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Contractive fixed points
by
Solomon Leader and Stephen L. Hoyle * (New Brunswick, N. J.)

Abstract. A contractive fixed point iz defined to be a fixed point to which all
orbits converge. Conditions giving contractive fixed points are studied for spaces equipped
with a suitable equivalence relation on their sequences. The results of this study are
then applied to uniform and metric spaces where they yield known as well as new

© generalizations of the Banach Contraction Principle.

1. Intreduction. Let f: X > X where X is equipped with a suitable
notion of sequential convergence. For each z in X we call the sequence
(@, fu, f*o,...> the orbit of x. We call p a contractive fized point if fp = p
and every orbit converges to p. Since convergent sequences in our spaces
have unique limits, a contractive fixed point must be a unique fixed point.

‘We are interested here in existence theorems for contractive fixed
points. The classical result of this type is the Banach contraction theorem
[2] which has inspired the search for fixed point principles in metric and
uniform spaces. In this search the contractive propelty of fixed points
hag sometimes been ignored by researchers.

Our main contribution here is to place the study of contractive
fixed points in a more general setting than uniform spaces, but with
sufficient structure to yield results. Specifically, we use the UL*-space
of A. Goetz [5] which we call S-space (sequential structure space). Our
results apply in particular to uniform spaces and thereby to metrie spaces
and topological groups.

2. S-spaces. Bold face capitals K, L, M will always denote infinite
subsets of the set N of all natural numbers. For any sequence <{x,) let
{@ndys be the subsequence obtained by composing the unique order-
preserving map of N onto M with the restriction of the sequence to M.

An §-space is a nonempty set X equipped with an equivalence re-
lation x> ~ (yn> on sequences in X sueh that:

(8;) Tor constant sequences, <>~ (¥ implies # = ¥.
(8)  If Caad~ (Ya) then {adpy~ Yndu for all M.
#* Part of this work is derived from the latter author’s 1971 Henry Rutgers Thesis.
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(8;) Given (wm,» and (y.» such that every M contains some K with
(g~ Wayg, then @n) ~ (Y-

Convergence z, - is defined by {#.) ~ (). A sequence is Cauchy if it is
equivalent to each of its subsequences. X is S-complete if every Cauchy
sequence in X converges to some point in X. A point x is an §-limit poini
of a sequence if some subsequence converges to #. X is §-compact if every
sequence in X has an §-limit point in X. X is S-bounded if every sequence
in X has a Cauchy subsequence. So X is §-compaet if and only if it is
8-complete and §-bounded.

Every (separated) uniform space (X, U) becomes an S-space if we
define (xp> ~ (Yn> t0 mean (2, y») € U ultimately for each U in W.
Sequential equivalence in uniform spaces is a proximity invariant. BEx-
plicitly, let 6 be the proximity relation on 2 induced by U: A 6 B means
A x B meets every member of U. Then, using braces to denote the range
of a sequence, we have <) ~ (¥, if and only if {,},,9 {ya}), for all M.
(See section 18 in [11].)

In the special case of a metric space (X, d) sequential equivalence
becomes d(@n, ya)—+0.

For a compact Hausdorff space X equivalence is determined by
the unique uniformity U compatible with the topology: ‘W consists of
all neighborhoods of the diagonal I in X x X. (See Prop. 1 below.)

For T, V subsets of X x X we define U oV by the composition law
(@, 9) o (y,2) = (#,2). So Uly] is the set of all 2 with (»,y) in U. For f
& funetion on X the graph is the set of all (fz, #) with # in X.

- In a topological space a point # is a limit point of a sequence {(w,>
if every neighborhood of z containg some subsequence of (z,)>. In an
8-space equipped with a topology whose sequential convergence agrees
with §-convergence every §-limit point of a sequence is a limit point,
but the converse may fail if the First Axiom of Countability does not hold.

Our first proposition is of interest, but since it is not specifically nsed
in the sequel, we omit the proof.

ProposITION 1. In a uniform space {u)~ {yny implies that for

all M, <Zuypy and (Ynyy have the same set of limit points. The comverse
holds if X is compact.

ProposiTION 2. For any S-space X each condition below implies
the newt:

(a) @n> ~ Ynd-
(b) For all M, {&nyyy ond {yYudys have the same S8-limit points.

. (¢} If for some K both (zn>x and {Ynyg are convergent, then their limits
are equal.

If X is 8-compact, then (), (b), (¢) are all equivalent.
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Proof. The two implications follow easily from (8;) and the defini-
tions of convergence and S-limit.

