

It is easily verified that the union of members of a chain in (R, \subseteq) is also in R. (Here \subseteq is the set-theoretic inclusion.) By Zorn's lemma, therefore, (R, \subseteq) has a maximal element, say J. We show that J is an ideal. In view of (iii) this only requires showing that $x \in J$, $y \notin J \to xy \in J$. Thus if we write K for the set of $y \notin J$ such that $xy \notin J$ for some $x \in J$ then we need to show that K is empty.

Suppose K is not empty and let $k \in K$, $j \in J$, $j \nmid \ell J$. Then $j \vee k \notin J$, by (ii). Since $j \vee k = j(jk)$ it follows that $jk \in K$. Consider the two subsets of B:

$$J_1 = \{x; \ x \leqslant y \lor k, \ y \in J\} ,$$

$$J_2 = \{x; \ x \leqslant y \lor jk, \ y \in J\} .$$

Since $k, jk \notin J$ the sets J_1, J_2 both properly contain J. We complete the proof of the lemma by showing that at least one of the two sets J_1, J_2 satisfies (i), (ii), (iii), and thus arriving at a contradiction to the maximality of J.

Clearly $a \in J_1, J_2$. Suppose that $b \in J_1, J_2$, so that $b \leqslant y_1 \lor k$, $y_2 \lor jk$ for some $y_1, y_2 \in J$. If we write $z = y_1 \lor y_2 \lor j$ then $b \leqslant z \lor k$, and by (α_1) , (α_5) , $b \leqslant z \lor zk = zk$. By (α_2) , then, $zb \geqslant z(zk) = z \lor k \geqslant b$. Hence $b \lor zb = zb$, which by (α_3) gives zb = 1. Then z(zb) = z1 = z, by (2). Hence $b \lor z = z$. By (ii) this implies $b \in J$, a contradiction. Hence b does not belong to both J_1 and J_2 , and one of J_1, J_2 satisfies (i), say J_1 . It is easy to see that J_1 satisfies (ii). If $xy, y \in J_1$, then by (ii), (α_3) and (α_4) we have $1 = y \lor xy \in J_1$ and $J_1 = B$. This however is not possible since $b \notin J_1$. Hence $xy \in J_1 \to y \notin J_1$. Also, by (ii) and (α_5) , $xy \in J_1 \to x \in J_1$. Hence $J_1 \in R$ and the lemma is proved.

Now the proof of Theorem 3 can be concluded as follows: By (β_3) of Lemma 2 and Lemma 3, (B,.) is embeddable in a cartesian power of the two element Boolean groupoid. But cartesian powers and subgroupoids of Boolean groupoids are themselves Boolean. Hence (B,.) is a Boolean groupoid.

References

- [1] P. M. Cohn, Universal Algebra, New York 1965.
- [2] A. Mal'cev, Über die Einbettung von assoziativen Systemen in Gruppen I, Rec. Math. (N.S.) (6) 48 (1939), pp. 331-336; II, Rec. Math. (N.S.) (8) 50 (1940), pp. 251-264.
- [3] A. I. Omarov, On compact classes of models, Algebra i logica. Sem. 6 (1967), pp. 49-60.

SUMMER RESEARCH INSTITUTE DALHOUSIE UNIVERSITY, Halifax

Accepté par la Rédaction le 17. 12. 1973

A characterization of locally compact fields II

by

W. Wiesław (Wrocław)

Abstract. Let (K,G) be a non-discrete topological field. Define the Krull topology in the group G(K) of all its continuous automorphisms, i.e. take for a base of the zero neighbourhoods all groups $G(K) \cap G(K/M)$ for finitely generated extensions M of the fixed field of G(K). It is shown that K is locally compact if and only if K is locally bounded and complete and, for every closed subfield F of K, G(F) is compact in its Krull topology.

