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A Lefschetz-type fixed point theorem
: by
L. Gérniewicz (Gdarisk)

Abstract. In the present note, we consider a new class of multi-valued maps called
by us admissible. The class of admissible maps contains acyelic maps and it is essentially
larger.

This note gives the following two generalizations on the Lefschetz fixed point
theorem:

(i) for admissible maps of compact, metric, approximative ANR -spaces,

(ii) for admissible maps of metric ANR -spaces.

Moreover, in this paper we give a modern proof of Eilenberg-Montgomery coinei-
dence theorem which depend on methods given by A. Dold in [4].

S. Tilenberg and D. Montgomery have proved [5] the following
theorem:

Let X be a compact metric ANR, and p, ¢: Y—>X a pair of continu-
ous maps, where Y is a compact metric space and p a Vietoris map. If
the Lefschetz number A(g,p;") does not equal 0, then there exists a point
y e Y such that p(y) = q(y)-

This note gives a modern proof of this theorem. Our proof may be
viewed as an application and generalization of methods given by A. Dold
in [4]. v :
Moreover, we generalize the above Eilenberg-Montgomery theorem
onto the following two cases:

(i) X is a ecompact metric AANR of a finite type ([3)),

(ii) X is a metric ANR and ¢ is a compact map.

Applieations of these results to multi-valued maps are given.

1. Homology preliminaries. All spaces are assumed to be Hausdorff.
By H we denote the {lech homology functor with compact carriers
([6, 10]) from the category of topological pairs to the category of graded
vector spaces (the coefficient group is the field @ of rationals).

A mnon-empty space X is called acydlic provided (i) Hu(X)=0 for
all » >0 and (i) HyX)=@.

We recall that a Vietoris map is a proper map p: (Y,B)~(X, 4)
with p(¥)= X, p~(4) = B and p~() is an acyclic space for each @ ¢ X.
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The Vietoris-Begle theorem (see [1]) and the five lemma gives:

(1.1) TeeoreM. If p: (¥,B)—(X,4) is a Vietoris map, then
p,: H(Y,B)>H(X,A) is an isomorphism.

Consider the category C of all pairs (U,V) such that U and V are
open subsets in the Euclidean space E", for some # = 0, or U is a finite
polyhedron and V is an open subset of U and continuous maps of such pairs.

Since the family of pairs of finite polyhedra {(K,L)} is confinal in
the family of compact pairs {(X, 4)} contained in (U,V), we obtain the
following:

(1.2) On the category C the functors H and H are naturally isomorphic
(H denote the singular homology functor with coefficients in Q).

From the excision axiom for singular homology and (1.2) we deduce
(eomp. [11]):

(1.3) If ACUCR"C 8" = R" v {0}, where A is a compact and U an
open subset in R", then the inclusion map j: (U, UNA) - (8™, 8™\ A), induces
an isomorphism j : H(U,UNA)—H (8", S™\4).

Let K CUCR" where K is a finite polyhedron and U an open
subset of R". Consider the diagram:

PR, JELINY

in which p is Vietoris map and ¢ is a continuous map. With the above
diagram we associate the following:

(T, UNE) <2 (T, TNp™(E)) 2, (8%, R0},

where B(y) =y and (y) = p(y)—q(y) for each y ¢ ¥. We observe that
P is a Vietoris map.

Let A: (U, UNK)~(U,UNK)X U be a map given by 4(z) = (@, ®)
for each zeU and d: (U, U\K)x K- (R, B™{0}) given by d(z, ')
=a—ua’, for each # ¢ U and 2’ ¢ K.

(1.4) LeMwa. The diagram

Id+@qup3t

H(U{\K)--”‘—>H(U, UNE) @ H (U) ———> H(U, UNK) @ H(K)

N /
AN s
SN y

\\ /
N (g R“\{O})/

commautes.
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Proof. We consider the commutative diagram:
Tdxg

(U, TNE)x U <=2 (7, INE) X ¥ 2% (7, IN\E) x E

i T

(U, UNK) <7 {T, Tp7™K)) —57 (B B™\{0})

»
in which the mayp f is given by f(y) = (p(y), y) for each y e Y. It is easy
to see that, for spaces in the above diagram, the Kiinneth theorem is
true. Hence from the commutativity of the above diagram, in view of
the Kiinneth theorem for H, we obtain (1.4).