To prove (¢) = (a) for X § -compact consider any M. Using S-com-
pactness choose K contained in M such that both {Bayy and {Yu)g coOn-
verge. By (e) these two subsequences are equivalent. So (a) follows from (iS;).

PROPOSITION 3. In an S-compact space a sequence converges if and
only if it has a wnique S-limit point.

Proof. Apply (a) < (¢) in Proposition 2 with Yn constant.

3. Contractive fixed points in S-spaces.

PrOPOSITION 4. Let X be an 8-space and f: X —X. Then each con-
dition Dbelow implies the next:

(0)  @u—p implies fon—fp (S-continuity).

1)  @u—p and fon—q imply fp = q (S-closed graph).
2) @uw—p and fo,—p imply fp = p.

(3) f"w—p implies fp=p.

Proof. (0) = (1) by uniqueness of limits under (8;). (1) = (2) by
applying (1) with ¢ = p. To prove (2) = (3) let f"¢ — p. Then "'z —p
by (S,), transitivity of equivalence, and the definition of §-convergence.
So (2) with @, = f"» gives (3).

ProrositioN 5. Let (X, d) be a meiric space and f: X —X with the
function d(x,fz) lower semicontinuous on X. Then (2) holds under metric
convergence.

Proof. Under the hypothesis in (2), d(#n, f2s) = 0. So by semiconti-
nuity d(p, fp) < lim d(#, fz) < m (2., fza) = 0. So fp = p.

PROPOSITION n(ai—.mLet X be (mnsfe space and f: X —X such that (2) holds.
Then the following are equivalent for p in X:

(i) p is an 8-limit point of some sequence {wn> which 4s equivalent
to its image {fan.

(i) There is some ®a—p with Fx) ~ {feny.

(idi) fp = p.

Proof. Given (i) take a subsequence (Y, converging to p. Then (ii)
holds for this subsequence by (S,). Given (i) use transitivity of equi-
valence and the definition of §-convergence to conclude fu, »p. So (iii)
follows from (2). Finally, given (iil) set @n = p to get (i).

ProrosiroN 7. Let X be an S-compact space and fi XX such
that (2) holds. Then f has o fimed point if and only if some sequence {xn) i8
equivalent to its image {fzn). If p is @ unique fized point then {on) ~ {ftn>
implies @, —p.

2 — Fundamenta Mathematicae LXXXVII
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Proof. To prove the first part use S-compactness and the equiva-
lence of (i) and (iii) in Proposition 6. The implication (i) = (iii) also gives
the second part by Proposition 3.

The next result was proved for metric and uniform spaces by Wattel
and de Groen [15].

ProrosrrioN 8. Let X be an S-space and f: X —X such that (2) holds.
Then f has a contractive fized point if and only if

(2) all orbits are equivalent, and

(b) some orbit has an S§-limit point.

Proof. Necessity of (a), (b) is trivial. Conversely, let (a), (b) hold.
By (b) there exists  whose orbit has an §-limit point p. Then by (a) the
orbit of » is equivalent to the orbit of fr. So (i) of Proposition 6 holds,
which gives (iii). All orbits converge to p by (a) since the orbit of p is (p).

ProrosiTION 9. Let X be an S-compact space and f: X —-X such
that (2) holds. Then f has a contractive fized point iff all orbits are equivalent.

Proof. (b) in Proposition 8 is redundant since X is §-compact.

ProrosITION 10. Let X be an S-space and f: X - X such that

(a) every orbit is equivalent to its image, and

(b) all sequences which are equivalent to their images are equivalent.

Then all orbits are equivalent Cauchy sequences. Hence, if some orbit
has an 8-limit point p, then all orbits converge to p. If, in addition, (3) holds,
then p is a contractive fized point.

Proof. (a), (b) trivially imply that all orbits are equivalent. For
all z in X (a) gives (f"z>~ {f* ). So {f"@)y ~ (" a), for all M
by (8,). Hence (b) gives {f"s)~ {f"s)y. So {f"> is Cauchy. The rest
of.the theorem is trivial.

‘We remark that (b) is a reasonable condition to impose. Under the
hypothesis of Proposition 7 the existence of a contractive (hence, unique)
fixed point gives (b) by the latter part of Proposition 7.

ProposIrioN 11. Zet X be S-complete and f: X—X such that (2)
holds. Then f has a contractive fized point iff

(a) all orbits are equivalent, and

(b) some nonempty S-bounded subset A of X contains ils image fA.

