$ .

The near-ring N is  $\lambda$ -complete if and only if N possesses an N-group  $\Gamma$  of class  $\lambda$  and  $A(\Gamma) = (0)$ . The ideal K in N is  $\lambda$ -complete if and only if N/K is a  $\lambda$ -complete near-ring.

THEOREM 1. Let K be an ideal in N. K is  $\lambda$ -complete if and only if there exists an N-group  $\Gamma$  of class  $\lambda$  such that  $A(\Gamma) = K$ .

Proof. The proof is quite analogous to the proof of Lemma 2.6 [4].

The radical  $C_{\lambda}(N)$  of the near-ring N is the intersection of all annihilating ideals  $A(\Gamma)$  of N-groups  $\Gamma$  of class  $\lambda$ . If no such N-groups exist then  $C_{\lambda}(N)=N$ . Thus if  $\lambda\leqslant\mu$ , then  $C_{\lambda}\subset C_{\mu}$ .

Corollary 1.  $C_{\lambda}(N)$  is the intersection of all  $\lambda$ -complete ideals of N.

COROLLARY 2.  $C_{\lambda}(N) = (0)$  if and only if N is isomorphic to a subdirect sum of  $\lambda$ -complete near-rings.

Theorem 2. If  $\Gamma$  is an N-group of class  $\lambda$  and  $A(\Gamma)=(0)$  then  $\Gamma$  is N-isomorphic to  $N_z$ .

Proof. The mapping  $\theta\colon N\to \varGamma$  defined by  $n\theta=0n$  is an N-homomorphism onto  $\varGamma$ . Evidently  $N_c\subseteq \operatorname{Ker}\theta$ . If  $n\in\operatorname{Ker}\theta$  and  $\gamma\in\varGamma$ , then  $\gamma(0n)=(\gamma 0)n=0n=0$ . Hence  $0n\in A(\varGamma)=(0)$ . Thus  $\varGamma$  is N-isomorphic to  $N^+-N_c$ . Similarly,  $N_z$  is N-isomorphic to  $N^+-N_c$ .

COROLLARY 3. The near-ring N is 1-complete if and only if  $A(N_s)$  = (0).

The right ideal M is modular if and only if there exists  $e \in N$  such that  $n-en \in M$  for all  $n \in N$  [3, 4]. M is  $C_{\lambda}$ -modular if and only if M is modular and  $N^+-M$  is an N-group of class  $\lambda$ .

THEOREM 3.  $C_{\lambda}(N)$  is the intersection of all  $C_{\lambda}$ -modular right ideals of N. Proof. The proof proceeds in a manner similar to the proof of

Theorem 3.2 [4]. The main difference is that for any N-group  $\Gamma$  of class  $\lambda$ ,  $\gamma N = \Gamma$  for all  $\gamma \in \Gamma$ .

If  $B, \Delta$  are subsets of the N-group  $\Gamma$  then  $(B:\Delta)$  denotes  $\{n \in N | \ \Delta n \subseteq B\}$ .

THEOREM 4. The ideal K is  $\lambda$ -complete if and only if K = (M: N) where M is a  $C_{\lambda}$ -modular right ideal in N.

Proof. Let K be a  $\lambda$ -complete ideal. By Theorem 1, there exists an N-group  $\Gamma$  of class  $\lambda$  such that  $K=(0:\Gamma)$ . By Theorem 2,  $(0:\Gamma)$  =  $(0:N^+-N_c)=(N_c\colon N^+)$ . Conversely, suppose K=(M:N) where M is a  $C_\lambda$ -modular right ideal. Then  $K=(0:N^+-M)$  and by Theorem 1, K is  $\lambda$ -complete.

COROLLARY 4.  $C_{\lambda}(N) = \bigcap_{M} (M: N^{+})$  where M varies over all.  $C_{\lambda}$ -modular right ideals in N.

THEOREM 5.  $C_{\lambda}(N/C_{\lambda}(N)) = (0)$  for any near-ring N.

Proof. The proof is essentially the same as the proof of Theorem 2.4 [4].

The N-group  $\Gamma$  is minimal if and only if the only N-subgroups of  $\Gamma$  are  $\Gamma_0$  and  $\Gamma$ .  $\Gamma$  is essentially minimal if and only if  $\Gamma$  is minimal and  $\Gamma N \neq \{0\}$ . The radical  $J_2(N)$  of N is the intersection of all annihilating ideals  $A(\Gamma)$  of esentially minimal N-groups  $\Gamma$ . If no such N-groups  $\Gamma$  exist, then  $J_2(N) = N$ . Notice that if  $N_z = \{0\}$ , then the above definitions coincide with those of Betsch [3, 4].

THEOREM 6.  $J_2(N) \subset C_1(N) \cap N_c$  for any near-ring N.

Proof. If  $\Gamma$  is an N-group of class 1, then  $\gamma N=\Gamma$  for all  $\gamma \in \Gamma$ . Thus  $\Gamma$  is a minimal N-group. Hence  $J_2(N) \subseteq G_1(N)$ . If  $N_x=\{0\}$ , then obviously  $J_2(N) \subseteq N_c$ . Otherwise  $N_x$  is an essentially minimal N-group. Thus  $n \in A(N_x)$  implies 0n=0. In either case  $J_2(N) \subseteq N_c$ .