2. The Lefschetz number. Let M= {M},, and N={N};.z be
graded vector spaces‘over the field of rationals.

Congider the following vector spaces:

(8) M* = {M}}, where M;= Hom(M_;,@),

(b) M*@N = {MIQ®N},

(¢) Hom (M, N) = {Hom(M_;, N} :

Tet us define a map: 6: M* @ N —Hom(M, N), where 0,;: M;@ N,
~Hom (M _;, N;) is given by the formula: 6,,(f® 7) (m) = (fl)’ff(‘m)m.

We note that of M is a graded space of finite type, i.e., dim M;
< oo for all 4 and My =0 for almost all %, then 6 is an isomorphism
(comp. [£]). o

The homomorphisms of Im6 said to be of finite rank.

(2.1) DEFINITION (comp. [4]). Let M be a graded vector space of
finite type. The Lefschetz number A(f) of a homomorphism f ¢ Hom (M, M)
of finite rank is given by the equality

A(f) = e(871(f)
where ¢: M* ® M —@Q is given by
for i# —j,
fi(mq) for 4= -—] .

Remark. It is well known that the A(f) just defined coincides with

the Tefschetz number defined as the alternating sum of traces.

Let f: M~ M be an endomorphism of M; then by A(f) We denote
the generalized Leftschete number of f (see [81); call f a Leray endomorphism,
it A(f) is defined. . .

(2.2) If in the category of graded vector spaces the following diagram
commates:

eiy(fi @ my) =

g

M—M
t.
;fT \\ |7

MM,
a7

2%
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then f is a Leray endomorphism if and only if f' is @ Leray endomorphism
and in this case A(f)= A(f").

Tor the proof of (2.2) see [8].

3. The coincidence index. Let us fix for each n >0 an orientation
1 e Hy(8" = @ of the nth sphere §"= R" U {oo}.
Consider the diagram

S - (87, §NA) ——— (U, UNA),

in which A is a compact subset of U, U is open in R* and i,j are in-
clusions.
From (1.3) we conclude that j, is isomorphic map.

(3.1) DeFNirIoN (cf. [4]). The fundamental class 0, of the pair

(U, A) is defined by the equality
04=j3",(1) -

Let 4 CA,CV C UCR" where U,V are open in E™ and 4, 4, are
compact. Let k: (V, V\4,)— (U, U\A4) be the inclusion; then we bave

(3.2) k,(04) =04

A coincidence of a pair of maps p,¢: ¥ »X is a point y ¢ ¥ with
2y = q(®)-

Consider the diagram

T _v-2,1,

in whieh U is an open subset in R", p is a Vietoris map and ¢ is a compact
map, i.e., ¢(¥) is contained in some compact subset 4 of U.

Then the seb x,,= {&e¢U; zegp~*x)} is compact and we have
the diagram

(1) (U, ONay ) <2 (7, TNp ™ (o, 0)) —— (B, B™N{0))

where P(y) = p(y) and g(y)=p(y)—q(y) for each ye Y. Since p is
a Vietoris map, we may define the indew of coincidence I(p, q) of the pair
(p,9) by putbing

I(p, 9) = 3,5,(0,,,) « Hy(B", B™\{0})~Q .
We note the following simple facts:

(3.3) If I(p,q) # 0, then the pair (p, q) has a coincidence.

(N 4) If 4 is o compact set such that ,,CACU, then I{p,q)
7740 4), where ;p, g are given by the same jormnl(z as P, q in (1).
(3.5) LevMA. Let K be a finite polyhedron such that ¢(¥)C K, then
there exists an element o < (H (K))* @ H (K) such that 1(p, q) = e(a).

=7,
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Proof. Consider the diagram
du 1d.®q, 03t
H(U7 U\-?K) —_— H(U7 U\-K) ®H(U) —_— H(U, U\K) ®H(K)
\\ /
/
a.a:l\ I a, ¢ I
derd,
\ /

@~ H(E",

(HE) © B(K)
where ¢;: ¥ — K i a contraction of ¢ to the pair (¥, K) and 4 is given by

d(u)(v) = d(u®v) for weH(U,UNK), veH(E).
The subdiagram (I) commutes (comp. (1.4)). The commutativity of (IT)
follows by easy computation.

