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Boolean groupoids
by
Ahmad Shafaat (Halifax)

Abstract. A groupoid (4,.) is called Boolean if there exists a Boolean algebra
(B,V, ) such that 4 CB and a-b= aU b’ for all a, b ¢ 4. Six identities ave given that
characterize the elass of all Boolean groupoids.

Let (B, v, ) be a Boolean algebra. Define a binary operation on B as
follows: a-b=a v b’ for all a,beB. We call (B,.) the groupoid derived
from (B,w,’) by the polynomial #wy'. A groupoid embeddable in
a groupoid derived from a Boolean algebra by # w 4’ will be called a Bo-
olean groupoid. The main regult (Theorem 3) of this note characterizes
Boolean groupoids by six identities. In addition we make the following
remarks about derived algebras in general.

Let 4 be an algebra on a set 4 and let DBy ey B) g oy Pal By orey By e
be polynomials in: terms of the operations of 4. Then by the algebra derived
from A by the polynomials p; we mean the algebra on A with operations w;
(of arity ns) defined by: (ay, ..., ay)0i= piay, ..., a,). H K is a class
of algebras of given type and K* is the class of algebras derived from the
algebras of K by some polynomials then K* will be called a class derived
from K. We use the notation §(X) for the class of algebras embeddable
in the algebras from K and II(K) for the class of carfesian produets of
algebras from K.

TrROREM L. If K* is derived from a quasivariety [1] K then S(K¥) is
a quasivariety.

TreorEM 2. If K* is derived from a class K defined by a set of first
order sentences then SIT(K™) is a quasivariety.

Theorem. 2 follows from the results of Omarov [3] and Theorem 1
follows from Theorem 2 by noting that if 7(K)= K then II(K*)= K*.

If X is a quasivariety and K* is derived from K then we call S{K*)
a quasivariety derived from K. Mal’cev |2] considers semigroups embed-
dable in groups. Such semigroups form a quasivariety derived from the
variety of groups. Boolean groupoids provide another example. While
semigroups embeddable in groups do not form a variety Boolean
groupoids do.
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TusorEM 3. Boolean growpoids form a variety defined by the following
identities, in which avy stands for w(wy): 1) 2*=14 (2) x(yz)= o,
(3) vy = yva, (&) ([@Vy)Ve=oV(yva), (8) (aVy)e =a2Vvyz, (6) wv
vz(aVy) = 2m.

Not all quasivarieties derived from the variety of Boolean algebras
are varieties. Consider for example the quasivariety K (y') derived by
gy =1y Let (B,v,’) be a Boolean algebra with [B] >2 and let (B,.)
be the groupoid defined by: a-b=1b'. Let ¢ be defined over B by: @
=b(g)«>a=>5 or b'. Then it is easy to verify that ¢ is a congruence
over (B,.) and (B,.)/o satisfies oy = y identically. Since order of B iy
greater than 2 the groupoid (B, .)/e is nongingleton. Since no nonsingleton
groupoid of K (y’) satisfies the identity vy =y it follows that the homo-
morphic image (B, .)fe of (B, .) does not belong to K (y'). Hence K (y') ig
not a variety.

The quasivariety K(y') is singular in the sense that the value of
every polynomial in a groupoid of K(y’) depends only on one of the
variables occurring in the polynomial. Known results and Theorem 3
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show that every nonsingular quasivariety of groupoids derived from the

variety of Boolean algebras is a variety. This may well be true for algebras
other than groupoids — that is, for every two element nongingular al-
gebra 4 the quasivariety SI7(4) may be a variety.

We make one last remark before turning to the proof of our main
theorem: Boolean algebras have been variously considered in terms of
two binary operations or one binary operation and one unary operation
and so on. The following eorollary shows that Boolean algebras can also
be considered in terms of one binary and one nullary operation satisfying
finitely many identities.

CoroLLARY 1. Let V be the variety of algebras (B, ., o), where . is a binary
operation satisfying (1)-(6) and o is a nullary operation satisfying: (7) 0(0w)
= . Then V is nomially equivalent to the variety of Boolean algebras, in the
sense that each variety is a class derived from the other. The connection
between , ' on the one hand and ., o on the other is given by: @ v y = w(axy),
Y=oy, sy=svy, o= (zva).

