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Some examples of monothetic groups
by
J. W. Nienhuys * (Eindhoven)

Abstract. In this paper we discuss in Section 1 the finest group topology on Z
such that {27}, .y is a sequence converging to zero. We prove that Z is a complete topo-
logical group with respect to that topology. The proot is almost entirely self-contained.

In section 2 we give an example of a monothetic group (that is a topological group
which contains a dense copy of Z) which is complete metrizable, totally disconnected
and which has no continuous characters except 0. The example is constructed by starting
with a complete metrizable totally disconnected monothetic group and factoring out
a discrete subgroup which is dense in the Bohr compactification. The main difficulty
here is in proving disereteness. Section 2 relies heavily on a trick developed in Section 1,
namely the use of a kind of “coordinates” for 2-adie numbers. Section 0 contains a sSUrvey
of related results already existing in the literature.

0. Historical comments. We anticipate Section 1 by introducing for
any sequence 4 = {an}, . n of integers the concept of an 4-topology.
This is a group topology on Z such that 4 is a sequence converging to 0.
For any sequence A there exists at least omne A -topology namely the
trivial one (with @ and Z as the only open sets). The union of all A -to-
pologies is the finest A -topology. It is nondiscrete. We will call it 7 PR

The first example of a group topology on Z in which Z is complete
is due to Graev [4]. It is the finest topology on Z such that a sequence
{0} ¥ {an}, v has a given structure of compact set. In [4], an = (n}2)!,
but actually only [@p1af0,] = 00 is Tequired. Z becomes then locally iso-
morphic to the free abelian group generated by {a,} as a set. See also [10].
If one fakes I C N and considers Br-topologies, for By = {@p}ner, and if
one lets I run through a suitable filter of subsets of N, and takes care
to define these Br-topologies conveniently and compatible with each
other, then the union of all Br-topologies provides another example.
If Z is complete with respect to all these Br-topologies, one can take
any filter provided it contains only infinite sets. If Z is not complete
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i the chosen collection of Br-topologies, one must chooge
:Ezhﬁﬁzfegfo;g carefully, see also [7]. I‘Iowever,. the quof‘m(llf I‘efe-);'(.mceg
are not very simple. The example presented her_e is rather ﬁfcl‘—eontzmned,
and moreover, the given sequence A does not inerease so a_st. i
Tn gection 2 we construct a complete metrizable Illonqthotlc group
without continuous eharacters, except 0. Such an cxampl'e‘ g.weg a p@rhal
answer to the question: what has compactness 'to do WJ@ being 1110110--
thetic? Though the first examples of monothetic groups W(bl;(h‘ corpact,
like p-adic integers, tori, solenoids etc., and though Y\ 0.11‘ ]:,)I'oved
that for nondiscrete monothetic groups local compzmtncf?& implies com-
pactness, a complete monothetic group need not neces,q‘fmly be ‘v,om]émet.
This follows in essence from an example given b}{ Bohr [2], of a function f
on R that he called “periodenartig”, because it had the property that

P,= (weR: [f(o+y)—f)| <e for all y <R}

is unbounded. Such a function, Bohr showed, need not bo.“fa'st periodisch”;
the latter means that P, is more or less uniformly d]stl‘lb'l.l'bed over R
(more precisely: for all &, there exists an L such that for any interval I of
length exceeding L, I n P, # 0). . ‘ . ‘