We define a= (d® 1d)(Id ® ¢,+p; ") 4+(0g). The commutativity of
above diagram and (3.4) imply that I(p,q)= e(a) and the proof is
completed.

Let ECUCR" be as in (3.5), &: UxK-KXU, t(»,s) = (&, )
and O%: H(K)—H(U,UNK)® H(K), 0x(1) = O ® u.

Applying (1.2) to the Dold’s lemma ((4.2) in [4]), we obtain the
following:

(8.6) The composite

O
H(K)—> H(U,U\NK)® H(K)
L0ty o

L=IL(K,U):

A,,@Ia.
—

H(U, UNK)QH(U) @ H (K)—

(ow)”
———

H(U,UNK)@ H(K) @ H(T)

Au®Idn
—

Q®H(U) H(T),

coincides with the inclusion homomorphism i H(K)—H(U).

4. The coincidence theorem for open subsets of the Euclidean space. In this
section we prove the following:

(4.1) TueorEM. Let p, q: YU be o paiy of maps from a space Y to
an open subset U im R™ If p is a Vietoris map and q is a compact map,
then q,p7* is a Leray endomorplism and if A(q,p;7") # 0 then the pair
(p,q) has a coincidence.
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Proof. Since g is & compact map, there exists a finite polyhedron K
such that ¢(¥)C EC U. We have the following commutative diagram:

H(EK) s H(U)
qﬁ)[ \\Q [m
H(p () 2> H(X) > H(Y)

\ N
)t et I”?

H(K) ———— H(U)

T

From (2.2) we deduce that A(g,p;*) = Agk(p,)™") and hence g,p;*
a Leray endomorphism.
Assume that A(g,p;") # 0. For the proof it suffice shows thab:

@) Map) ™ =I(p,q) (comp. (3.3)).

Congider the diagram

H(U, UNE) @ H(T) @ E(K) 3 H(U, UNK) ©H (K) H (U 0) 2220 @ B (D)~ (D)
@010 ®Id, E®10.8010;7" lqmo:l
(EE) O (K) ® H(E) 2 (50 @ H(K)  H () = Q @ H(K)~H(K),

where ¢ is the induced homomorphism by the contraction of ¢ to the
pair (¥, K). The commutativity of the above diagram follows by simple
calculation.

| Let o= (d®1d,)(1d, ® gup;?) 4,(0%) € (H(K))" ® H(K). Since e(a)
= I(p,q), (see (3. 5)), for the proof of (1) it is suffice to show that

(2) 8(a) = ¢(p,)""  (comp. also (2.1)).

I we follow 4,(0z)@FkcH(U,UNK)® H(U)® H(K) along | ——, we
get (B(a))(k). If we follow it along — — we get ¢ (%), (see (3.6)). Therefore,
for the proof of (2) it is suffice to show that

3) QP 0, = (D))

Let j: p™Y(K)-Y be the inclusion map. Congider the following
commutative diagram:

Te— 7 -2>x

1 A

K T P7YE)
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Applying to the above diagram the funetor H we obtain (3) and the proof
of (4.1) is completed.

5. Multi-valued maps. In what follows, the symbols g, v will be
reserved for multi-valued maps; the single-valued maps will be denoted
by fr 4y 0P85 7

Let ¢: X » X be a multi-valued map. A point # ¢ X is called a fiwed
point for ¢ provided @ e ().

If p: X > Y and p: ¥ - Z are multi-valued maps, then the composition
of ¢ and v is denoted by yp: X—Z and is defined pp(z) = | »(¥).

e . . v v( ) :
We associate with @: X— Y the following diagram of.e caz)ntinuous

maps
Py 9
X I'q, - Y
in which
Ty={(®9) e XX Y; yep(a)}

is the graph of @ and the natural projections p,, ¢, are given by p,(z,y) =
and ¢,(2,y) =Y.

