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i i bers of a chain in (R, C)
i i ified that the union of mem ( ;
i lIt liie;?ﬂ{HW;i‘ CIZ is the set-theoretic inclusw_n.) By Zom’z lljerznma,,
lia sf(:)re (lé 0) has a maximal element, say J. We show thimr is a:fn
T‘derf In ,viev:f “of (iii) this only requires showing that ed, ¥ ¢J —wy « J
tl!l?is' i we write K for the set of y ¢ J such that ay ¢ J for some x ¢
d to show that K is empty. . ) i .
thensze 1:;?3 K is not empty and let ke K, jed, jk e;.’J. 'lhent]vlc pg,
by (i) pgince jvk = j(jk) it follows that jk« K. Consider the two sub-
t B:
e e Jy={w; e <yvk, yeJ},
Jy={w; e <yVjk, yed}.
Since k, jk ¢J the sets Jy, J, both properly contaiant.hWE 051;16]%2@33 tl:fe
’ i t least one of the tw 1y I
f of the lemma by showing than.t & £l 75, I
E;;;)igﬁ; (i), (ii), (iil), and thus arriving at a contradietion to the maxim
i foJ. '
a,htyG?eaJrly aedy,d,. Suppose that b GJl,‘tTg, so that b<yl‘\i/-k1,3 yz\/g)k
for some g, Yo eJ. If we write z=y,Vvy,Vj then b <2Vk, %n yb(\olclzb,
(a5), b<zvel=z2k By (o), then, #b=z(ek)=2VEk=>D. enceH
—ﬁz’b w\hich by (os) gives 2b = 1. Then z(zb).=-zl= 2, by (2). Hence
b_Vzi—z By (ii) this implies bed, a contradlctmn.‘ Henee b d_o‘es not
belon_g 1‘:0 both J; and J,, and one of Jy, J, satisfies (i), sa.le(l. )It is ](lazsz
ii ii d (o) We hav
satisfies (ii). If @y, y e Jy, then by (ii), (o) and (a,
;Oje;\f];;itk and J; = B. Th;s however is not possible since b ¢JE
He—nce oy e, >y ¢Jy. Also, by (il) and (as), @y e Jy— o ¢J;. Hence J; e‘
nd the lemma is proved.
’ Now the proof of Theorem 3 can be concluded as follow.s: By (Bs)
of Lemma 2 and Lemma 3, (B,.) is embeddable in a cartesian power
of the two element Boolean groupoid. But cartesian powers and sul?-
groupoids of Boolean groupoids are themselves Boolean. Hence (B, .) is
a Boolean groupoid.
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A characterization of locally compact fields I
by
W. Wieslaw (Wroclaw)

Abstract. Let (K, ) be a non-discrete topological field. Define the Krull topology
in the group G(K ) of all its continuous automorphisms, i.e. take for a base of the zero
neighbourhoods all groups G(K)n G(E/M) for finitely generated extensions 3f of the
fized field of G(X). It is shown that K is locally compact if and only if K is locally
bounded and complete and, for every closed subfield F of K, G(F)is compact in its Krull
topology.

0. In my previous paper [15] I gave a characterization of locally
compact fields of zero characteristic. The aim of this paper is to give
a characterization of all locally compact fields. At first let us recall some
definitions. For any topological field (F » G) we write G(F) for the group
of all its continuous automorphisms. Let LK be a field extension and
let us denote by G(I/K) the Galois grou

p of L over K. If @ is a subgroup
of G(L/K) we shall introduce a group topology in & taking for a base

of the zero neighbourhoods in @ all sets of the form @ ~ G(L/M), where
M is a finitely generated extengion of the fixed field K’ of @ ie. M
= K'(X;, Xy, ...y X,), X; e L for J=1,2,..,s (algebra’e over K’ or not).
We shall call such topology in @ the Krull topology in @. Let (K, ) be
a topological field. A field topology B is said to be locally bounded it there
exists a bounded neighbourhood 4 of zero, i.e. if for every neighbour-
hood U of zero there exists another one, V, such that AV C 7.