When a function f on R is used to obtain an invariant metric 4,
defined by

4, y) = sup{|f @+ o)~ g+ 2 R},

the sets P, will form a neighborhood basis at 0 for a group topology on R
It f is merely uniformly continuous, the ordinary topology on R will
result, If f is “periodenartig” some other group topolog'y, ?veaker 1.Jh-an
the usual one, will result. If f is almost periodic (fast periodiseh) a finite
pumber of translates of any neighborhood of 0 will suffice to cover R.
Only in that case the completion is compact. So Bohr's example ah(?WS
the existence of a complete metrizable not locally compact topolggwml
group that contains a dense copy of R. The whole argument works as
well for Z, of course. «
This remark was actually made by Anzai and Kakutani [1] and in
slightly improved form it was mentioned in a footnote to an article '!)y
Comfort and Ross [3]. We call this Example A. Hxample B (not metriz-
able) is the one by Graev [4], cited above. Bxample O ig by inrichs [6].
It is a Hausdorff ring topology on Z, such that small neighborhoods do
not contain ideals, while compact Hausdorff rings containing a dense
copy of Z must have a basis of neighborhoods counsisting of ideals. One
may however dispense with the “ideal” argument, seo [10]. Rolewicz [11]
showed that the subgroup of the infinite dimensgional torus consisting
of these elements whose coordinates converge to 0, iy monothetic, if
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provided with the proper metrization. This is Example D. The author [71
showed that, again with proper metri

i 1 zation, the infinite dimensional
torus contains closed totally disconnected unbounded monothetic groups
(Example ).

One might ask now: do continuous ch

aracters of complete mono-
thetic groups separate points? b .

In abelian topological groups the continu-
ous characters separate points if they are locally compact; without thig
condition this need not hold, as the example of I”-spaces with 0 < <1
(Hewitt and Ross [5]) shows. For monothetie groups, one can factor
a discrete subgroup out of Example D, [9], and out of Example B (See-

tion 2 below), such that the quotient has no continuous characters ex-
cept 0.

1. A simple example of a complete non-discrete infinite cyclic topological
group.

1.1. Notations and terminology, outline of proofs. Z is the.group of
integers and N is the set of natural numbers including zero. If § is
a sequence of elements of Z and § converges to zero with respect to some
group topology on Z then we will call that topology an §-topology.

So for 4 = {2, 5, we can say that the 2-adic topology on Z is
an A -topology. The finest A -topology we will call T4 We will prove
that Z is complete with vespect to T,

Generally when a metric topology is given by a metric m we will
speak about the m-topology, m-ball, m-open etc. By the way, metrics
on abelian groups are supposed to be functions satisfying

m@)=0ss=0,
m(—a) = m(z),
m{z)+m(y) = mz+y).
We will uge the notation ||-|| if it is clear which metric is being used. We
will concentrate our attention to a class C of metries, namely all those
for which [|2%] is a decreasing zero sequence. C will he proved to be rich
enough to generate 1.

We will identify metries of C with the topologies on Z they generate,
in the senso that wo will say “topology from €” ingtead of “topology
defined by a metrie from G”.

Smnmations, unless writbon otherwise, are always taken for the

variable (which will be evident) running through N, but we always sup-
Dose a finite number of summands iy unequal zero. When we say a se-

‘quence py is decreasing we mean p, > p,,, for all n.

The proof of completeness of T4 will proceed as follows. Every
T4-Cauchy net in Z is of coursea Cauchy net with respect to each of those
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metrics. Convergenece with respect to any of these metrics implies 2-adic
convergence (the 2-adic topology is a coarsest Hausgdorff 4 -topology).
Then, for a given T4-Cauchy net in Z, not convergent to an elemejnt
of Z ;ve will find a metric from C in which it will not converge, thus arriv-
ing at a contradiction.

1.2. The class C. For any decreasing sequence p = {Pulnen OF Dositive
non-zero real numbers, we define a metric dp by

(1.2.1) dp(@) = inf (Z l“nll’n) ?

where the infimum is taken over all finite sequences dn of integers such
T

'ﬁh&tvﬂée pr%ift]'mt |l = dp(@) is & metric from G such that dp(2") = ps.

(i) It o is not divisible by 9™+ then |jal = Pn.

Observe that one can restrict oneself to sequences dn such that |an]
<1 for all n.

(i) I &= 2" then [jz]| <pn, hence 12| = Pa.

(i) |jall-+lyll = in (3] (|an] -+ [bal)pn) Where 2 2" = f‘lnan“= Y5
this is larger or equal inf(Z‘]an+ bn|pn) where 3 (an+bn)2" = w-+y;
hence Y|+ iyl = lz+yil follows.