A multi-valued map ¢: X—7Y is said to be continuous provided the
graph I, of ¢ is closed in X X Y. The image of a subset A of X under ¢ is

= |Jp(x). A continuous multi-valued map ¢: X—-7F is called
wed

compact provided the image ¢(X) of X under ¢ is contained in a compact
subset of Y.

A compact multi-valued map p: X - Y is said to be acyclic provided
the set () is acyclic for every point # ¢ X. A continuous multi-valued
map ¢: X - Y is said to be an #-map provided the natural projection p, is
a Vietoris map.

‘We note the following:

(8.1) Ewery acyclic map s an *-map.

Let @: X — ¥ be a %-map. Using (1.1) we define the linear map

P H(X)-H(Y)
by putting
Py = (€)y(0p)5
¢, i3 said to be induced by the multi-valued mayp ¢.

Let p: Y—X be a Vietoris map. We associate with p the multi-
valued map gp: X — ¥ given by gp(e) = p~ ().

(8.2) ([7]). If p: ¥ —X is a Vietoris map, then the map gp: XY is
an x-map and (pp), = Dy

(6.3) DmrINrrioN ([7]). A multi-valued map ¢: X-X; is called
admissible provided there exists a space ¥ and a pair (p, q) of contmuous
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maps of the form X& Yin which satisfy the following conditions:
(i) p is & Vietoris map,

(ii) ¢ is & compact map,

(i) ¢(p(2))C p(w) for each & ¢ X.

In this case the pair (p, ¢) is called a selected pair of . If o1 X > X,
is an acyelic map then, for example, the pair (P q,) is the selected
pair of . ]

(5.4) PROPOSITION. Let p: XX, and 2 X, > X, be two admissible
maps. Then the composition pp: X X, is an admissible map and for every
selected pair (py, ) of @ and (Da, q) of v there ewisis a selected pair (p, q)
of vy such that: Qz*(l’z);lﬁ*(lh*)—l,: q.0%"

Proof. Let (P, ) and (P, @) be selected pairs of ¢ and y re-
spectively.

Consider the following commutative diagram

g m o
iy, 2 X< Y, ~X,

where ¥ = {(1,%) ¢ T1x ¥y, @u(th) = Polt)}s P (Y1, ¥a) = PalUs); (81, 92)
— )y Fulliy ) = Yy Follin, Yo) = Yoy 9(0, ¥a) = Ga(v). Since f7(ys) i
homeomorphic to ps Ygy(y,)) and p, is & Vietoris map, we infer that f; is
a Vietoris map. Hence p, as the composite fy, i8 a Vietoris map. We
observe that g, as the composite ¢,fs, is a compact map. Moreover, we
have g(p~*(@)) Cyp(w) for each ¢ X. Applying to above diagram the
functor H, we obtain: gy Pex) il Pu) T = ¢,p," and the proof of (5.4)
is completed.

Remark. We observe that (5.4) remain true if we assume only that
one of the maps ¢i, ¢, is compact.

From (4.1) we infer: .

(5.5) TuzoreM. Let U be an open subset in R and ¢: U - U am admis-
sible map. Then for every selected pair (p, q) of @ the endomorphism 4Py
is o Leray endomorphism and if A(q,p;*) # O for some selected pair (P, Q)
of ¢, then @ has a fized point.

6. Consequences of (4.1). First we prove the following:

(6.1) TmmorEM. Let X be a refract of am open subset U CR" and let
P,y q: Y > X be a pair of maps such that p is a Vieloris map, q s & com-
pact map. Then the endomorphism q,p;* is a Leray endomorphism and if
Alg,p7Y) # O then there emisis @ point y ¢ ¥ such that p(y) = a(y)-
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Proof. Let 2 U—X be a retraction map and ¢: U-~TU the multi-
valued map given by g = igp,#, where i: X —T is the inclusion map.

Then from (5.4) we conclude that ¢ is an admissible map and hence
we may choose a selected pair (p, ¢) of ¢ such that

) 4,070 = 14,407, {comp. also (4.3)).

Congider the following diagram:

H(X)—2 H(1)

A R b
aw?) ) \ Ti.q.p;lr,,
Since 7xis = Idx, this diagram commutes. From (4.1), (1) and (2.2) we
obtain that ¢,p;" is & Leray endomorphism. Assume that 4(g,p;") # 0.
Then (5.5) implies that ¢ has a fixed point. From the fact that ¢ has
a fixed point we infer that there exists a point y ¢ ¥ such that p(y) = ¢(y)
and the proof of (6.1) is completed.