Proof of Theorem 3. It is easy to verify that every Boolean
groupoid satisfies identities (1)-(6) in the statement of the theorem. To
prove the theorem we let (B, .) be a groupoid satisfying (1)-(6) and show
that (B,.) is Boolean. For this our first step is to collect some more
identities and implieations that hold in (B, .).

By setting y = # in (2) we have » = @ (x2) = (xvw). This together
with (3) and (4) shows that v is a semilattice operation. We write # < ¥

for #vy = v, so that < is a partial order over B. Let us write 1 for the
constant 2.
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Lenva 1. The following hold in (B,.) identically:

(w) e<y—me<ye, (o) TS Y—>2w =2y,

(o) ZVYywr =1, (o) <1,

() ® <y, (o) (wy)w= 1. :

Proof. (o), () follow directly from (5), (6) respectively. (a;) follows
from (2), and setting y = in (o) we get (o). («g) follows from (o)
and («p). Finally («g) follows from (e;), (o) and (a,).

Let us call a subset I of B an ideal of (B, .) if wy e I«> w ¢ I and yél,
for all #,y¢B. The following lemma gives some properties of ideals.

LevwmA 2. Let I be an ideal of (B,.). Then:

(Br) 2vyelo el and yel.

(Be) If © = y(modlI) is defined to mean % eI« yel then modl is
a congruence over (B, .).

(Bs) (B, .)fmodI is a Boolean groupoid.

Proof. avyelow(ay) el sel and oy ¢ I>wel and y e I. This
proves (By).

If # = y(modl) then sz e I« wel and 2 ¢ I« y e I and 2¢leyzel
Hence a2z = y2z (modI) and similarly 2z = sy (modl). Since modI is an
equivalence relation this proves (B,).

Let (4,.) be a two element groupoid satisfying (1)-(6). We can
take 4 = {0,1} and 0*=1*=1. By (2) 01=0 and by («s) 10= 1.
Hence, within isomorphism, there is a unigue two element groupoid
satisfying (1)-(6). Therefore, (B, .)/modI is isomorphic to (4,.). Also,
as i3 simple to verify, (4,.) is the groupoid derived from a suitable
Boolean algebra on {0, 1} by @ u y’. This proves (§,).

Our next lemma almost completes the proof.

Lemma 3. For every pair of distinct elements of B there ewists an ideal
containing ewactly one of the two elements.

Proof. Let a, b e B, a # b. Without loss of generality we can suppose
that b £ a. Then a # 1, by (a,).
Let us write R for the set of all subsets J of B such that:
(i) aed, b¢d.
(i) #vy eJe 2 ed and yed, for all 2,y e B.
(fii) oy eJ »2 ed and y ¢J, for all 2,y ¢ B.
We show that R is non-empty by showing that

Jo={w; 2<a, seB}cR.