(iv) Clearly |—al| = |jz| and [|0]| = 0. . .

Tet now be given any invariant metrie d on Z guch that d(») is
continuous in % with respect to the finest A -topology on Z. Then d(2%)
is a zero sequence. We define a sequence of numbers pn by
(1.2.2) Pn = max d(2™) .

mz=n
Clearly pn is decreasing to zero.

Using this sequence p = {pn}, define dy by (1.2.1), 80 dp <C. We
observe d(2") < dp(2™) = P, s0 by definition of dp it follows that d(»)
< dy(®).

Remark. Actually p,,, > 2p» would have sufficed for the pro.of
that dp satisties d(2™) = pn. Moreover, dy is the largost metrie that satis-
fies these equations. Also, for |#| 1, we may restrict tho ca(»llc»(»1z§()n
of @, over which the inf is taken, to those for which: ay == 0 if ot g,
an = 0 if n—1 > %logw. So the inf here ig actually a minimum.

We indicate now how to prove that the topology T4 is the union
of all topologies from €. T4 certainly containg the union of all topologics
from C.

Let U be a T4-neighborhood of 0 e Z. Lt V, be a symmetrie neighbor-
hood contained in U. Let Vy, V,, ete. be such that for all i: V4 Vi

C Vs, V; symmetric and M V= {0}.
ieN
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The T form then a neighborhood basis for a Hausdorff topology D
on Z; D is a metrizable A-topolog’y, let d be a metriec that induceé D.
So U contains & d-ball around 0. If we pass to dp, then it is seen that U
contains a d,-ball. So we have proved that an arbitrary 74-open set

containsg an open set from the union of all topologies from C. So indeed
T4 is the union of topologies from @.

Remark. The above mentioned metric d can be defined as follows:
let f on Z be defined by f(z) = 1 for « ¢ Viand f(2) =27 for  « VAT,
421 and f(0) == 0. Then let d be defined by d(z) = inf (3 fl@)) whz:;e;
infimum. is taken over all finite sequences {z:} such that fmi = 2.

1.3. Coordinates. In the following we restrict ourselves to metrics dy,
for some sequence p. We observe that if 2", then |lz]| > pa, hence con-
vergence with respect to a topology from C implies 2-adic convergence.

We first find a sequence a; in 2 = D a;2%such that flwll = '@l 127,
Firstly [a:] << 1 for all 4, eviglently. Then, a; =1 = a,,, does not have
to oceur for any j. Indeed, 27427 = — 271 9742 4o if g; = 1 = g4, WE
could find an equivalent or better choice af by putting a;= a; for
i ¢{j,j+1,i-+2}, and put a; = —1, a;,, = 0 and @15 = ;,,-+1. Further-
more ay = —1, a,y, = +1 certainly does not occur, as — 27427+ — 4 97,
So an optimal sequence a; can be chosen to satisfy: a; # 0 implies a@;_;
= 0= a,;.,. Lot us call this property for a sequence of numbers equal
to 0, -1 or —1, the property O.

‘We prove now that O characterizes a; completely. So let a; and b;
be sequences consisting of 0, 41, —1 and having the property 0, and
SUPPose 4 = 3 a:2° = 3 b;2%. Then 0 = Y (@;— b;) 2°. Suppose there exists
a lowest index such that ai—b; # 0, say j, then [a;—b;| <2, but as

(45— ;)27 = — 3'(as—b:)2", we cannot have |a;—bj| = 1. Therefore, we
i>7
may suppose that ay;—by = 2, so both a; and b; are unequal zero. Hence
@ppg = byyq = 0 and we have 227 = — 3 (a;—b;)2¢ which is a contra-
342 )

dietion, as thoe left hand member s not divisible by 2/** and the right
hand member is. We have proved that we can write z = 3 ;2% in a unique
way such that the ay form  sequence with the property O, moreover
that flaf} == 3| J27)] it ||| == dp() for some sequence p.

