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Locally weakly confluent mappings on hereditarily
locally connected continua

by

T. Maékowiak (Wroctaw)

Abstract. A continuous mapping f of a topological space X onto a topological
space ¥ is said to be locally wealkly confluent provided for each point y of ¥ there exists.
a closed neighbourhood V of y in ¥ such that the partial mapping f|f~2(V) is a weakly
confluent mapping of f-*(V) onto V, i.e., for each continuum @ in ¥ there is a compon-
ent ¢ of the reli f~4(Q) such that f(C)==Q.

Wo study some properties of this class of mappings. Moreover, it is proved in the-
paper that the property of being a hereditarily locally connected continuum or a graph
is an invariant under a locally weakly confluent mapping. Further, we characterize graphs.
which are images under locally weakly confluent mappings of an arbitrary graph. This is-
a partial answer to a problom asked in [2] for weakly confluent mappings.

1. Introduction. In this paper we localize a well-known class of weakly
confluent mappings (see [5]) in the same way as the class of confluent map-
pings is localized in [3], p. 239. We obtain in this manner a new kind of
continuous mappings, called locally weakly confluent. This natural class.
of locally weakly confluent mappings comprises weakly confluent mappings..
Some theorems on weakly confluent mappings will be generalized to locally
weakly confluent ones. Moreover, we will characterize graphs which are-
images under locally weakly confluent mappings of an arbitrary graph..
This is a partial answer to a problem asked in [2] for weakly confluent.
mappings. .

The author is very much indebted to Dr.J.J. Charatonik for his.

valuable suggestions and help during the preparation of this paper.

2. Preliminaries. The topological spaces under consideration are-
assumed to be metric, and the mappings — to be continuous and surjective.

Recall that a mapping f of a topological space X onto a topological
space Y is said to be

(i) confluent it for every subeontinuum @ of ¥ each component of
the inverse image f~%(@) is mapped by f onto @ (see [1], p. 213);
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(ii) weakly confluent it for every subcontinuum ¢ of ¥ there exists
a component C of the inverse image f~(@) such that f(C) =@ (sec [5]
and [7]; compare also [6], Sections 4 and 5).

In [3], p- 239, a class of locally confluent mappings is introduced as
follows. We say that a mapping f of X onto Y is locally confluent provided
for each point 5 of ¥ there exists a closed neighourhood V of ¥ in Y such
that the partial mapping f|f~(V) is a confluent mapping of f~(V) onto V.

We define a class of locally weakly confluent mappings in a similar
way, namely: & mapping f of X onto ¥ is called locally weakly confluent
provided for each point i of ¥ there exists a closed neighbourhood ¥ of y
in ¥ such that the partial mapping f/f~*(V) is weakly confluent.

We have the following immediate consequences of the definitiong
mentioned above.

(2.1) PROPOSITION. Any weakly confluent mapping is locally weakly
confluent.

(2.2) ProPOSITION. Any locally confluent mapping is locally weakly
confluent.

The class of locally weakly confluent mappings is essentially larger
than the class of weakly confluent mappings, even for hereditarily locally
connected continua unlike the elass of locally confluent mappings, which
coincides with the class of confluent mappings onto hereditarily arcwise
connected continua (see [6], 5.3) or onto locally connected continua
{see [6], Corollary 5.2).

(2.3) ExampLE. There exists a locally weakly confluent mapping f of
2 simple triod T onto T such that the mapping f is not weakly confluent.

The triod T will be considered as a subset of the Ruclidean plane
endowed with the ordinary rectangular coordinate system Oxy. The
triod T' consists of the straight line interval joining points (—1, 0) and (1, 0)
and of the straight line interval joining points (0,0) and (0,1). We define
2 mapping f of T onto itself as follows:

[ (@ 9)
3z, y) i 0<w<13 and y =0

( if 2<0 and y=0,
(
(—38z+2,y) if IB<e<23 and y =0,
(
(

?
¥, 32—2) i 2B8<s<l andy=0,
| (2, 9/2) it z=10 and y=£0.

Take Vi ={(z,9) e T: y <12} and V,= {@,y) e T: 1/3 <y} Ob-
serve that for ¢ = 1, 2 the partial mapping f|f~4V,) is weakly confluent,
and for each point y ¢ T, we have either Y € IntV; or y e IntV,; there-
fore f is locally weakly confluent;
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Leb 1 == {(®,y) e I+ = 2/3 and y < 2/3}. The set 7’ is a continuum
and for each eomponent ¢ of the set f™(1") we have f(C) s T". Thus we
conclude that f is not weakly confluent. .

(2.4) Bxamrre. There eoxist locally weakly confluent mappings f
and g of a simple triod T’ onto itself such that the composed mapping gf is
not locally weakly confluent.

Adopt the notation of Example (2.3). Define a mapping ¢ of T onto
itself as follows:
(@, 0) it y<12,
y=1

=10

=1/2.