## 4. Examples.

- (1) Let  $\Gamma$  be any additive group (ord  $\Gamma \ge 2$ ) and let  $N_1$  be the nearring of all constant functions on  $\Gamma$  into  $\Gamma$ . Then  $C_1(N_1) = (0)$  and  $C_2(N_1) = N_1$ .
- (2) Let  $\Gamma$  be the additive group of any field F and let  $N_2$  be the nearing of all polynomials of degree 1 or less. Then  $N_2$  is 2-complete whence  $C_2(N_2)=(0)$ , while  $N_2$  is not 3-complete. Furthermore, the only nontrivial ideal in  $N_2$  is  $(N_2)_z$ . It follows that  $C_3(N_2)=N_2$ .

(3) Let  $\Gamma$  be the additive group of any field F of characteristic 2. Let  $N_3$  be the near-ring of all polynomials  $xp=a_nx^{a_{n-1}}+\dots+a_1x^{a_0}+a_0$  over F where  $a_i=2^i$   $(i=0,1,\dots,n-1)$ . Since  $N_3$  contains all quadratic polynomials,  $N_3$  is 3-complete. Thus  $C_3(N_3)=(0)$ . However, due to the characteristic of the field, for any  $a \in F$ , (a+1)p=ap+1p+0p. Thus if 0,1,a are distinct elements of F and  $f\colon F\to F$  has the property that

$$0f = 1$$
,  $1f = 1$ ,  $af = 1$ ,  $(a+1)f = 0$ 

then there exists no polynomial  $p \in N_3$  such that  $xf = xp \ (x = 0, 1, a, a + 1)$  since 0p = 1, 1p = 1, ap = 1 implies  $(a+1)p = 1+1+1 \neq 0 = (a+1)f$ . Thus (F, +) is an  $N_3$ -group which is not of class 4. Now, if  $N_3$  has an  $N_3$ -group  $\Gamma$  of class 4 such that  $A(\Gamma) = (0)$ , by Theorem 2  $(\Gamma, +)$  is  $N_3$ -isomorphic to  $(N_{3z}, +)$ . Obviously,  $(N_{8z}, +)$  is  $N_3$ -isomorphic to (F, +) which implies that (F, +) is an  $N_3$ -group of class 4. This contradiction shows that  $N_3$  is not 4-complete.

(4) Let  $\Gamma$  be the additive group of integers and let  $N_4$  be the nearring of all constant functions on  $\Gamma$ . Let  $N_5$  be the near-ring of all functions f on  $\Gamma$  such that f is constant outside a bounded set  $\Omega_f$ . Let  $N_6$  be the near-ring of all transformations of  $\Gamma$ . It is known that  $N_6$  is simple [2].

Theorem 7.  $N_{\rm 5}$  is simple.

Proof. Let K be a non-zero ideal in  $N_5$ . Then K must contain a non-zero element k. Thus there exists an integer  $a_0$  such that  $a_0k = \gamma_0 \neq 0$ . If  $\overline{\gamma}$  denotes the constant function whose range is  $\{\gamma\}$ , then  $\overline{a}_0k = \overline{\gamma}_0 \in K$ . Let  $m \in N_5$  be defined by:

$$\gamma m = \begin{cases} 0 & \text{if} \quad \gamma \neq \gamma_0, \\ \gamma_1 & \text{if} \quad \gamma = \gamma_0 \end{cases}$$

where  $\underline{\gamma}_1 \in \Gamma$ . Then  $\overline{0}m = \overline{0}$  whence  $(\overline{0} + \overline{\gamma}_0)m - \overline{0}m = \overline{\gamma}_0 m \in K$ . But  $\overline{\gamma}_0 m = \overline{\gamma}_1$ . Hence K contains all constant functions. Furthermore, for any  $\beta$ ,  $\delta \in \Gamma$ , let  $m_{\beta}$ ,  $n_{\delta} \in N_{\delta}$  be defined by

$$\gamma m_{\beta} = egin{cases} 0 & ext{if} & \gamma 
eq 3 \ \beta & ext{if} & \gamma = 3 \ , \ \ \gamma n_{\delta} = egin{cases} -1 & ext{if} & \gamma 
eq \delta \ , \ \ 1 & ext{if} & \gamma = \delta \ . \end{cases}$$

Then  $(n_{\delta} + \overline{2}) m_{\beta} - n_{\delta} m_{\beta} \in K$ . But

$$\gamma[(n_{\delta}+\overline{2})m_{\beta}-n_{\delta}m_{\beta}] = \begin{cases} 0 & \text{if} \quad \gamma \neq \delta, \\ \beta & \text{if} \quad \gamma = \delta. \end{cases}$$



$$\gamma f_{eta,\delta} = egin{cases} 0 & ext{if} & \gamma 
eq \delta \ , \ & ext{if} & \gamma = \delta \ , \end{cases}$$

then  $f_{\beta,\delta} \in K$ . Now, let  $f \in N_5$ . Then there exist  $\beta_1, \beta_2, ..., \beta_n, \delta_1, \delta_2, ..., \delta_n, \gamma \in K$  such that

$$f = f_{\beta_1,\delta_1} + f_{\beta_2,\delta_2} + \dots + f_{\beta_n,\delta_n} + \overline{\gamma}.$$

Hence  $f \in K$ . Thus  $N_5$  is simple.