The above argument also shows that when 2°(#—y), then the
Livst 21 coordinates of @ and y arve the same.

1.4. Cauchy nets in the 1';-topology. Let now (2;);., be a Cauchy net
in the 74-topology. Suppose it does not converge to an element of Z.
It converges in tho 2-adic topology to a 2-adic integer » = 3 @42%, where
the a; form u soquence with the property O. Let {ji, s, ...} be the se-
quence of indices § for which a; # 0, j,<fh<fs< .. Let jo= —1.
6 — Fundamenta Mathematicae LXXXVIII
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Define ¢; by ¢; = 1/n for j,_, < t=1j, for all n 1. Let m= dy,
Wwith ¢ = {@}ien- AS (#)z4 18 8 Cauchy net in the m-topology, we may
suppose it to be m-bounded, moreover the coordinates of @, converge
to the coordinates of z. But this gives a contradiction, Deeause if the
coordinates of #, equal the coordinates of & wp to and including the j,th
n
coordinate, it follows that m () ”I:E 1k 3= logn. So m(ay) is not hounded.
=

1.5. Characters. Let & be a monothetic group such that the powers
of 2 in the embedded copy of Z converge to 0. Then awy chavacter that
is not continuous in the 2-adic topology of Z is not continuous on ¢ either,
This follows from the fact that 2%amodl is a zero sequence if and only
if o is rational with denominator a power of 2. The churacters of Z that
are continuous with respect to the 2-adic topology are also continuous
with respeet to the topology construeted in the preceding sections.

This fact and the above observation allows us to conclude: the
characters x — pe/2"modl, p € Z, n ¢ N, are the only continuons characters
of Z with the topology T4. The Bohr compactification of Z with the
topology T4 consists of the 2-adic integers. We have proved:

THEOREM 1.6. There ewists o finest group topology on Z such that 2%
converges 1o zero. Z is complete with respect to this topology. The Bohr com-
pactification of Z with this topology consists of the 2-adic integers.

2. A totally disconnected monothetic group without continuous characters.
‘We introduce now a subclass G, of C. G, consists of all those metrics from C
that satisty |z = Y |a:||27 where a; are the coordinates of #. The reader
will observe that C; consists of metrics ||-|| that are maximal among all
metrics m in C that satisfy m(27) = [12%]. A 2-adic number whose first
coordinate is 41 will be called odd. The smallest number I such that
the coordinates ¢; of a number ¢ ¢ Z are 0 if 4 >1 will be denoted by I(c).
Let # be a given 2-adic integer with coordinates ¢;. When e¢; = 0 for

<i< ¢ bub e, # 0 and ¢y, # 0 then we will say that the interval
[p,91C N is a gap in the coordinates of x. The number g—p--1 will be
called the length of the gap. The number of non-zero coordinates of ¢ ¢ Z
will be called the weight of @. It follows that for any odd @eZ with

icm

w(z) > 1 the coordinates of z must have at least one g'a‘]‘) [p,q] of length

t—ao(x)” "
= w@)—1’ and g < t if the ¢-th coordinate of @ is non-zero (£ >0),

o
Letw = } ¢,2% be a 2-adic integer with coordinates ¢;. Then we define
i=0
k 00
Al : :
Pro = }_J a2 and  Ptr= Y ¢2Y k0.
' =0 s
= =5

Observe that @ = Pja- P*tig,
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We observe that for each # ¢Z, we have [Pr_ya] < 1(2%—1) and if
the %th coordinate of z is not equal to zero, |Pfz| = 2% so |z|

"= Py @+ Pho| > 3251 1, hence |P,_ a)< 3l@|. Moreover, if the kth

coordinate is the last non-zero coordinate of z (k= l(2)) then |P%p| = 2%
hence |#| << £2%. So |ay| < (5721, But ay| > 324 5o Uay) < Uz)+
+Uy)+1, for all xeZ and y e Z. ’
We are now going to consider a special kind of metric in C,, charac-
terized by an infinite sequence
M= {my, my, .}, my=0, mp> (E+2)(m,_,+3)
for all & > 0. For given I, we let |-y be the metric from C; defined by
1
2" = s
‘ M (’L +1)-
The completion of Z with respect to [Illar is denoted by Zar. The

2-adic number ' 2™ is denoted by ay. Clearly aar e Zyr, |land] = n2%/6.
medl

for mi<m < my,, and 7> 0.