Observe that the mapping ¢ is monotone, and thus also locally weakly
confluent. Put (@, y)) = g(,’[’((w, y))) for (@,y)eT. There exists no
neighbourhood V of the point (0,0) in 7' such that the partial mapping |
Lh1(V) is weakly confluent. Therefore the mapping % is not locally weakly
confluent.

- (2.8) TunornM. If a mapping f: X - X is wealkly confluent and a map-
ping g2 ¥ ~Z 18 locally weakly confluent, then gf is locally weakly confluent.

" Proof. Let 2 be an arbitrary point of Z and let V be a closed neigh-
bourhood of # in Z such that glg~(V) is weakly confluent. Let K CV
be a continuum and let ¢ be a component of ¢-Y(K) such that g(0) = K.
Since f is weakly confluent, we have a component B of f~1(() such thajt
f(B) = (. Therefore gf(B)= ¢(C)== 1K, we conclude that gf ](’gf)—l(V) is
weakly confluent. Thus ¢f is a locally weakly confluent mapping.

(2.6) TuroreM. If o mapping f of X onto Y is locally wéakly c:onfluem
and if  subset B of ¥ s closed, then the partial mapping f|f(B) is locally
weakly confluent. .

Proof. Let 4 « B and let ¥ be a closed neighbourhood of y in ¥ such
that the mapping g = f|f~(V) is weakly confluent. Put V,= BnV
and g, = glg-1(Vy). It follows from 4.7 in [6] that the mapping g, 18 weak}y
confluent. Since g, == glg~(Vy) == f|f-(Vy), we conclude that the partial
mapping f|f-1(B) is locally woakly confluent.

(2.7) Tonowm. If o= gf is locally weally. confluent, then g is locally
weakly confluent,

Proof. Let f map X onto ¥, and let g map ¥ onto. Z. Suppgse that 17 is
a closed neighbourhood of ¢ in Z such that the partial mapping hlh=(V)
is weakly confluent and let K Dbe an arbitrary continuum contained in V.
Then there is a component ¢ of h=1(K) such that #(C)= K. Moreover,
F(0) is a subcontinuum of ¥ which is contained in some component B of
the set g~1(). Therefore K= h(C) = g(f(0)) C g(R), and thus g(E) = K.
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This implies that the partial mapping glg~(V) is weakly confluent, i. e., the
mapping g is locally weakly confluent.

Recall that a mapping: f from X onto Y is called light provided
dimf-(y) = 0 for each y ¢ ¥ (see [10], p. 130). We have (see [10], (4.41),
p. 131) the following

(2.8) LEMMA. In order that a continuous mapping f from X onto Y be
light it is necessary and sufficient that for any & > 0 there should ewist a & > (
such that if B is any continuum in Y of diameter less than 8, any component
of f~YB) is of diameter less than e.

As a direct consequence of Whybuxrn’s factorization theorem (see [9],
(2.3), p. 297 and [10], (4£.1), p. 141) and of Theorem (2.7) we obtain the
following

(2.9) THEOREM. If o mapping h of X onto X is locally weakly con-
fluent, then there exists o unique factorization of b into two locally weakly
confluent mappings

hx) = g(f(@) for each z <X,

where f is monotone and g is light. )

It is proved (see [4], § 41, VI, Corollary 4d, p. 24) that

(2.10) LeMMA. Let C be an open covering of o compact melric space X.
Then there is a number & >0 such that each subset of X of diameter less
than & is contained in some element of C.

‘We have the following characterization of locally weakly confluent
mappings:

(2.11) TeEOREM. A mapping f of X onto Y is locally weakly confluent
if and only if there is a number & > 0 such that for each continuum § of dia-
meter less than e in Y there exists o component K of f~1(Q) such. that f{K) = ¢.

Proof. Suppose that f is locally weakly confluent. Then there are
sets Fy, Iy, ..., iy such that X = IntF; v IntF, U ...  IntF, and f|f-(F;)
is a weakly confluent mapping for { =1, ..., n. The family

C = {IntF,, IntT,, ..., IntF,}

is an open covering of ¥. Therefore, by Lemma (2.10), theve is a number
& > 0 such that each continuum ¢ of diameter less than ¢ in ¥ is contained
in some F,,. Since f|f-F,,) is weakly confluent, there is a component K of
F@) = ([If*(F )| Q) such that f(K) = (f|f-1(F,,))(K) = §.

Conversely, suppose that there iz a number ¢ > 0 such that for each
continuum @ of diameter less than & in ¥ there exists a eomponent K of
f7(Q) such that f(K) = Q. Let y be an arbitrary point of ¥ and let V be
the closed ball with diameter equal to ¢/2 and centre at y. Obviously f|fV)
is a weakly confluent mapping, because each continuum @ contained in ¥
has diameter less than e. The proof of (2.11) is complete.

icm
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A similar theorem. holds also for locally confluent mappings;

(2.12) THEOREM. A mapping f of X onto Y is locally confluent if and
only if there is a number & > 0 such that Jor each continuum Q of diameter
less than & in X each component of the inverse image f-1Q) is mapped by f
onto Q.

The proof is quite similar to the proof of Theorem (2.11).