Proof. Given (a), (b) we need only show that some orbit has an
8-limit point. Then Proposition 8 will yield a contractive fixed point.
Choose a in A. Then f" e A for all n. 8o (f%a> has a Cauchy subsequence
since A is §-bounded. Such a subsequence converges since X is - com-
plete. So (f"ay has an S-limit point.

The converse is trivial: Let A in (b) consist of the unique fixed point.
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Note that in Proposition 11 “S-bounded” can he replaced by “S-com-
pact” in (b).
ProposrrioN 12. Let X be S-complete and f: XX such that (3)

holds. Then f has a contractive fized point if and only if all suborbits are
equivalent:

1) fray ~<fMy>x  for all 2,y and all K.

Proof. Trivial.

For a uniform space (X, ) (i) says given #,y in X and W in U
there exists m such that (f'z,f*y)e W for all j, &k >m. In particular,
for a metric space (X, d) (i) says lim d(f'z, ffy) = 0 for all z, y.

3,k—00

PROPOSITION 13. Let X be S-complete and f: X—-X such that (2)
holds. Assume

(2) given x,y in X there emists M such that {f*»dy~ {f"Y>y, and

(b) if <Bn) ~ {fitn> and {yu)is any sequence with Y, in the orbit of a
for all ny then {Lny ~ {Yn).

Then f has a contractive fixed point.

Proof. Congider any « in X. Set y = fz in (a) to get M such that

(4) S ypg ~ FP 00 -
Apply (b) to (4) to conclude
(5) <j"’”m>-M; Yndyy i Ym is in the orbit of ™z for all m in M.

We say K dominates M if for Kand Mtheranges of asecending sequences
(k> and <miy, ki=m; for all 4. Since f¥r is in the orbit of f™z i k= m,
(5) gives the following lemma:

If K dominates M then

(6) <fn'77>M"’ <fn$>‘K .

Since K dominates M if KC M the lemma implies {f"@),,is Cauchy and,
hence, converges to some p in X since X is S-complete. By (4) and (2),
r é‘r)i.ven any L there exists KCL such that K dominates M. Such
a K= {ky, ks, ...} can be defined inductively by letting k; be th_e smallest
number in L which exceeds both my and k,_;, with the .notatlonal con-
vention k, = 0. Therefore, by the lemma, every L contains some K for
which (6) holds. By transitivity of equivalence, {f"w.}r- {py. So by (Ss),
the orbit of # converges to p. Unieity of the fixed point p follows from (a)
and (S,).

2%
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4, Contractive fixed points in uniform spaces. For fi X > X we define the
induced product mapping by

(M F(z,y) = (fz, fy) -
A subset A of a uniform space (X, 4L) has small after-images under

fi XX if given V in U there exist min N and z in X such that fm4
CV[z]. Equivalently, given W in U there exists m such that
FYAXA)CW.

PRrROPOSITION 14. Let (X, W) be an 8-complete uniform space and
f: XX such that (3) holds. Then f has a contractive fized point if and
only if the orbital range of every two-point set has small afler-images.

Proof. The direct implication is trivial. Conversely, given »,y in X
let A be the range of the orbits of #, y. By hypothesis A has small after-
images. So for arbitrary W in O there exists m such that (fiw, ffy)e W
for all §,% >m. So (i) of Proposition 12 holds. Therefore Proposition 12
gives a contractive fixed point.

For compact uniform spaces we have the following analogue of
Proposition 9.

ProrosITION 13. Let (X, W) be compact and f: X —X be continuous.
Then f has a contractive fized point if and only if all orbils are equivalent.

Proof. The direct implication i trivial. To prove the converse let
all orbits be equivalent. In particular (™)~ (2> for all ». So
(f™p, f*'x) is ultimately in any given neighborhood of the diagonal I.
Hence, the graph of f meets every neighborhood of I. Therefore, since
the graph is closed because f is continuous, the graph meets I. That is,
f has a fixed point p. Since all orbits are equivalent, p is contractive.

Proposition 15 has the following extension. o

PROPOSITION 16. Let (X, ) be a complete uniform space and f: X -X
with closed graph. Then f has a contractive fized point if and only if

(@) ImF"U=XXxX for all U in W and

N0

(b) there is some nomempty, totally bounded subset A of X such that
f4C A.

Proof. (a) says in terms of (7) that all orbits are equivalent. So
(a) is necessary for a contractive fixed point. (b) is necossary with 4
consisting of the fixed point.