Remark. We note that every BEuclidean neighbourhood retract
(see [4] or [2]) or, in particular, every finite polyhedron is a retract of
an open subset in R™

A space X is called of finite type if the graded vector space H(X)is
of finite type. '

(6.2) ([2]). Bvery compact metric ANR is a space of finile type.

From (6.1) we infer the following:

(6.3) EILENBERG-MONTGOMERY THEOREM ([67). Let X be a compact
metric ANR and p: ¥ —>X o Vietoris map. If ¢: Y X is a continuous
map such that A(q,py") # 0, then the pair (p, q) has a coincidence.

(6.4) Remark. In [3] Y is a compact metric space; in (6.3) Y is an
arbitrary compact Hausdorff space.

(6.5) Conorrary. Let X be o compact metric ANR and ¢: XX an
admissible map. If for some selocted pair (D, q) of ¢ the Lefschetz number
Mg, # 0, then ¢ has o fimed poind.

Now we generalizo the Hilenberg-Montgomery theorem to the case
where X i3 a compact metric AANE of finite type.

Lot ¥ be a metric space, X a compact subset of ¥ and & a positive
real number. A continuous map 7,: ¥ X is an s-refraction, if d(r(), o)
< ¢ for each @ ¢ X. .

A compact subspace X C Y is called a neighbourhood appromimaiive
retract of ¥ provided for every ¢ > 0 there exists an open neighbourhood ¥,
of X in ¥ and an s-retraction r,;: V,~X.
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(6.6) DEFINITION (comp. [3]). A compact metric space X is said to
be AANR provided for each embedding i: X~ Y, Y being a metric space,
the space h(X) is a neighbourhood approximative retract of Y.

(6.7) Lmmma ([7]). If V is an open subset of a Banach space B and
X CV is compact, then there exists a compact (metric) ANR C such thai:
XC(OCV.

Using the Kuratowski-Wojdyslawski embedding theorem ([2], p. 79)
and (6.7) we infer:

(6.8) LEnta. If X is a neighbourhood approzimaiive retract of a Banach
space B, then for every e > 0 there ewist a compact melric ANR C, and an
e-retraction r;: C—X.

(6.9) Lmvma ([91). Let X be an AANR of finite type. There emists
an g, = &(X) >0 such that if f,g: X=X are two continuous single-valued
maps and d(f(@), g(@))< & for each © ¢ X, then f, = g,.

(6.10) TEroREM. Let X be an AANR of finite type and p: Y—X
a Viedoris map. If for & map q: ¥ —X the Lefschete number 1(q,p;") does
not equal 0, then there ewists a point y ¢ ¥ such that p(y) = q(y).

Proof. For each n=1,2,.. let r: 0,—X be the corresponding
(1/n)-retraction of some compact metric ANR ((6.8)). For each n, we
define the map gn: Op— O by putting gn = inq@prs, where in: X -0y is
the inclusion map. Then the map @, as the composite of admissible maps,
is admissible. Applying (5.4) to the map ‘p,, we choose a selected pair
(Pny gu) 0of @n such that:
[eh] Qe D for all » > 0.

=4 -1
- /l'n* q*.,p * 7',”*
Consider now, for each n, the diagram:

ine

H(X)———> H(0y)
t 0
(& '™
[ el TnelaDy
H(X) ——— H ()

The identity map Id: X —X is a uniform limit of the sequence {ryin}.
Applying Lemma (6.9) to the space X, we conclude that there exists an
integer n, such that:

Id, = (rnin), = Tpilps O all m = m,.

icm
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This implies that for all # = n, the above diagram commutes. From (2.2)
(1) and (6.5) we deduce that ¢, has a fixed point for each n > Ny -

Thig implies that there exists a point y ¢ ¥ such that 2(¥) = qly)
(comp. the proof of Theorem 1 in [7]). The proof of this Theorem is
completed.