Theorems (2.11) and (2.12) imply ’

(2.13) TurornM. If mappings f and g are both light Tocally weakly con-

namely

- fluent (or both Vight locally confluent), then the mapping gf is light locally

weakly confluent (locally confluent).

Proof. Suppose that f maps X onto ¥, ¢ maps ¥ onto Z and f and g are
both light locally weakly confluent (for locally confluent mappings the
proof is quite similar). By Theorem 2.11 there are positive numbers e,
and &, such that if ¢ is a continuum in ¥ (in Z, respectively) such that the
diameter of @ is less than e, (s, respectively), then there is a component ¢ of
the set f~4@) (97(Q), respectively) sucl that F(O) =@ (g(0) = @, respec-
tively). It follows from Lemma (2.8) that there is a 6 > 0 such that if Q is
any continuum in Z of diameter less than 4, any component of g7YQ) is
of diameter less than e. Pubt e = min{d, &}. Let Q be an arbitrary sub-
continuum of Z of diameter less than e. Sinee diam @ < &,, we have a com-
ponent O of g=(@) such that g(0)= Q. Since diam@ < 6, we have also
diam O < g. Therefore there is a component K of f~1( () such that fE)=0C,
and thus gf(K) = ¢(C) = @. Hence we conclude that for each continuum ¢
in Z of diameter less than e in Z there is & component K of the set (gf) Q)
such that gf(K) = @. Thus, by Theorem (2.11), the mapping gf is locally
weakly conflucnt.

We also have the following

(2.14) THEOREM. Tf f: X — Y is a mapping, ¥, and Y, are closed subsets
of X such that Y = Int ¥, w Int ¥, and the mappings f|f-X(¥,) and f|f4Y,)
are locally wealkly confluent (locally confluent), then f is locally weakly confluent
(locally confluent, respectively).

Proof. Put fy = f|f2( V) (4 =1, 2) and assume that each f, is locally
weakly confluent. Let y he an arbitrary point of ¥. Then we have either
YyeInt¥; or y e Int ¥,. Assume y e IntY, (if y e Int ¥,, the proof is the
same). Since the mapping f, is locally weakly confluent, there is a closed
neighbourhood ¥, of % in ¥, such that the mapping fi|f~(V,) = fIF (V)
Is weakly confluent. It follows from y e Int ¥, that there exists a closed
neighbourhood ¥ of y in ¥ such that ¥ CV, ~ ¥,. Therefore, by The-
orem. (2.6), wo infer that f|f~1(V) is a we@k]y confluent mapping. Thus f is
locally weakly conflucnt. .

Assume now that each mapping f; (¢ = 1, 2) is locally confluent and
that an arbitrary point y of ¥ is such that y ¢ Int ¥,. Then there exists
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a closed neighbourhood V; of y in ¥, such that the mapping R mY
= fIf-Y(V,) is confluent. It follows from y e Int ¥, that there exists a closeld
neighbourhood V of y in ¥ such that ¥ C V,. Therefore, by I in [1], p. 213

° H

"we infer that f]f-4(V) is a confluent mapping. Thus f is a locally confluent

mapping.

(2.15) Remarks. There exists a mapping f of a simple triod 7 onto -

itself and there is a decomposition T' = V, w V,, where 7, and V, are cloged
sets with T = IntV, v IntV,, such that the mappings f|f-(V,) angd
fIf(V,) are weakly confluent and f is not weakly confluent. This can be
geen by Example (2.3).
We have a similar theorem to Theorem (2.14) for confluent mappings
but with slightly different assumptions on ¥ (see [6], Theorem 5.4)?
(2.16) CorOLLARY. If {: X =Y is & mapping, Yy, ..., ¥, are closed

subsets of X such that ¥ = _l J Int Yy and mappings f|f~Ys) for ¢ = 1.,k

g=]1
are logally weakly confluent (locally confluent), then f is tocally weakly con-
fluent (locally confluent, respectively).

3. The invariancé of the hereditarily local connectedness of continua.
. (3.1) THOREM. Locally weakly confluent images of hereditarily locally

~conmected continua are hereditarily locally connected.

Proof. Let f be a locally weakly eonfluent mapping of a hereditarily
locally connected continunm X onto ¥. Suppose, on the contrary, that the
continuum Y is not hereditarily locally connected. Therefore there exists
a subcontinuum @ of ¥ which is not locally connected at some pbint P.
Thus there exists a closed neighbourhood % of » in @ such that, if ¢ is the
component of E which contains p, then p does not belong to its interior,
i.e., peBNC. Let

1) » =1lim py, ,
N->00
(2) P NS

Let ¢ be the component of # such that py e (. It follows that

3) 0nGi=0 foreach n=1,2,..

o gor otherwise the set ' u ¢, would be a subeontinuum of Ii; thus
v 0 CC and we would have P e O, contrary to (2).
- Let Iy be a closed neighbourhood of P in ¢ such that
(4) Fy C Inty(H)
(hgre Into(E) denotes the interior-of B relative to @), and let I, be a closed
neighbourhood of p in ¥ such that

(5) FIf-2()

is weakly confluent.
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Then F = F, nF, is a closed neighbourhood of p in ¢ such that

@) F C Tnty(E)
by (4), and
(5") Fif(#F)  is weakly confluent

by (5) and by Theorem 4.7 in [6].
‘We may assume that p, e Fforn =1, 2, ... by (1). Let Dy, be the com-
ponent of F containing p,. It follows from (4') that F C E, and thus

(6) DyCOCy.