Conversely, given (a) and (b) we need only show that f4 C A to geb
a gontractive fixed point from Proposition 15 applied to the space A.
4 is compact since 4 is totally bounded and X is complete. So if ‘fZ c 4,
then f must b(i confinuous since its graph is closed. -

Given # ¢ A we contend fz e 4. Choose a net {a,y in A with a,—a.
We may assume {fa,> is convergent sinee it lies in the compact set .4 and
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hence has a convergent subnet. So fa,~y in 4. Since the graph is closed,
y =fw. So fred.

The remaining results (Propositions 17-23) of this section give suf-
ficient conditions for a contractive fixed point in a uniform space. These
conditions all hold for Banach contractions. Condition (iii) in Proposi-
tion 17 was used by C. 8. Wong [16] to prove a non-contractive fixed
point theorem.

ProroSITION 17. Let (X, ) be an S-complete uniform space and
f: X-X such that

(i) for each U in U the graph of f is contained in lim F~"T,
n=c0

(ii) (3) holds, and

(iii) given U in U there exists V in U such that (x,fz) and (¥, fy}
in V imply (fo,fy)e U.

Then f has & contractive fized point.

Proof. Given #in X and U in W apply (i) to the graph point (fr, x}
to get n such that (f**'z, ffx) ¢ U for all k > n. So (a) of Proposition 10
holds. Therefore, (ii) and (iii) with Proposition 10 yield a contractive
fixed point.

ProPOSITION 18. Let (X, L) be S-complete and f: X —2X. Let B be
a symmetric base for U satisfying

(a) given @ in X there exist U in B, y in X, and n in N such that ffz
e Uly] for all k= n,

(b) given T in B and y in X, U[y] has small after-images.

Then every orbit converges. If, moreover, (3) holds and

(¢) B covers XX X
then there is a contractive fired point.

Proof. By (a) and (b) the orbital range of any point has small after-
images. So every orbit is Cauchy, hence convergent since X is §-complete.
If (3) holds, then the limit of an orbit is a fixed point. ) .

Given (¢) let p and ¢ be fixed points. By (c) there exists U in 35.w1th
(p,q) in U. So both p and g are in Ulg]. Henece, by (b), given W in ‘Lb
there exists m such that (p,q)=F"(p,q) e W. So, since (X, W) is
separated, p = ¢-

PropostTIoN 19. Let (X, ) be S-complete and fi X —X such that (3}
holds. Let # be a symmetric base satisfying

(A) given © in X there exist U in &, y in X, and n in N such that ‘f"m
e Uly] for all k=n and ‘

(B) given U, W in & there exists m with F*UCW.
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Then every orbit converges 10 a fized point. If, moreover,
o

(0) XIxX = U® where U= U*,
Uedk k=1
then there is o contractive fized point.

Proof. Let $ consist of all U* with U in # and % in N. Then (C)
gives (c) of Proposition 18. Since % contains #, (A) gives (a). We need
only show (B) gives (b) to get Proposition 19 from Proposition 18.

Consider y in X and U® in 3. We contend U"y] has small after-
images. Given ¥ in U chooge W in the base with W¥C V. Then get m
* from (B) which implies F"T*C (FmU¥C W*CV. So

UMD C @ TRy C V™.

ProrosSITION 20. Let (X, W) be S-complete, B a symmetric base
for W, and fi X -»X with (3) satisfied such that

(1) B covers X x X and

(i1) gi've'/i U, V in & there exisis n in N such that

MU o T oo o BVHITCT  for all 0.

Then f has contractive fimed point.

Proof. We contend Proposition 20 is subsumed by Proposition 19.
Indeed, (i) trivially implies (C), and (ii) with j = 0 is (B). To verify (A)
let & be given in X. Using (i) choose U in B with (z, f) in U. Apply (ii)
with ¥V = U to get #. Let y = f"». Then for all j in N,

(y,f"“'m) — (f“w,f”“w) o (f"“zv,f”“m) 0o (f"”"lw,f"‘”w)

eF"T o F" T o ... o -1 C U

by (ii). Therefore, since U = U™, /75 ¢ U[y] for all§ = 0 which gives (A).
Although the next result is subsumed by Proposition 13, an inde-
pendent proof is shorter.

Prorosrrion 21. Let (X, W) be S-complete and f: X »X such that

(1) every two-point subset of X has small after-images and

(1) given U in U there ewists W in W such that (2, %) e U for all &
n N and all 2 with (2, fz) in W.