- 0. In my previous paper [15] I gave a characterization of locally compact fields of zero characteristic. The aim of this paper is to give a characterization of all locally compact fields. At first let us recall some definitions. For any topological field (F, \mathcal{C}) we write G(F) for the group of all its continuous automorphisms. Let L/K be a field extension and let us denote by G(L/K) the Galois group of L over L. If L is a subgroup of L is a subgroup of L in L we shall introduce a group topology in L taking for a base of the zero neighbourhoods in L all sets of the form L of L of L in L where L is a finitely generated extension of the fixed field L of L of L i.e. L we shall call such topology in L for L for L in L is a topological field. A field topology L is said to be locally bounded if there exists a bounded neighbourhood L of zero, i.e. if for every neighbourhood L of zero there exists another one, L such that L is L in L
 - 1. The aim of this paper is to prove the following

THEOREM. Let (K,\mathcal{C}) be a non-discrete topological field. Then the following conditions are equivalent:

- (1) K is a locally bounded, complete field and, for every closed subfield F of K, G(F) is compact in its Krull topology,
 - (2) K is a locally compact field,
- (3) K is a finite extension either of the reals R, of a p-adic number field Q_p , or of some formal power series field over the prime field Z_p (i.e. a finite extension either of $Z_p\langle x \rangle$ or $Z_p\{x\}$).

Proof of the theorem. The equivalence $(2) \Leftrightarrow (3)$ is the classical theorem of Pontryagin-Kowalsky-van Dantzig (see [6]).

 $(3)\Rightarrow (1)$. Suppose at first that K has zero characteristic. Since every automorphism of R and Q_p is trivial, G(K) is finite as a subgroup of the Galois group G(K/R) (resp. $G(K/Q_p)$), G(K) is compact in its (discrete) Krull topology. Moreover, K is complete in a locally bounded field topology induced by a real norm which extends either the absolute value |a| from R or the p-adic norm from Q_p .

Suppose now that K has characteristic $p \neq 0$. Then K is a finite extension of some Laurent series field over \mathbb{Z}_p . But then $G(K) = \operatorname{Aut}(K)$, where by $\operatorname{Aut}(K)$ we mean the group of all automorphisms of K. Moreover, G(K) is compact in its Krull topology, as follows from [11] (Corollary 2 from Theorem 2).

It remains to show that $(1) \Rightarrow (3)$.

Case I. K is of zero characteristic.

Since K is complete in a locally bounded field topology, then it follows from [8] (Theorem 3) that the closure of Q in K either equals R, Q_p or is a discrete subfield of K. If R is a subfield of K, then K = R or K = C, since R and C are the only locally bounded extensions of R ([8], Theorem 5).

It remains to consider the case $Q_p \subset K$. Indeed, the case where K contains a discrete subfield F never arises. Suppose, to the contrary, that F is such a field. Then K is not an algebraic extension of F, since otherwise & should be discrete on every finitely generated extension of F contained in K, and, finally, discrete on K, since K is the union of such extensions. A contradiction. Hence let $x \in K$ be transcendental over F. By [15] (Lemma 3) the closure L of F(x) in $\mathfrak F$ is a Laurent series field in $y, y = x^{-1}$ or $y = p(x), p(x) \in F[x]$ — irreducible over F. This implies that the topology $\mathcal{C}|_{r}$ is induced by a non-Archimedean norm, say |a|. Let us note that G(L) = Aut(L), i.e. every automorphism of L is continuous. Otherwise, if φ were any discontinuous automorphism of L, then L should be complete in the norm $|a|_{\varphi}$ defined as $|a|_{\varphi} = |\varphi(a)|$ for all $a \in L$, since L is complete in the norm |a|. Since L is not algebraically closed, Schmidt's theorem [13] should give the equivalence of the norms $|a|_{\varphi}$ and |a|, contradicting the discontinuity of φ . But G(L) is not a compact group in its Krull topology, since for an infinite set $A \subset F$, $0 \notin A$, the net of automorphisms $\varphi_a \in G(L)$, $\varphi_a(x) = ax$, has no convergent subnets.

Now let us consider the case $Q_p \subset K$. Let us remark that the topology \mathfrak{C} is induced in K by a non-Archimedean pseudonorm. Indeed, since $Q_p \subset K$ topologically and $p^n \to 0$ in \mathfrak{C} as $n \to \infty$, the set T of all topological nilpotents in L is non-void, whence open (see [14], Lemma 5). By [2] (Theorem 6.1') the topology \mathfrak{C} is induced by a pseudonorm.