‘We choose a convergent subsequence {D, } of the sequence {Dn}
(compare [4], § 42, I, Theorem 1, p. 45 and § 42, IT). For each continuum D,
there exists a component &, of the set f~X(D,,,) such f(R, ) = D,, by (5)"
‘We choose a convergent subsequence {ank} of the sequence {R, } and
define

) K = Lim Dy, , ‘
ko0 ®
(8) L =Lim Ry, .
ko0 ®
‘We have
9) _ f(Bap) = Do, and  f(I)=K

by the continuity of f.
By (1) it follows that

(10) peKCEF.

Hence (compare (4")) K C B, and since K is a continuum (compare [4],
§ 47, II, Theorem 4, p. 170), it follows that

(1) ECCO.

According to Theorem 2 in [4], §47, III, p. 172, we have Dy
~ Fry(F) # @, whence K ~ Fry(F) @ (where Fry(F) denotes the boun-
dary of F in @), and, F being a neighbourhood of p in @, we get p ¢ Fro(F),
which implies K # {p}.

Therefore we see by (9) that L is a non-degenerate continuum. Since
DnmkaC O‘nmk" ¢=@ (see (3), (6) and (11)), we infer by (9) that
Ry, ~L=@. Hence L is a non-degenerate continuum of convergence
in I, and thus X is not a hereditarily locally connected continuum (see [4],
§ 50, TV, Theorem 2, p. 269): a contradiction. The proof of (3.1) is
complete.

Recall that a point p of & space X is called a ramification point (in
the classical sense) if it is the common endpoint of three (or more) ares
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in X whose only common point is p, i.e., if p is a top of a simple triod con-
tained in X.

Let f be a mapping of X onto ¥. We say that the mapping f covers
the ramification points of Y provided each ramification point of ¥ is the
image under f of a ramification point of X. Similarly, if each ramification
point of Y is the image of a point of a given set @, we say that the set of
ramification. points of ¥ is covered by @ under f.

We have the following

(3.2) THEOREM. If @ mapping f of a hereditarily locally connected con-
tinuum X is locally weakly confluent and f maps X onto Y, then Y is hereds-
tarily locally connected and the set of ramification points of X is covered by
the closure of the set of ramification points of X.

Proof. By Theorem (3.1) the continuum Y is hereditarily locally eon-
nected. Let p be a ramification point of ¥ and let I be a closed neigh-
bourbood of p in ¥ such that the partial mapping f|f~*(F) is weakly con-
fluent. Let U be an open subset of ¥ such that p-e U CF. It suffices to

icm°®

‘has at most two components and {a;, by, e} C 4

. a ramification point of X. The proof of Theorem (3.2)

prove that there exists a ramification point ¢ of X such that f(q)e U.

Let T De a simple triod with the top p, such that 7' C U. Denote by a, b
and ¢ the endpoints of the triod T. Take in the arc ap C T a sequence of
points {a;} which is convergent to a point @, % p and such that
a<a;<ay,<p for each i=1,2,.. Similarly, take a sequence of
points {b:}-of the arc bp which is convergent to a point b, == p and a sequence
of points {es} bf the arc ¢p which is convergent to ¢, 5= p. Denote by T} the
subtriod of the triod T which has as, b; and ¢ as its endpoints. Since
FIf7(F) is a weakly confluent mapping and T4C T'C F foreachi =1, 2, ...,
it follows that there exist continua A; contained in fYT) and such that

f(4s) = T,. Since the set f~(T') is compact, we can assume that the se-
quence {4:} is convergent (see [4], §42, I, Theorem 1, p. 45) and
Ay = Lim A4 is a continuum (see [4], § 47, IT, Theorem 4, p. 1.70). Moreover,

1=>00

' f(4o) = T, by the continuity of f. Therefore there exists a number s > 0
such that diam 4, > ¢ for sufficiently large 4. The continuum X is heredi-
tarly locally connected, and thus by Theorem 2 in [4], § 50, IV, p. 269,
X contains no non-degenerate continuum of convergence and therefore
only a finite number of components of the set f~T) have diameters larger
than & Thereby, we can agsume that all continua 4, are contained in the
same component C of the set f~1(T).