Clearly J, satisfies (i), (ii). J» also satisties (iii). To see this let ay edq.
Then, by (as), # < 2y < ¢ and hence @ eJ,. If ¥ ¢J, then y, sy < a and
therefore yvay < a. By (o) this implies 1 < o and hence a = 1. This
contradicts our assumption that a # 1, and therefore y ¢ J4. This proves
(iii) for J, and that R i3 non-empty.
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i i bers of a chain in (R, C)
i i ified that the union of mem ( ;
i lIt liie;?ﬂ{HW;i‘ CIZ is the set-theoretic inclusw_n.) By Zom’z lljerznma,,
lia sf(:)re (lé 0) has a maximal element, say J. We show thimr is a:fn
T‘derf In ,viev:f “of (iii) this only requires showing that ed, ¥ ¢J —wy « J
tl!l?is' if we write K for the set of y ¢ J such that ay ¢ J for some z ¢
d to show that K is empty. . ) i .
thensze 1:;?3 K is not empty and let ke K, jed, jk e;.’J. 'lhent]vlc pg,
by (i) pgince jvk = j(jk) it follows that jk« K. Consider the two sub-
t B:
e e Jy={w; e <yvk, yeJ},
Jy={w; e <yVjk, yed}.
Since k, jk ¢J the sets Jy, J, both properly contaiant.hWE 051;16]%2@33 tl:fe
’ i t least one of the tw 1y I
f of the lemma by showing than.t & £l 75, I
E;;;)igﬁ; (i), (ii), (iil), and thus arriving at a contradietion to the maxim
i foJ. '
a,htyG?eaJrly aedy,d,. Suppose that b GJl,‘tTg, so that b<yl‘\i/-k1,3 yz\/g)k
for some gy, ¥ eJ. If we write z=y,Vvy,Vj then b <2Vk, %n yb(\olclzb,
(a5), b<zvel=z2k By (o), then, #b=z(ek)=2VEk=>D. enceH
—ﬁz’b w\hich by (os) gives 2b = 1. Then z(zb).=-zl= 2, by (2). Hence
b_Vzi—z By (ii) this implies bed, a contradlctmn.‘ Henee b d_o‘es not
belon_g 1‘:0 both J; and J,, and one of Jy, J, satisfies (i), sa.le(l. )It is ](lazsz
ii ii d (o) We hav
satisfies (ii). If @y, y e Jy, then by (ii), (o) and (a,
;Oje;\f];;itk and J; = B. Th;s however is not possible since b ¢JE
He—nce oy e, >y ¢Jy. Also, by (il) and (as), 2y e Jy— o ¢J;. Hence J; e‘
nd the lemma is proved.
’ Now the proof of Theorem 3 can be concluded as follow.s: By (Bs)
of Lemma 2 and Lemma 3, (B,.) is embeddable in a cartesian power
of the two element Boolean groupoid. But cartesian powers and sul?-
groupoids of Boolean groupoids are themselves Boolean. Hence (B, .) is
a Boolean groupoid.
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A characterization of locally compact fields I
by
W. Wieslaw (Wroctaw)

Abstract. Let (K, ) be a non-discrete topological field. Define the Krull topology
in the group G(K ) of all its continuous automorphisms, i.e. take for a base of the zero
neighbourhoods all groups G(K)n G(E/M) for finitely generated extensions 3f of the
fized field of G(X). It is shown that K is locally compact if and only if K is locally
bounded and complete and, for every closed subfield F of K, G(F)is compact in its Krull
topology.

0. In my previous paper [15] I gave a characterization of locally
compact fields of zero characteristic. The aim of this paper is to give
a characterization of all locally compact fields. At first let us recall some
definitions. For any topological field (F » G) we write G(F) for the group
of all its continuous automorphisms. Let LK be a field extension and
let us denote by G(I/K) the Galois grou

p of L over K. If @ is a subgroup
of G(L/K) we shall introduce a group topology in & taking for a base

of the zero neighbourhoods in @ all sets of the form @ ~ G(L/M), where
M is a finitely generated extengion of the fixed field K’ of @ ie. M
= K'(X;, Xy, ...y X,), X; e L for J=1,2,..,s (algebra’e over K’ or not).
We shall call such topology in @ the Krull topology in @. Let (K, ) be
a topological field. A field topology B is said to be locally bounded if there
exists a bounded neighbourhood 4 of zero, i.e. if for every neighbour-
hood U of zero there exists another one, V, such that AV C 7.

1. The aim of this paper is to prove the following

THEOREM. Let (K,G) be a non-discrete topological field. Then the
Sollowing conditions are equivalent:

(1) K is a locally bounded, complete field and, for every closed sub-
field B of K, G(F) is compact in its Krull topology,

(2) & is a locally compact field,

(3) K is a finite extension either of the reals R, of a p-adic number
Jield Qp, or of some formal power series field over the prime field Z, (i.e.
a finite ewtension either of Zpx> or Zp{x}).

Proof of the theorem. The equivalence (2) < (3) is the classical
theorem of Pontryagin-Kowalsky—van Dantzig (see [6])
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