Then every orbit converges. Tf (3) also holds, then f has a contractive
Jized point. :

Proof. Given # in X and U in U get W from (ii). Then apply (i)
to #, fu to get m such that (f"w, "a) e W. Apply (ii) with == f" to
conclude that (f"z, f***z) ¢ U for all & in N. So the orbit of # is Cauchy,
hence converges to some p by § -completeness. Given (3), fp = p.
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Unicity of p follows from (i) since our spaces are separated.
PrOPOSITION 22. Let (X, W) be S-complete and f: X>X such that
(a) every two-point subset of X has small after-images and

(b) given V in Us there exists W in W such that

FWeF*Wo..o F¥IWCT  for all k in N.

Then f has a contractive fized point.

Proof. We contend Proposition 22 follows from Proposition 21.
{3) holds by Proposition 4 since f is (uniformly) continuous by (b) for
k=1. We need only show (b) implies (ii).

Given U in U choose ¥ in U with ¥2C . Choose W satisfying
{b) with W CV. If (z, f2) ¢« W, then -

(2, f%2) = (2, f2) o (fo, 1%2) © oo o (f¥7%2, fF2)
eW P WeFPWe ...  FF W CWoVCVCT

for all %. So (ii) holds.

PrOPOSITION 23. Let (X, W) be S-complete and f: X —X such that

(a) every two-point subset of X has small afier-images and

(b) there exists a base $ for U such that given U in B there exisis W
an W with (FU) o (W ~8)C U, where § is the graph of f.

Then f has a contractive fized point p and [ is continuous at p.

Proof. We contend the existence of a contractive fixed point follows
from Proposition 21. We first show (b) implies (ii). We may assume that
WC U in (b). Then (fz,2) ¢ W implies by induction that (f*z,z) e U for
all k. The latter condition holds for & = 1 because W C U. Given (f*2,2) ¢ U
then (f**'z, fz) e FU. So

(f*'2,2) = ("2, f2) o (fe,2)  FU « W GC T

by (b). Hence, (ii) holds.

So by Proposition 21 every orbit converges. For f*z-—p and ar-
‘bitrary U in $ we have (p,f"r)e U ultimately. So (fp,f"™2) e FU
ultimately. For W from (b) we have, since {f"x) is Cauchy, (f*"=», f*z)
€ W~ § ultimately. So ultimately

(fp, f"2) = (fp, f*"2) o (f**'&, f*2) e FU - WA SC U

by (b). Therefore, f*z—fp. So fp =p by (8,) which gives (3). So f has

a contractive fixed point p by Proposition 21.
To show f is continuous at p we contend that f(U[p]]g U[p] for
all U in $. Let ze U[p]. Then (z,p)e U, so (fz,p)= (fz,fr) e FU.
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Hence
(fe,p)= (fz,p) e (P, p) e FU- WASCTU.

So fw e U[p].

Condition (b) in Proposition 23 is a weakening of a econdition
introduced by R. J. Knill [8] who defined a uniform contraction to be
a self-mapping f on a uniform space with a symmetric base % such that
given U in $ there exists W in % with

(8) FU-WCU.

We may always assume that WC U in (8). Moreover, since IC W,
(8) implies FUC U. So a uniform contraction is uniformly continuous.
By induction (8) implies for WC T,

@) FHU-WHCU foralkin N.

(See [8].) Enill proved in [8] that a uniform contraction on an §-com-
plete uniform space has a contractive fixed point if the space is well-
chained [10]. Knill’s theorem follows from Proposition 23 because every
wniform contraction satisfies (a) in a well-chained space. To show this
we have WFC U o WECTF*U for all & by (9). Hence, sinee X is well-
chained, X x X = W C | JF~*U which gives (a).
k=1

5. Contractive fixed points in metric spaces.

PrOPOSITION 24, Let (X, d) be a complete metric space and f: X X
such that

(a) d(z, fz) is lower semicontinuous on X,

(b) a(f™=, f**'2) =0 for all » (asymplotic regularity) and

(e) given ¢>0 there exists 6 >0 such that d(z,y) << e for all 2,y
with d(x, fo)+d(y, fy) < 6.

Then f has a contractive fiwed point.

Proof. Apply Proposition 10 with Propositions 4 and 5. Or use
Proposition 17 using the base

(10) B={U,; e>0} where U,=d"Y0,eé)
to get (iii) from (e).

For a Banach conftraction
(11) A(fo,fy) < Md(w,y) for all m,y

where 0<< M <1, (a) and (b) ave trivially satistied. (¢) holds for &
= (1—M)e sinee (11) and the triangle inequality imply (1—M)d(x,¥)
< d(=, fr)-+d(y, fy). So Proposition 24 subsumes the Banach Contraction.
Theorem. !
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ProPOSITION 25. Let (X, d) be complete and f: X —X such that

(i) every orbit is bounded and

(ii) every bounded set has small after-images.