Suppose that the continuum ¢ fails to contain a ramification point
of X. Then C is either an arc or a simple closed curve (see [4], § 51, V,
Pp. 291-299). For each case the set AN\A4,,; hag at most two components
and the diameters of those components tend to zero as i-s co. Leb s be
a positive number less than the disimeters of arcs @by, Doty and comy in T,
Take a positive number 6 such that, it a set K is contained in C and if
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diam K < 4, then diamf(K) < &,. Take an index ¢ such that the diameters
of components of the set 4:\A,,, are less than 8. Since the set A4, 1
_ )\f(-AH.l) = .Ti\TH_”
we have at least two sets from f~(as), f~Y(b,) and F7es) have non-empty
intersections with the same component 'o_f the set ANA, 11+ I ¢V is a com-
ponent of the set A,\4, ., and there are points a; € f(ay) and b; € f7Y(bs) such
that {a;, by} C 0, then agby C auby C £(C"), where agh, and azb; are ares in 7.
Therefore diamf(C’) > &: a contradiction. Thus the confinuum ¢ contains
i3 complete.

(3.3) CoroLLARY. A locally weakly confluent image of an arc (a cirde)
48 either an arc or & circle.

It is well known that every mapping of a continuum onto an are-like
continuum js weakly confluent (see [8], Theorem 4). Therefore, in partic-
ular, every mapping of an arc onto itself is weakly confluent. A circle does
not have this property. Moreover:

(3.4) Example. There exists a locally weakly confluent n‘iapping fof
& circle onto itself such that f is not weakly confluent, and there exists'
a mapping ¢ of a circle onto itself such that g is not locally weakly con-
fluent. !

The eirele S will be considered as a subset of the Buclidean plane endow-
ed with the ordinary rectangular coordinate system Ozy. The circle 8
consists of all points («, y) for which #*+ 2 = 1. We define a mapping f of §
onto itself as follows:

fl(@, 9)) = (cos(En(z+1)), sin3n(z-+1))) .

Take V= {(z,9) e 8: o < 1/2} and V, = {(%, y) ¢ §: —1/2 < ). Ob-
serve that for ¢ = 1, 2 the partial mapping f|f~1(V:) is weakly confluent,
and for each point y € 7', we have either y ¢ IntV, or y « IntV,; therefore fis
locally weakly confluent.

Let 8’ = {(#,y) ¢ 8: —1/2 < y}. The set § is a continuum and the
set f71(.8") has exactly two components; namely ¢, = {(%, ) e §: v < —2/9}
and 0y = {(w, y) « 8: 2/9 = w}. Sinee f(C,) # 8 5 f(0,), we conclude f is
not weakly confluent.

It we take a mapping g of § onto itself defined by the formula

o{(@, ) = (cosm(2+1)), sinfr(+1))

then ¢ is nob loeally weakly confluent.

The property mentioned above characterizes an arc among all locally
connected continua. We have ' .

(8.5) CororrAry. A locally connected continuum X is an arc if and
only if each mapping from X onto itself is weakly confluent. (locally weakly
confluent).
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Tndeed, any mapping of an are onto an are is weakly confluent by
Theorem 4 in [8]. Conversely, suppose that X is a locally connected con-
tinuum such that each mapping f of X onto itself is locally weakly confluent.
There is & mépping of X onto an arc I. Since X is locally connected, there
is a mapping g of I onto X (see [4], § 50, 1T, Theorem 2, p. 256). Thus the
mapping gf maps X onto itself and it is locally weakly confluent by assump-
tion. Therefore, by Theorem (2.7), the mapping g is locally weakly con-
fluent, and thus, by Corollary (3.3), X is an arc or a circle. But XX is not,
a circle, because there is a mapping of a circle onto a circle which is not

locally weakly confluent (see Example (8.4)), and this contradicts the -

assuniption that every f of X onto itself is locally weakly confluent. Hence X
must be an are. .

4. Locally weakly confluent mappings onto graphs. A continuum X is said
to be a (linear) graph it X is the union of a finite number of ares which
are pairwise.disjoint except for their endpoints (see [10], p. 182). We say
that a continuum X is an #-star provided X is the union of »n ares which
are pairwise disjoint except for one given point p, which iy the common
endpoint of these arcs; and p is called the top of X. We say that the space X
is of order < m at the point p provided for each ¢ >0 there is an open
set G such that

pe@, diamG<e and cardFr(G)<m,

where Fr@ denotes the boundary of ¢ in X (see [4], § 51, I, p. 274). The
minimal cardinal number which satisfies this condition is called the order
of X at p and is denoted by ord,X. If X is locally connected and n is
a natural number, then ord, X = » if and only if there exists an n-star
in X with the top p, and X does not contain an (n--1)-star with the top p
(Menger’s theorem, the so-called “n-Beinsatz”, e.g. see [4], § 51, I, p. 277),
The following condition characterizes graphs: all points of X save a finite
number of them are of order 2, and all points are of finite order (see [10],
Pp. 182).

‘We have the following generalization of Theorem IL.5 in [2].

(4.1) TEROREM. Let f be a light locally weakly confluent mapping from
the graph X onto Y. If a point p of ¥ is of order n, then there ewists a point ¢
in X of order m larger than or equal to n such that f{g) = p.