1. The aim of this paper is to prove the following

THEOREM. Let (K,G) be a non-discrete topological field. Then the
Sollowing conditions are equivalent:

(1) K is a locally bounded, complete field and, for every closed sub-
field B of K, G(F) is compact in its Krull topology,

(2) & is a locally compact field,

(3) K is a finite extension either of the reals R, of a p-adic number
Jield Qp, or of some formal power series field over the prime field Z, (i.e.
a finite ewtension either of Zpx> or Zp{x}).

Proof of the theorem. The equivalence (2) < (3) is the classical
theorem of Pontryagin-Kowalsky—van Dantzig (see [6])
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(8) = (1). Suppose at first that K has zero characteristic. Sinece
every automorphism of R and Qy is trivial, G(K) is finite as a subgroup
of the Galois group G(E/R) (resp. G(K/Qp)), G(K) is compact in its
(discrete) Krull topology. Moreover, K is complete in a locally bounded
field topology induced by a real norm which extends either the absolute
value |a| from R or the p-adic norm from Qp.

Suppose now that K has characteristic p # 0. Then I is a finite
extension of some Laurent series field over Z,. But then ¢ (K) = Aut(K),
where by Aut(K) we mean the group of all automorphisms of K. Moreover,
@(K) is compact in its Krull topology, as follows from [11] (Corollary 2
from Theorem 2).

Tt remains to show that (1) = (3).

Case I. K is of zero characteristic.

Since K is complete in a locally bounded field topology, then it
follows from [8] (Theorem 3) that the closure of @ in K either equals
R,Q, or is a discrete subfield of K. If R is a subfield of K, then K = R
or K = C, since R and C are the only locally bounded extensions of R
([8], Theorem 5).

It remains to congider the case @, C K. Indeed, the case where K
contains a diserete subfield F never arises. Suppose, to the contrary,
that F is such a field. Then K is not an algebraic extension of ¥, since
otherwise G should be discrete on every finitely generated extension
of  contained in K, and, finally, diserete on K, sinece K is the union of
such extensions. A contradiction. Hence let # ¢ K be transcendental
over F. By [15] (Lemma 3) the closure I of F(z) in 6 is a Laurent series
field in y, y =27 or ¥y = p(2), p(®) ¢ F[o] — irreducible over . This
implies that the topology Bl is induced by a non-Archimedean norm,
say |a|. Let us note that G(L) = Aut(L), i.e. every automorphism of L is
continuous. Otherwise, if ¢ were any discontinuous automorphism of L,
then L should be complete in the norm |a|, defined as |a|, = |p(a)| for
all a ¢ L, since L is complete in the norm |a|. Since L is not algebraically
closed, Sehmidt’s theorem [13] should give the equivalence of the norms
la|, and |a|, contradicting the discontinuify of ¢. But G(IL) is not a com-
pact group in its Krull topology, since for an infinite set A CF, 0 ¢ 4,
the net of automorphisms g, e G(L), @u(w)= aw, has no convergent
subnets.

Now let us consider the case @, C K. Let us remark that the topology
T is induced in K by a non-Archimedean pseudonormi. Indeed, sineo
0y C K topologically and p™—0 in B as n—» oo, the set 7' of all topological
nilpotents in I is non-void, whence open (see [14], Lomma 5). By [2]
(Theorem 6.1") the topology G is induced by a pseudonorm.