Then every orbit converges. Hence, f has a contractive fixed point if (3}
holds.

Proof. Apply Proposition 18 with % defined by (10). Then (i) gives
(a) with arbitrary y and » = 1. (ii) immediately gives (D). (c) is trivial
since d(z,y) < oo for all z, y.

Proposition 25 subsumes the Banach Contraction Theorem. We
shall apply it to prove a stronger result of V. M. Sehgal [14]. We have
dropped Sehgal’s assumption of continuity.

PRrOPOSITION 26. Let (X, d) be complete and f: X —X with a constant
¢< 1 such that for each x in X there ewists n with

(12) a(f'o, fry) < cd(w,y) Jor all y.

Then f has a contractive fized point.
Proof. We first show that (12) implies (i) and (ii) in Proposition 23,
and then that (3) follows from (12) and the convergence of all orbits.
To get (i) consider any » in X. Choose % .80 that (12) holds. Define

(13) R = Max d{z, fiz).

=1yt .

Then (i) follows from Sehgal’s lemma [14],.
R
(14) d(z, frz) <1———é for all %.

To get (14) one can prove by induetion on m that
(15) Az, gy < (1+ e+ 4+ . ™R for i=1,..,n.

For m = 0 (15) follows from (13). Given (15) for a particular m apply (12)
to get

(16) d(j‘ﬂm’f(m+l)n+iw) < cd(w,f"‘”“m) .
Now (13) implies
) o, fr0) < R .

Adding (16) and (17), applying the triangle inequality, and then applying
(18) we get (15) with m replaced by m—1.

To prove (ii) consider a ball B of radius y about x. By (12) B has
some after-image f"B contained in a ball of radius ¢y about f"z. By in-
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duction there exists arbitrarily large m such that B has an after-image
in a ball of radius ¢™y. So (ii) holds since ¢<C 1.

So by Proposition 25 every orbit converges. Let p be the limit of the
orbit of some point z. Apply (12) with #=p and y = f %y for arbitrary k
to get d(f™,f*%) < cd(p,f*2). Hence, letting k—co, we get f"p = p.
That is, p is a periodic point. But the orbit of p converges, so fp = p.
Hence (3) holds.

ProrosiTioN 27. Let (X, d) e compléte and f: X - X such that

(a) inf,d(f e, f"y) = 0 for all &,y and

(b) given &> 0 there exists § >0 such that d(z, f¥) <& for all & in N
and all z for which d(z,fz) < 4.

Then every orbit converges. So f has a contractive fized point if (3) holds.

~Proof. Apply Proposition 21 noting that U in (i) can be replaced
by any base B. Use $ defined by (10). Then (a) is exactly (i) and (b) is (ii).
Proposition 27 subsumes the Banach Contraction Theorem. Indeed,

(a) follows from the equivalence of all orbits, a consequence of the in-
ductive extension of (11) to

(18) a(f"z, f*y) < M*d(@,y) .
(b) follows from the triangle inequality and (18) with ¥ = fz which yield
(19) a(z, f*0) < (1— M)Az, fa) .

So under (11), (b) holds with 6 = (1—M)s.

The next generalization of the Banach Contraction Theorem is due
to S. Reich [12] who extended some results of R. Kannan [6], [7]. We
have added the conclusion that f must be continuous at p.

PropostrioN 28. Let (X, d) be ¢ metric space and f: X —X. Let there

exist non-negative constants a, b, ¢ such that a+b-+c< 1 and for all z,y
m X

(20) d(fz, fy) < ad(z, fo)+-dd(y, fy)+-cd(z, y) .

Then all orbits are equivalent Cauchy sequences. If they have a limit P,
then p is_a contractive fized point and f is continuous at P.

Proof. We shall apply Proposition 10 to get the first conclusion.
To get (a) of Proposition 10 set y = f in (20) to conclude that for
a+¢ .
M=
1—b

(21) a(fo, f*0) < Md(w, fo) .
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By induction on 2 extend (21) to
(22) A(frs, f*) < A (@, fo) .