Proof. Let ¢ be a positive number less than the minimal distance
bebween the ramification points in X and also less than the minimal dia-
meter of a simple closed curve contained in X (such an ¢ does exist because
the graph containg only a finite number of ramification points and » finite
number of simple closed ‘curves, by definition). Since f is light, it follows
from Lemma (2.8) that there exists 2 6 > 0 such that if B is any subcon-
tinuum of ¥ of diameter less than ¢, any component of F(B) is of diameter

e _ ®
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less than e. Let p be apoint of ¥ of order » and let N be an n-star in ¥ with
the top » and such that diam N < 6. We may assume that the partial
mapping fIf7(N) is weakly confluent, because f is locally weakly con-
fluent (cf. Theorem. (2.6)). By the choiee of ¢, any component of the set
) containg at most one mmiﬁcationpoint and it fails to contain a simple
closed curve. Therefore each component of f~N) is a point, an are or an
m-star for some m = 3.

Denote by dy, ..., an the endpoints of the n-star N. Take, for each
i=1, .., %, & sequence of points {ay} in the arc agp in N, which is con-
vergent to & point ay ditferent from p and such that a; < ay < Ciny < D
for j=1,2,... Denote by N; the n-star contained in N with endpoints
Gy Uggy -oey By~ Sineoe fIf7(N) is weakly confluent and since N¥;C N for
eachj = 1,2, ..., it follows that there exist continua 4; which are contained
in f~Y) and such that f(4;) = Ny for j=1,2,..

Since the set f~() is compact, we may assume that the sequence of
continua {4s;} is convergent (see [4], § 42, I, Theorem 1, p. 45) and
Ay = Lim 4; is a continuum (see [4], § 47, IT, Theorem 4, p. 170).

J>00

Moreover, f(4,) = N, by the continuity of f. Therefore there exists
a positive number ¢ such that diamd, > ¢ for sufficiently large i. The
continuum, X is hereditarily locally connected, and thus by Theorem 2
in [4], § 50, IV, p. 269, the continuum X does not contain a non-degenerate
continuum of convergence; thus only a finite number of components of
the set f~*() have diameters larger than . Hence we may assume that
all continua 4; ate contained in the same component ¢ of the set f~(N).
The continuum C is either an are or an m-star for m = 3. We will show
that m = n.

Suppose, on the contrary, that m < n. The set A,;\A4,,, has at mostm
components of diameters tending to zero as j—oo. Let a be a positive
number less than the diameters of arcs a,,a,, for r £ s in N;. Take a pos-
itive number § such that, if the set I is contained in ¢ and diamK < §,
then diamf(I{) < a. Take an index j such that the diameters of compon-

~ents of the set A,\d,,, ave less than f.

Since the set A,\4,,, has at most m components and f(4,)N(4;4) =
= N \N;.y, wo infor that at least two sets from fay) for i=1,..,n
have a non-empty intersection with the same component ¢ of the set
ANA,;,,. Then diawf(0") > «, which is impossible. Therefore m = .
Since = may be chosen arbitrarily small, we conclude that the top g of 0 is
such that f(q) = p. The proof of Theorem (4.1) is complete.

The following proposition is well known, but the author has been
unable to find a reference for this result. In any case it is not difficult to
prove, and the proof presented here is for completeness only.

(4.2) PROPOSITION. A monotone image of a graph is a graph.
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Proof. Let X be a graph and let f be a monotone mapping of X onto 7,
By definition, X is the union of a finite number of ares, say
@0y, Gy, oy @y Oy, Which ave pairwise disjoint except for their end-
points. If y ¢ ¥ and y 5 f(as) for i =1, ..., n, then there is an open con-
nected set ¥ containing y and such that 7 does not contain any points
flas) for i =1, ..., » by the local connectedness of ¥. It follows from the
monotoneity of f that F4V) is a continuum. Moreover, f~Y(F) does not
contain the points a; for ¢ =1, ..., n, and thus f"{(_V) is an arc contained
in some arc a;a;,,,. Sinee f|f7(¥) is monotone, ¥ = f~Y7) is an arc as
a monotone image of an arc (see [10], (1.1), p. 165). We infer ord, ¥ < 2,
This implies that all points of ¥ save points f(a;) for =1, ..., n are of
order less than or equal to 2. Further, observe that if m == 2n, then 01‘d,(m)17
is less than m for i =1, ..., n. Indeed, suppose, on the contrary, that
0rdygy Y > m+1. Then, by Menger’s theorem (e.g. see [4], § 51, I, p.277),
there is an (m+-1)-star ¥ in ¥ with the top at the point f (a;,). We may
assume that N does not contain any points f(«;) which ave different from
Flay,) Let bif(eg); oy by flaz,) be arcs which compose ¥. Any set
17Hbif (0,0 (a,,)) is connected by the monotoneity of f, and fails to contain
any of the points a for i = 1, ..., n. Therefore it is contained in some are
a;a;,.,. On the other hand, any are a;a;., containg at most two sets of the
form f7(b;f (a,,)\f(a4,)), by the monotoneity of f. Thus m--1 < 2n: a con-
tradiction. This implies that all points of T are of finite order and all points
of y save f(as) for i = 1, ..., » are of order less than or equal to 2; thus Y is
a graph (cf. [10], p. 182).