If K is algebraic over Q_p , there is nothing to prove: K, being a pseudonormed complete algebraic extension of the normed field Q_p , must be its

finite extension in view of [5] (Theorem 9) and in view of Abel's theorem on primitive element (compare [15], Lemma 2).

We claim that the extension K of Q_p is algebraic. Suppose, to the contrary, that $x \in K$ is transcendental over Q_p and put $M = Q_p(x)$. Let R_p be the ring of integers of Q_p , i.e. $R_p = \{a \in Q_p : |a|_p \leqslant 1\}$. The topology $\mathcal{C}_{|M|}$ is induced by the open $R_p[x]$ —submodules in M. Indeed, let $V_s = \{m \in M : |m| < \varepsilon\}$, |m| = p pseudonorm defining \mathcal{C} in M. This pseudonorm must be non-Archimedean as a pseudonorm extending the p-adic norm. Suppose that $|x| \leqslant 1$. If |x| > 1, let us take any element $y \in M$, transcendental over Q_p and satisfying $|y| \leqslant 1$, and replace $Q_p(x)$ by $Q_p(y)$. Such an element y must exist since the pseudonorm is not trivial on M. Since V_s is a subgroup of M, y, $z \in V_s$ implies $y - z \in V_s$. Moreover, for $a \in R_p[x]$, $w \in V_s$,

$$\begin{split} a &= a_0 + a_1 x + \ldots + a_N x^N, \\ |aw| &= |a_0 w + a_1 w x + \ldots + a_N w x^N| \leqslant \max_{0 \leqslant s \leqslant N} \left\{ |a_s w x^s| \right\} < \varepsilon \;. \end{split}$$

Note that M is the field of fractions of $R_p[x]$. Since $R_p[x]$ is a unique factorization domain, by [3] ${\mathfrak E}$ is the supremum of a family of topologies induced by the real non-Archimedean norms in M. But ${\mathfrak E}$ is locally bounded, and hence this family must be finite [6] (Satz, p. 177). Finally, the approximation theorem for valuations implies that this family consists of a single element (compare [15], p. 150). Consider now the closure \overline{M} of M in K. Let us note that $\operatorname{Aut}(\overline{M}) = G(\overline{M})$ (for a proof see page 124 of this paper), and, moreover, $G(\overline{M}) = G(\overline{M}|Q_p)$, since every automorphism of Q_p is trivial. Applying [10] (Proposition (1.3)) one sees that $G(\overline{M})$ is not compact, since \overline{M} is not algebraic over Q_p . This contradicts the assumptions of our theorem.

Case II. K is of characteristic $p \neq 0$.

Let us remark at first that there exists an element $x \in K$, transcendental over Z_p and such that the topology $\mathfrak{C}_1 = \mathfrak{C}|_{Z_p(x)}$ is non-discrete, since otherwise the topology \mathfrak{C} would be discrete on K (compare [15], p. 153).

It follows from [15] (Lemma 3) that the topology \mathfrak{C}_1 is induced in $Z_p(x)$ by a real non-Archimedean norm and K contains as a closed subfield one of the following formal power series fields: either $Z_p\langle x\rangle$ or $Z_p\{x\}$. For brevity, let $k_0 = \overline{Z_p(x)}$. Let k be the field of invariants of the compact group G(K). By Proposition (1.6) of [10] K is an algebraic extension of k. Note that the extension k of k_0 is also algebraic. Indeed, otherwise there would be an element $y \in k$, transcendental over k_0 . Let us put $M = k_0(y)$. Let R_p be a ring of the integers of k_0 . As in Case I, one shows that $\mathfrak{C}|_M$ is induced by a non-Archimedean norm and that $\operatorname{Aut}(\overline{M}) = G(\overline{M})$. Let $U(\overline{M})$ be the group of units in the ring of the

cm[©]

integers of \overline{M} for the norm inducing $\mathfrak E$ in \overline{M} . Let $A\subset U(\overline{M})$ be an infinite subset containing no convergent subsequences. (Such a subset must exist since $U(\overline{M})$ is not compact in a topology induced from \overline{M}). Then putting for any $f(y)\in \overline{M}$, $\varphi_a(f(y))=f(ay)$, we should obtain a net $\{\varphi_a\}$ in a compact $G(\overline{M})$, having no convergent subnets. A contradiction. Finally, K is an algebraic extension of the complete normed field k_0 . But K, being a pseudonormed, complete algebraic extension of k_0 , is of bounded degree by [5] (Theorem 9), i.e. the degrees of all elements of K over k_0 are bounded in common.