Since M < 1, (22) implies (a).
To wverify (b) let (2, f#,) >0 and d(yn, fya)—0. Then (20) vields

(23) Timd(f2n, fya) < A (2n, Yn) -
But, since d(on, ¥z) < A(@n, f2a)+ A(fon, fyn)+ d{fYa, ya), and
(24) 1M d(@n, Yn) < Tond (f2a, fya) -

Since ¢<< 1, (23) and (24) imply d{(#a,¥»)—0. So (b) holds. Hence, by
Proposition 10, all orbits are equivalent Cauechy sequences.

If all orbits converge to p we contend p = fp. By (20) applied to
and "'z we get

(25) d(fp, frs) < ad(p, fp)+ba(f" ", frz)+cd(p, " a) .

As n—oo (25) yields d{fp,p)<ad(p,fp) which imples d(p,fp)=0
since a << 1. So p = fp.
To show f is continuous at p set y = p = fp in (20) to get

d(fx, p) < ad(w, fr)+cd(z, p) < a[d(z, p)+d(p, fo)l+cd(z, p).

So
0 < (1—a)d(fz, p) < (a-tc)d(z, p)

which gives the continuity of f at p = fp.

Kannan [7] gave a special case of Proposition 28 with ¢ = b and ¢= 0.
He demanded the hypothesis that f be continuous at p which our result
shows is redundant.

In [13] Reich relaxes the condition a-+b+¢< 1 by demanding only
that ¢ < 1. But he adds the hypothesis that d(x, fr) be lower semicontinu-
ous (which gives (2) by Proposition 5) and that some sequence in X be
equivalent to its image. Then all such sequences converge to a unique
fixed point p. However, p need not be contractive and f need not be
continuous at p. In Reich’s version [12] of Proposition 28 he omits the
conclusion that the fixed point is contractive, which his proof yields.

Contractive fixed points in compact metric spaces have been in-
vestigated by D. F. Bailey [1]. Edelstein [4] proved that every cqntra-etion
on s compact metric space has a contractive fixed point. Actually one
ean conclude that all orbits’ converge uniformly to the fixed point. This
is our next result. We denote the diameter of a set A by d[A].
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ProposIrioN 29. Let (X, d) be a compact metric space and f: X —»X
such that

(26)
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d{fe, fy)< d(w,y) Jor all ® #y.

Then
27 arfx]Lo .
So all orbits converge uniformly to o unique fiwed point.

Proof. We need two lemmas.
TEvmA A. Given o nested sequence Yo D Yy of monempty, compact

subsets of (X, d), then for ¥ = ¥p, A[Y]=lim d[¥,].
n=1 n—>c0

* Proof. Clearly d[Y]<d[Y,,,1< d[¥n]. So d[Y]<limd[¥y]. To
reverse the inequality choose an, b, in ¥, by compactness so that

(28) A(@ny bn) = A[Vn] .

Choosing appropriate subsequences we may assume under compactness
that a,—a and b, —b. So

(29)

Now ¥, is closed and am, b € ¥y for all m > n. So a, be ¥y for all n.
That is, a,be Y. So

(30) d(a,b) < d[T].

By (28), (29), (30) imd[¥.] < d[¥].

LemMA B. If f is a contraction (26) on a compact metric space (Y, d),
then either f is constant or A[fY¥Y]<C d[¥].

Proof. If f is not constant, then d[f¥Y] > 0. We can choose a,b in ¥
with d(fa,fb) = d[fY]. 8o a # b since d[fY]>0. Hence (26) gives
alfY1= d(fa, fb)<d(a,b) < d[Y] which proves Lemma B.

To prove Proposition 29 first apply Lemma A with Y, = f*X. Then
to get (27) we must show d[¥]= 0. From the definition of ¥, f¥ = ¥
and Y is compact and nonempty. So Lemma B implies f is constant on ¥.
So Y consists of a single point, hence d[Y]= 0.

Contractions on compaect metric spaces and Banach contractions
on metric spaces are special cases of the contractions introduced by
Meier and Keeler [9] who proved the following result.

ProposITioN 30. Let (X, d) be a complete metric space and f: X —X.
Suppose that given & >0 there ewists 6 >0 such that

(31) d(fe,fy)<e for dall @,y with d(z,y) < e+6.

Then f has a contractive fived poini.

d(an, by) > d(a,d).
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Proof. We contend Proposition 30 follows from Proposition 23.

To verify (a) one can easily show that (31) implies d(f™z,f™)J0
for all #,y as is done in [9].

To verify (b) express (31) in the form FU, +4C U, in terms of (7)
and (10). So (FU,.;) e U;C U, U;C U,,, by the triangle inequality.
Thus (b) holds for U = U,,, with W = U,. Such U form a base since &
and & can be arbitrarily small.