(+.3) THEOREM. 4 locally weakly confluent image of a graph is a graph.

Proof. Let a locally weakly confluent mapping f map the graph X
onto ¥. It follows from Theorem (2.9) that there exists a factorization
of f into two mappings f, and f,, i.e., f(a) = Fo(fu(@)) for each o « X, such
that f; is monotone and f, is light locally weakly confluent. Put X’ = f,(X).
The continuum X’ is a graph by Proposition (4.2). Let »n be the largest
order of ramification points of X'.

Suppose, on the contrary, that the continuum Y is not a graph.
Since X’ is a graph, it contains a finite number of ramification points.
Therefore Y contains a finite number of ramification points by Theor-
em (3.2). Sinee, by assumption, ¥ is not a graph, ¥ must eontain a rami-
fication point p of order larger than . Then there ig an (n-1)-star in ¥ by
Menger’s theorem mentioned above. Since the mapping f is light locally
weakly confluent, we conclude by Theorem (4.1) that there is an (n-+1)-star
in X', contrary to the choice of n. The proof of (4.3) is complete.

‘We will now characterize graphs which are images ‘under locally weakly
confluent mappings of an arbitrary graph. Thig is a partial answer to
a question asked in [2] for weakly cconfluent mappings. To this end we

icm°®

Locally weally confluent mappings 237
firstly introduce the notions of free ares and free simple clogsed curves.
These notions play only an auxiliary role.
Let X be a graph and let py, ..., p, be all its ramification points and
endpoints. An are pip; i X such that pw;n {py,..., pu} = {ps, p} is
called a free arc with respect to X. Similarly, a simple closed curve § con-
tained in X iy called frec with respect to X provided S ~ {D1y ooy Pa} i8
a one-point set. Therefore, we have :
(4.4) Tf the graph X is neither an are nor a simple closed curve, then
any are A of A containing only one ramification point of X which is also
an endpoint of 4 iy contained cither in some free arc or in some free simple
closed curve with respect to X,
It is ecasy to prove the following
(4.5) LnMMA. Let s, ...y pa be different points of a graph X and let
by ey b be different points of the straight line interval T = [0, 1] such that
0<ty <t <ty <1 There is a light mapping b from X onto I such that
L(ps) = b and there is a light mapping g from I into X such that g(t;) = ps
for each i=1,..,n. .
We have
(4.6) LvMA. For each graph X' contained in a graph X there is a light
mapping [ from X onto X' such that f(2) = & for each z € X' (i.e., f is a re-
traction of X' onto X').
Proof. Let X" be an arbitrary graph contained in the graph X, and
let Oy, ..., Ok denote components of the set XN\X'. Any intersection C; ~ X*
iy a finite set for 4= 1, ey ko Put Oy~ X' = {p,, .., ps} and choose
reals #, ..., ty such that 0 << tly< o <ty < 1. It follows from_Lemma (4.5)
that there are light mappings hy and g; such that &, maps G, onto I and
ha(pg) = 1; for j=1,..,n; ¢ waps I into X' and g(t;)) =p; for
J=1,.,n We define f|Ci= g for i=1,..,% and f(z)=ga for
@ e X' Tt is casy to verify that fis continuous and satisfies the required
conditions.
(.7) Muorem, Let X and Y be graphs wnd let py, ..., pu be the ramifica-
tion points of X of orders kyy .., T, respectively. If X has ramification
DOIES Gy oy u Of orders myy ., M, respectively, and my =k for i=1,..,n,
then there s light locally weakly confluent mapping f from X onto T such
that f(qe) == pofor 0= 1, .., n. A
Proof. By the asswnption, the graph X contains a ki-star M; with
the top ¢, and the graph Y contains a k-star Ny with the top p; for each
i=1, ..., % Obviously, we may assume that My ~ M= G imd NinN;=0
% .

for ¢ 47 and 4,5 =1, ..., n Put M= J M and ¥ =iL£ N;. Obviously
=1 -

there iy a homeomorphism 7 from M onto N.
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Since any arc A which is free with respect to N; has a ramification
point p; of ¥ as. its endpoint, and since A does not contain any ramifica-
tion point p; for j # i, we have by (4.4)

(12) any arc 4 free with respect to Ny fori=1,..,n is contained in
some arc (or in a simple closed curve) which isfree with respect to 7.

Moreover, since an arc (or a simple closed curve) A that is free with
respect to ¥ must contain some ramification point p,, of ¥ and since N,
contains all ares of ¥ with one endpoint p, and of sufficiently small dia-
meters, we infer that

(13) any arc (simple closed curve) free with respect to ¥ contains at
least one arc free with respect to N, for some i =1, ..., n.