In order to finish the proof in Case II we shall need the following Lemma ([1]). Let \widetilde{F} be an algebraic closure of a non-Archimedean valued

LEMMA ([1]). Let F be an algebraic closure of a non-Archimedean valued field F. Denote by \widetilde{F}^s a separable algebraic closure of F in \widetilde{F} and extend the norm from F to \widetilde{F} in any way. Then \widetilde{F}^s lies dense in \widetilde{F} .

Let us put $F=k_0$, and note that $\mathfrak G$ is equivalent to a topology induced by a norm extending the norm of k_0 , since they are equivalent on every finite extension of k_0 (and then the topology is the product topology). If $K_s=K\cap \widetilde{k}_0^s$, then by the Lemma K_s lies dense in K. Since the extension K_s over k_0 is separable algebraic with the elements of bounded degrees, then by Abel's theorem (see [15]) on the primitive element, $[K_s:k_0]$ is finite. But, since k_0 is complete, the topology of K_s is the product topology induced from k_0 ; hence K_s is a closed subfield of K. Since, moreover, K_s lies dense in K, we must have $K=K_s$, and, $[K:k_0]$ is finite.

This proves the theorem.

References

- J. Ax, Zeros of polynomials over local fields the Galois action, J. Algebra 15 (1970), pp. 417-428.
- [2] P. M. Cohn, An invariant characterization of pseudovaluations on a field, Proc. Cambridge Philos. Soc. 50 (1954), pp. 159-177.
- [3] E. Correl, Topologies on quotient fields, Duke Math. J. 35 (1968), pp. 175-178.
- [4] I. Fleischer, Sur les corps localement bornés, Compt. Rend. Acad. Sci. Paris 237 (1953), pp. 546-548.
- [5] I. Kaplansky, Topological methods in valuation theory, Duke Math. J. 14 (1947), pp. 527-541.
- [6] H. J. Kowalsky, Zur topologischen Kennzeichnung von Körpern, Math. Nachr. 9 (1953), pp. 261–268.
- [7] Beiträge zur topologischen Algebra, Math. Nachr. 11 (1954), pp. 143-185.
- [8] А. Ф. Мутылин, Пример нетривиальной топологизации поля рациональных чисел. Полные локально ограничённые поля, Изв. АН, СССР, сер. матем. 30 (1966), pp. 873-890.
- [9] Связные полные локально ограничённые поля. Полные не локально ограничённые поля, Мат. Сборник 76 (118) (1968), pp. 454—472.

- [10] A. Robert, Automorphism groups of transcendental field extensions, J. Algebra 16 (1970), pp. 252-270.
- [11] O. F. G. Schilling, Automorphisms of fields of formal power series, Bull. Amer. Math. Soc. 50 (1944), pp. 892-901.
- [12] The theory of valuations, Math. Surveys 4 (1950).
- [13] F. K. Schmidt, Mehrfach perfekte Körper, Math. Annalen 108 (1933), pp. 287-302.
- [14] W. Wiesław, On some characterizations of the complex number field, Colloq. Math. 24 (1972), pp. 13-19.
- [15] A characterization of locally compact fields of zero characteristic, Fund. Math. 76 (1972), pp. 149-155.
- [16] A remark on complete and connected rings, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), pp. 981-982.
- [17] O. Zariski and P. Samuel, Commutative Algebra, vol. I, II, 1960.
- [18] D. Zelinsky, Characterization of non-Archimedean valued fields, Bull. Amer. Math. Soc. 54 (1948), pp. 1145-1150.
- [19] Rings with ideal nuclei, Duke Math. J. 18 (1951), pp. 431-442.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF WROCŁAW

Accepté par la Rédaction le 17. 12. 1973