Mappings with contractive modulus of continuity turn out to be
special cases of Meier-Keeler contractions (31). However, the greater
strength of contractive modulus conditions can yield important conclusions
which do not hold for all Meier-Keeler contractions. Consider, for ex-
ample, the contractive modulus condition introduced by Browder [3].

Browder has a nondecreasing, right-continuous function G (y) defined
for ¥ > 0 such that G(y)< y whenever y >0 and

a(fe, fy) <Old(z, n)

For such a O one can choose 6 >0 given & >0, so that O{e+6) < e.
Then if d(x,y) < e+6,

for all o,y .

a(fz, fy) <O(d(@,y)) < B(e+o)<e.

So (31) holds for a Browder contraction. Hence, by Proposition 30, every
Browder contraction on a complete metric space has a contractive fixed
point.,

For a Browder contraction f on (X, d) one has d[f*B] <O¥(d[B])
for all % and all bounded subsets B of X. Hence, since O%(y) {0 for all
y = 0, d[f¥B1{ 0. So all orbits originating in a given bounded set B con-
verge uniformly.

The latter condition does not hold for Meier-Keeler contractions.
This is shown by the following example which we owe essentially to
Richard Bumby.

Let X =N with d(m,n)=2—1/m—1/n for m # n. The triangle
inequality follows from the identity

E—1
k

ad(m, k)y+-d(n, k) =d(m,n)+2 for distinet m,n,k.

(X is isometric to a subspace of 1;.) Let f1 = 1 and fn = n—1 for n >1.
Then X = X since n = f(n+1) for all » in X. So d[f*X]=d[X]=2.

Now f is a contraction (26) and the range of d is well-ordered: Every
nonempty subset has a minimum. The latter condition implies that for

e>0 there exists 6 >0 such that d(z,y)<<e+d implies d(x,y) <,
hence d(fz,fy)<<e by (26). So (31) holds.
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Ag @ final remark we note that under (31) the monotone sequence
Kd[f"B1y for B a bounded subset of X either converges to 0 or is ultimately

constant.
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QuaSI-nonexpansive multi-valued maps and selections
by

Chyi Shiau, Kok-Keong Tan (Halifax, Nova Scotia)
and Chi Song Wong * (Windsor, Ontario)

Abstract. Two classes of quasi-nonexpansive multi-valued maps are investigated.
(1) Let f be a map of a metrically convex eomplete metric space X into the family of
all non-empty compact subsets of X. Then f has a fixed point if there exists a self map
on [0, oo} such that ¢(f) < for all £>> 0 and f is p-contractive. (2) Let X be a weakly
compact convex subset of a Banach space B and f be a continuous map of X into the
family of all non-empty closed convex subset of X. Then f has a fixed point and has
a Kannan selection; the selection so chosen is continuous if further B is strietly convex
and X is compact. The relation between selections and fixed points are investigated.
As an example, it is proved that every Kannan map of the unit interval into its sub-
intervals has a Kannan selection and therefore a fixed point; all such maps can be
explicitly illustrated.

1. Introduction. Let (X,d) be a (non-empty) metric space. Let
be(X) be the family of all non-empty bounded closed subsets of X en-
dowed with the Hausdorff metric D induced by d [9]. Let f be a map
of X into be(X). f is contractive (nonempansive) at a point z in X if
D(f (@), fly)) < d(z,y) (< d(z,y)) for all y in X other than @. Let ¢ be
2 map of [0, oo) into itself. @ is contractive if ¢(0)= 0 and ¢(f)<< t for
all £ > 0. Let ¢ be a contractive self map on [0, o). f is ¢-contractive at
a point ¢ in X if D(f(=2), f(y)) < p(d(z, 9)) for all y in X. f is nonerpansive
(contractive, @-contractive) on X if f is nonexpansive (resp. contractive,
@-contractive) at each point in X. f is quasi-nonexpansive (quasi-con-
tractive, quasi-g-contractive) if the fixed point set F; = {w ¢ X: x e f(z)}
of f is non-empty and f is nonexpansive (resp. contractive, ¢-contractive}
at each point in F,. For convenience, we shall identify a singleton with
the point it contains. Thus if f is single-valued, our notion of quasi-non-
expansiveness coincides with the one introduced by W. G. Dotson [6].

* The second and third authors are partially supported by the Canadian Mathe-
matical Congress for participating in the Summer Research Institute and by the Na-
tional Research Council of Canada under the grant nuwmbers, respectively, AS096
and A8518.
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