"~ We will prove ax; generates a discrete subgroup of Zyy , which we are going

to call Dyr. First we need a lemma.
Lemyma 2.1. Let w(n) < k. Then w(n-Pyay) =k if n> 0.

Proof. We denote for all 1 e N, P,, ay, = q;. We prove the statement
by induction on k. Clearly the statement is true for k= 1 or 2. We may
suppose % odd. We distinguish two cases, Case (i) is: all coordinates of »
in the interval [(k+41)(m,_,+3), mz—1] equal zero, case (ii) is the
contrary case: some coordinate in that interval is not equal to zero.

OCase (i). Let p < (k+1)(my_,+3) and g>m; be such that
%= P, ;n+PW. Then

ooy Py ) < Mgy +p—14+1 < my_y+ (k—l—l)(mk_l'-{—?)) < mp—2.

x We write nar = oy P, n+(gp_,- P'n4-2"n). As the lowest
non-zero coordinate of the bracketed expression has index at least mg,
it follows

w(nag) = w0 (ty_y-Pp_ )+ w (e Pr+2"n)
Now
ey PO0] < 4272 ] = §2™n] < [2™]

hence the second term in the expression for w(nax) is unequal zero. The
first term exceeds or equals k—1 by hypothesis, unless w(P,_,n) =k,
but then P% = 0 so the second term equals k. *

Case (ii). We conclude there is a gap [p, g] with ¢< mz and with
(b+1) (my_y +3)— T

length >
€ k~1

=>my_,+3, hence ¢>p-4my_,+2; in

6*
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that case , .
ooy Ppag®) < My Pp—14+1< g—2 < mp—2 .

¥ this point on we can repeat the above part beginning and ending
rom S
i is proved.

with % The lemma is P
TEymumA 2.2. The subgroup Dy C Zy generated by an is discrete.
Proof. Let n be a given integer and let & be such that my_, << I(n)

T ) : J koot . K

< myg. We use the notation P, ay = ox and P™egp == o, Then nay == nag-+
: m 5 :

+naftY; furthermore I(nax) < My —2, 80

k+1 = 13273 1
Imaselar = [nesar-+ e s = Inaslpr-w0(n)

k+1 ot topm. whi
0 e i et o e hich
If w(n) >k, then the second term exceeds e and the first term, whic

is not 'zero, exceeds —1— In this case it follows that ||naa|w > 1. Tf-

E+1

k
w(n)<k, then by Lemma 2.1, the first term exceeds or equals ) and the

1 y = 2™, Dbut then
second term exceeds w(n) except when s = 2", but ¢

ekl
we see immediately that |nauls > 1. So in any case |nan] >1

TarorREM 2.3. There exists a totally dafscmwwqtad mamzabla group G
with a dense infinite cyclic subgroup- (identified with Z') such that:

(1) {2"} is a zero sequence;

(2) G does not have continuous characiers, except 0.

Proof. Let M be a sequence as above and define.(vl = Z]u/}D]t]. For
any continuous character y: ¢ — R/Z the composition x-j, where rj: A.M—f G
is ‘the canonical quotient map, is a continuous character on. Znt w.hmh
sends ax to zero. But continuous characters on Zp are of the form
z->prmod2%, p eZ, p odd, so k must be equal to 0, so yx == 0.

Remark 2.4. It follows from [7], 41, that the ub(?vu glf'oup is .to-
pologically a one-dimensional space. @ is locally isomorphice to AM? wlucﬁl‘,
according to [7], § 9, is homeomorphic to a closed subgroup of a properly
normed infinite dimensional torus.
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