(6.11) CoROLLARY. Let X be an AANR of finite type and g: XX

" an admissible map. If for some selegted pair (p, q) of p the Lefschetz number

Mg, p;h) does not oqual 0, then ¢ has a fized poin.
We note that in thoe case where ¢ = f is a continuous single-valued -
map (6.11) was given in [3]. i

7. The coincidence theorem for arbitrary metric ANR-s. We ghall
make use of the following:

(7.1) APPROXIMATION THREOREM ([8]). Let U be an open subset of
a normed space B and let f: ¥ U be a compact map. Then for every & > 0
there exists « finite polyhedron K,C U and o map f: YU, called an
e-approwimation of f, such that: !

@ Wfn —flyll < e for all y e X,

(i) f(¥) C K,

(iii) £, is homotopic to f.

First we prove the following:

(7.2) TunoREM. Let U be an open subset of a normed space B, and
p,q: YU o pair of maps such that:

(i) p 48 a Vietoris map,

(if) g 4s a compact map.
Then

() q,p7" is @ Leray endomorphism.

(b) Alg,p;*) # 0 implies that there ewisis a point y e Y such that
() = a(y)

Proof. By applying to ¢ the Approximation theorem (7.1) we get
a sequence {I,} of finite polyhedra K, CU and a sequence of maps
gn: Y U wsuch that

() llgu(®) —q @)l < 1n for cach y ¢ ¥ and for every n,

(il) qu(¥)C Iy for evory m,

({ii) gu is homotopic to ¢ for every =.

Suppose that ¢h: Ya = p~(En)>Ka, Tn: ¥ >Kn, pa: Y, —>K, are .
contractions of g, and p rospectively and én: En-—>TU, jai Tn ->Y are
inclusions.
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Now, for every n, we have the commutative diagram

Ky T
a;]\a,. T'l
i\

Yy Y > ¥
j | \”\ l
P D

K, —_—

Since every K, is of a finite type, (¢,),(Pne) ™" is 8 Leray endomorphism.
Consequently, by*(2.2), ¢, ;" is also a Leray endomorphism and (g, ;")
= A{guD ")

Now (iii) implies that ¢, p;* is a Leray endomorphism and moreover
we have:

(iv) Mg Prs) = A(Gna?") = A(g,2,7) -

To prove (b) assume that A(g,p;") # 0. Then, in view of (iv), we
have A{gnPps) # 0 for every n.

Now we apply the Rilenberg—Montgomery theorem t0 pa, ¢n: ¥, ~ K,
for each n and obtain a sequence {y,} of points y, ¢ ¥ such that p.(ya)
= 0u{Yn) = D (Yn) = Gn(Yn)-

We put: p(yn) = @u(¥yn) = @n e U and q(y») = %n ¢ U. Since ¢ is com-
pact map we may assume that there exists a subsequence {%,} of {Z.}
such that lim%,, = #. Then from (i) we deduce that lima, = & and hence

k I

we have

(V) &y € 47 (W,), {Fpy} >0 and {@,,} >,

Sinee gp~* is a continuous multi-valued map (comp. (5.2) and (5.4))
from (v), we infer that e gp~*().

This implies that there exists a point y e p~*(2) such that p (y) = ¢(y)
and the proof of (7.2) is completed.

(7.3) TEEOREM. Let X be a retract of an open subset U of a normed
space B. Assume that p,q: Y—>X is a pair of maps such that:

(1) p is a Vietoris map,

(i) q 48 @ compact map.
Then

(a) 9,0 is o Leray endomorphism,

(b) Alg,p;") # O implies that there ewists o point y e Y such that
Py = q(y).

The proof of (7.3) is analogous to the proof of (6.1).

icm
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Remarks. 1. Bvery metric ANR is a retract of an open subset of
a normed. space (see [2] or [8]).

2. We underline that in
gpace.

(7.4) COROLLARY. Let X be as in (7.3). Assume that g1 X +X is an
admissible map. Then for every selected pair (p, q) of @, 9,0;" is a Leray
endomorphism and A(q*p;l) # 0 implies that ¢ has a fized poing.

(7.5) Cororrary. If X is a metric AR, then any admissible map
p: XX has a fized point.

(7.8) Y is an arbitrary Hausdorft
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