If K is algebraic over 0y, there is nothing to prove: k&, being a pseudo-
normed complete algebraic extension of the normed field 05, must be its

icm°

A characterization of locally compact fields IT 123
finite extension in view of [5] (Theorem 9) and in view of Abel’s theorem
on primitive element (compare [15], Lemma 2),

We claim that the extension K of @, is algebraic. Suppose, to the
contrary, that 4 ¢ K is transcendental over @, and put M = Ou(%). Let Ry
be the ring of integers of Q,, i.e. Ry, = {a €Qp: lalp < 1}. The topology
Blar is induced by the open R[] — submodules in M. Indeed, let V,
={meM: |m|< e}, |m| —a pseudonorm defining G in M. This pseudo-
norm must be non-Archimedean as a pseudonorm extending the p-adic
norm. Suppose that j#| < 1. If |#| >1, let us take any element ye M,
transcendental over @, and satisfying |y| < 1, and replace Oy(%) by Qp(¥).
Such an element y must exist since the pseudonorm is not trivial on M.
Since V, is a subgroup of M, y, 2z <V, implies y—=z eV, Moreover, for
a e Byla], w eV,

0= ay+ a, o+ ... - aya”,

low] = lapw-+ aws+ ... + aywa”| < max {|jawaf} < e .
08N

Note that M is the field of fractions of Ry[#]. Since R,{x] is a unique
tactorization domain, by [3] G is the supremum of a family of topologies
induced by the real non-Archimedean norms in M. But © is locally
bounded, and hence this family must be finite [6] (Satz, p. 177). Finally,
the approximation theorem for valuations implies that this family con-
sists of a single element (compare [15], p. 150). Congider now the closure 7
of M in K. Let us note that Aut (M) = G(IH) (for a proof see page 124 of
this paper), and, moreover, G (M) = G(M/Q,), since every automorphism
of 0y is trivial. Applying [10] (Proposition (1.3)) one sees that (M) is
not compact, since M is not algebraic over Q,. This contradicts the as-
sumptions of our theorem.

Case IL. K is of characteristic p # 0.

Let us remark at first that there exists an element » ¢ K, transcen-
dental over Z, and such that the topology B, = Bl is non-discrete,
since otherwise the topology B would be discrete on K (compare [15],
p. 153).

It follows from [15] (Lemma 3) that the topology B, is induced in
Zy(x) by a real non-Archimedean norm and K contains as a closed sub-
field one of the following formal power series fields: either Z,(z> or

Zy{w}. For brevity, let k= Zy(x). Let & be the field of invariants of the
compact group G(XK). By Proposition (1.6) of [10] K is an algebraic
extension of k. Note that the extension % of k, is also algebraic. Indeed,
otherwise there would be an element y ¢ %, transcendental over k. Let
us put M = ky(y). Let B, be a ring of the integers of %,. As in Case I,
one shows that By is induced by a non-Archimedean norm and that
Aut(I) = G(M). Let U(HM) be the group of units in the ring of the
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integers of J for the norm inducing G in M. Let AC U(M) be an infinite
subset containing no convergent subsequences. (Such a subs_et must
exist since U (M) is not compact in a topology induced from M). Then
putting for any f(y) « H, ga(f(¥)) = flay), we should obtai:} a net {pa} in
a compact G (), having no convergent subnets. A contradiction. Finally,
K is an algebraic extension of the complete normed field k,. But X, being
a pseudonormed, complete algebraic extension of %, is of bounded degree
by [5] (Theorem 9), i.e. the degrees of all elements of K over k, are bounded
in common.

Tn order to finish the proof in Case II we shall need the following

Lmmma ([1]). Let F be an algebraic closwre of a non-AmEimedean valued
field F. Denote by F° a separable algebraic closure of I' in F and extend the
norm from F io B in any way. Then F° lies dense in I.

Let us put F = k,, and note that G is equivalent to a topology in-
duced by a norm extending the norm of %, since they are equivalent
on every finite extension of %, (and then the topology is the product

topology). If K, = K ~ I?g, then by the Lemma K lies dense in K. Since
the extension K, over k; is separable algebraic with the elements of
bounded degrees, then by Abel’s theorem (see [15]) on the primitive
element, [K,: k,] is finite. But, since k, is complete, the topology of K,
is the product topology induced from %; hence XK, iz a closed subfield
of K. Since, moreover, XK, lies dense in K, we must have K = K,, and,
[K: %] is finite.
This proves the theorem.
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