Let N be the direct sum  $N_4+N_5+N_6$  and let  $\lambda$  be any integer greater than 1. Also let  $\mu$  be any infinite cardinal. It follows then that

$$(0) = C_1(N) \subset_{\neq} C_{\lambda}(N) \subset_{\neq} C_{\mu}(N) .$$

In fact  $C_{\lambda}(N)$  is equal to  $N_4$  and  $C_{\mu}(N)$  is equal to the direct sum  $N_4+N_5$ .

(5) Let  $\Gamma$  be an additive group of infinite order  $\lambda$ . For every infinite cardinal  $\mu$  not exceeding  $\lambda$  let  $N_{\mu}$  denote the near-ring of all transformations f of  $\Gamma$  such that ran f contains at most  $\mu$  elements. Set N equal to the direct sum  $\sum_{\mu} N_{\mu}$  where  $\mu$  ranges overall infinite cardinals less than or equal to  $\lambda$ .

THEOREM 8.  $N_{\mu}$  is simple.

Proof. Let K be a non-zero ideal in  $N_{\mu}$ . As in the proof of Theorem 7, K contains all constant functions. Let  $f \in N_{\mu}$ . Define an equivalence relation  $\stackrel{f}{\simeq}$  on  $\Gamma$  by:

If  $\gamma_1, \gamma_2 \in \Gamma$  then  $\gamma_1 \stackrel{f}{\simeq} \gamma_2$  if and only if  $\gamma_1 f = \gamma_2 f$ . Let the  $\stackrel{f}{\simeq}$  equivalence classes be denoted  $A_i$ ,  $i \in A$  where A is an indexing set. From each equivalence class  $A_i$  select an element  $\gamma_i$ . Let  $B = \{\gamma_i - \gamma_j | i, j \in A\}$ . Evidently the cardinality of B cannot exceed  $\mu$ . Since the theorem is true for  $\mu = \lambda$  [2] we may assume  $\mu < \lambda$ . Then there exists  $\delta \in \Gamma \setminus B$ . Define functions  $g, h \colon \Gamma \to \Gamma$  as follows: For any  $\gamma \in \Gamma$ ,  $\gamma g = \gamma_i$  where  $\gamma \in A_i$  and

$$\gamma h = \left\{ egin{aligned} 0 & ext{if} & \gamma \notin \{\gamma_i + \delta | \ i \in \mathcal{A}\} \ , \ \gamma_i f & ext{if} & \gamma = \gamma_i + \delta \ . \end{aligned} 
ight.$$

Then  $g, h \in N_{\mu}$  and  $\bar{\delta} \in K$ . Hence  $(g + \bar{\delta})h - gh \in K$ . However, if  $\gamma \in \Gamma$  then  $\gamma(g + \bar{\delta})h - \gamma gh = (\gamma_i + \bar{\delta})h - \gamma_i h = \gamma_i f = \gamma f$ . Thus  $f \in K$ ; i.e.,  $K = N_{\mu}$ .

It follows therefore if  $\aleph_0 \leqslant \nu_1 \leqslant \nu_2 \leqslant \lambda$ , then  $C_n(N) \subsetneq C_n(N)$ . In fact,  $C_n(N)$  is isomorphic to the direct sum  $\sum_{\mu} N_{\mu}$  where  $\mu$  ranges over all infinite cardinals less than  $\nu_i$  (i=1,2).

## R. Gorton



## References

- G. Berman and R. J. Silverman, Near-rings, Amer. Math. Monthly 66 (1959), pp. 23-34.
- [2] Simplicity of near-rings of transformations, Proc. Amer. Math. Soc. 10 (1959), pp. 456-459.
- [3] G. Betsch, Struktursätze für Fastringe, Inaugural-Dissertation, Eberhard-Karls-Universität zu Tübingen (1963).
- [4] Ein Radical für Fastringe, Math. Z. 78 (1962), pp. 86-90.
- [5] D. W. Blackett, Simple and semi-simple near-rings, Proc. Amer. Math. Soc. 4 (1953), pp. 772-785.
- [6] N. Jacobson, Structure of rings, Amer. Math. Soc. Coll. Publ. 37, Providence, R. I.
- [7] D. Ramakotaiah, Radicals for near-rings, Math. Z. 97 (1967), pp. 45-56.
- [8] A. P. J. van der Walt, Prime ideals and nil radicals in near rings, Arch. Math. 15 (1964), pp. 408-414.

UNIVERSITY OF DAYTON Dayton, Ohio

Accepté par la Rédaction le 5. 11. 1973