We define a mapping g from N onto ¥ as follows. If L is a free are
with respect to N; and is contained in the arc K which is free with respect
to ¥, then g|L is a homeomorphism from I onto K such that ¢(ps) = ps.
If L is a free arc with respect to N; and L is contained in the simple closed
curve X which is free with respect to Y, then, denoting by # the endpoint
of L different from p;, we put ¢(p:) = g(%) = p; and we define g|L\{p:, 2}
a8 & homeomorphism from IN{p;, #} onto K\{p;} such that thereis a point
o' e IN{ps, #} with the property that the image of the arc pw’' C L under g
containg L.

It follows from the construction that

(14) ¢ is'a light locally weakly confluent mapping from N onto Y.

Let a,by, ..., a,b, be a finite family of ares of X such that ab; ~ M
is abt most a one-point set for each ¢ =1, ..., 7 and for fixed j =1, ...,n
r
and the set X' = M o |J a;b; is a continuum in X. We define a map-
. {=1
ping g, from X’ onto ¥ as follows: ¢,|M = gh, and gy|a.b; is a homeo-
morphism of the arc a: onto an arbitrary arc which has g(h(as)) and
g(h (b)) as its endpoints and ¢, (a;) = g(h(as)) and gy (be) = g(h(bs)) for
each i=1,..,7
It follows from (14) and from the construction of ¢, that

(15) ¢, is a light locally weakly confluent mapping from X’ onto Y.
By Lemma (4.6) there is a light mapping f; from X ontp X’ such that
(16) ful#)=a for each & ¢ X"

Put f(x) = g,{fi(z)) for each z ¢ X. According to (15) and (16) we see
that f is a light locally weakly confluent mapping from X onto Y. The
proof of Theorem (4.7) is complete.

Theorems (4.1) and (4.7) imply the following
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(4.8) CorOLLARY. Let X and X be graphs and let p, s ooy Pn be the rami-
fication poinis of X of orders Ey, ..., ka, respectively. There is q light locally:
wealkly confluent mapping from X onto X if and only if X has ramification
POINES Gy, -y Gn OF 07AEYS, My 4 oy M, veSPeCHively and my > kifori=1, .., n.

A graph which does not contain a simple closed curve is called a finite
dendrite. Tt follows from Theorem (4.7) that :

(4.9) CororLARY. Hor each graph X there is o finite dendrite T such
that there is a light locally weakly confluent mapping from X onto ¥ and
there 4s o light locally weakly confluent mapping from Y omto X.

(4.10) Remarks. If wo know the number of ramification points of an
arbitrary graph X and the orders of those points, then by Corollary (4.8)
we can find the nuwmber Iwe(X) of non-homeomorphic images of X under
light locally wealkly confluent mappings. For example, if X is an n-star
for some # = 3, then

n
Iwe(X) = (n—1)+ 3rs,
k=2
where

kj2 if % is an even number,
(k—1)/2 if % is an odd number .

Thus if X is & simple triod, then Iwe(X) is equal to 4; namely, a non-
homeomorphic images of a simple triod under light locally weakly confluent.
mappings are: an are, a simple closed curve, a simple triod and a union.
of an arc and a simple closed curve which are disjoint except for one poins,.
which is an endpoint of that are. '

The proof of Theorem. (3.1) partially coincides with the proof of The-
orem 1 in [4], §49, VI, p.246; and the proofs of Theorems (3.2) and (4.1}
are almost the same as the proofs of Theorems IT.1 and II.5 in [2], but we:
obtain more general results.
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A theory of absolute proper retracts
by

R. B. Sher* (Greensboro, N. C.)

Abstract. We construet a theory of absolute properretracts (APR’s) for locally compact
metric spaces analogous to the usual theory, only requiring that all maps f)e proper.
The APR’s are shown to be the non-compact ANR’s having property SUV®, We obtain
the standard extension theorems and a result characterizing the APR’s by a property of
their Freudenthal compactification.

1. Introduction. In this paper it is our aim to lay the foundation for
a study of absolute proper retracts and absolute neighborhood proper
retracts. The basic idea is t0 modify the definition of absolute retract and
absolute neighborhood retract by requiring that all maps be proper.

Rather than concentrating at this time on the general properties of
absolute proper retracts and absolute neighborhood proper retracts, we
ghall limit ourselves to the basic definitions and faets, and to the problem of
identifying the absolute proper retracts and absolute neighborhood
proper retracts among the ANR’s. For absolute neighborhood proper
retracts, the result is essentially trivial (and well-known). However, we
include it here for completeness. It is that, for the class of spaces under
consideration, X is an absolute neighborhood proper retract if and only
if X ¢« ANR. However, for absolute proper retracts, the situation is more
complicated, and we show that X is an absolute proper retract if and only
if X is non-compact, X « ANR, and X has a certain geometric property
called property SUV™. As a tool, we obtain a result about the Freudenthal
compactification of ANR’s having property SUV™ which is of interest
in its own right.

2. Absolute proper retracts and absolute neighborhood proper retracts.
A map f: X - Y is said to be proper it f~1(C) is compact for each compact
set ¢ C Y. Proper maps geem o make good geometric sense as a vehicle
for the study of locally compact metric spaces (e.g., see the results of [2]),
and throughout this paper we shall restrict our abtention to this class of
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