16

TrrorEM DL. Let P be a v-semilattice with a partial A taking g.1.b.
as values such that the ewistence of anp implies (aVy)A(BVy) = (aAB)vy
for every y. Then P is embedded in the distributive lattice I it freely generaies,
and every congruence (for both the total and partial operation) of P is the
restriction of a lattice congruence on F. .

This furnishes in particular a solution for the distributive case of
Problem 20 in [G'].
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Topologically nondegenerate functions
by
"Marston Morse (Princeton, N. J.)

Abstract. Let M, be a compact, connected topological manifold and F a continu-
ous real valued function on M, that is topologically nondegenerate in the sense of
Morse [12]. Let ¢ be an arbitrary value of F and set

Fo={p ¢ Mu| F(p)<c}.

The “topological critical points” of ' on F, are finite in number and can be related to
the invariants of the homology groups of I, as in the differentiable case (Morse and
Caimns [14]). F-deformations and F-tractions make this possible. F-tractions are our
extensions of retracting deformations of Borsuk [1]. Kirby and Siebenmann in [7] have
affirmed the existence of topologically nondegenerate functions on M, when n # 4 or 5.
For the differentiable case see [15], Milnor [9] and Cerf [3]. Paper [16] reorganizes the
clagsical group structure of the singular homology theory of Eilenberg [5] for use in
this paper.

Introduction. This paper is concerned with continuous, real-valued,
topologically nondegenerate functions F, as distinguished from differentiably
nondegenerate functions. (See § 1 for definitions.) The domain of F is
taken as a compaet topological manifold M,. The paper [14] of Morse
and Cairns is here extended from the differentiable ease to the topological
case. A Dbrief abstract of this paper is found in [13].

Singular homology theory is used of the type first introduced by

‘Bilenberg in 1944. See reference [6]. No “friangulations” are needed.

Deformations termed “tractions”, are fundamental; they relax the con-
ditions on “retracting deformations” as commonly defined. For original
concepts see Borsuk [10]. The theorem of Kirby and Siebenmann on
the existence of topologically nondegenerate functions, when = # 4 or 5,
is a starting point. This paper draws heavily on Morse [12] in which
topologically nondegenerate functions were first defined. Paper [16] re-
organizes the classieal group structure for use in the necessary homology
theory.

To avoid complexity in a first treatment this study has been subjected
to many restrictions that can be readily removed. In particular, one
could greatly lighten the condition that the manifold be compact.. One
could also remove the condition th%topological critical values be of
singleton type in the sense of § 0./

2 — Fundamenta Mathematicae T. LXXXVIIL {
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For a general approach to the differential case the reader is referred
to the treatises by J. Cerf [3] and J. Milnor [9]. Fundamental applications
have been announced by S. Smale.

The author wishes to acknowledge his indebtedness to Professor
Ping-Fun Lam for his collaboration in the critical reading of the manu-
seript. A later critical reading by 8. 8. Cairns was most helpful.

§ 0. Program. Thiy paper is concerned with a compact, connected,
topological manifold M, on which there exists a continuous real-valued
funetion F which is TND (*) in the sense of § 1 of [12]. T'-critical points
and T-critical values are defined in [12] and in § 1 of this paper. As [12]
ghows, there exists a finite set of T-critical points on Mn,. Given a value
¢ e B we ghall set

(0.1) F={pe M, F(p)=c},
(0.2) F,={pe M, F(p)<c}

and term F¢ and F. ¢-level subsets and c¢-sublevel subsets, respectively,
of M,. If ¢ is not a value of ¥ these sets may be empty.

Given a TND function F on M,, we shall show in § 1 that F can be
infinitesimally modified to yield a TND function F on M, such that
there is just one T'-ecritical point p, at each T'-critical level a. Once this
is proved in § 1, we shall thereafter assume that T'-critical values a of F
have this property. Such T -critical values ¢ of F' and the corresponding
T-critical points ps will be called simgleton T'-eritical values a and
points p., respectively.

The major differences between this paper and [14] arise from the
fact that “retracting deformations”, so essential in [14], were defined
with the aid of orthogonal trajectories of the level manifolds f¢ of the ND
function f given in [14]. The level manifolds #° of this paper, in general,
possess no such orthogonal trajectories.

Use will be made, as in [14], of the singular homology theory of
Eilenberg [5] over the ring Z of rational integers. ‘

Part I. F-tractions. This paper is in three parts. Part I is largely
an adaptation for the needs of this paper of the “f- deformations” intro-
duced in [12]. We shall reéplace the “retracting deformations” of [14]
by special F-deformations, termed F-tractions. F-tractions, as we shall
see, have the fundamental property, that an F-traction of a subset x
of M, into a subset y' C yx of M,, implies an isomorphism

(0.3) Hy(y,Z) = Hy(y', Z)  (4=0,1,..)
of the gth homology groups over Z of y and yx'.

(*) T abbreviates topological; ND -abbreviates nondegenerate.

icm
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Part II. The (') FG of the homology groups H,(F., Z). Part II es-
tablishes the basic theorem, that if ¢ is an arbitrary value of F, the

homology groups Hy(¥e, Z) are FG. The singleton critical values of F are
listed as a sequence

(0.4) < o< a<..<a,.

It is found that as ¢ increases from a, to a,, the groups Hy(F., Z) remain
isomorphie, except at most when ¢ increases from a value in an interval
[@_,, a,) t0 a,. In Part IT we show that as ¢ increases, Hy(F,, Z) remains
FG without exception. One shows, by an induetive proof, that each of
the groups Hy(F, ,Z) is FG.

Part III. Critical invariants of 7 -critical points p, of F. Part 11T is con-
cerned with the changes in the integral invariants (2) of the groups Hy(F¢, Z)
as ¢ changes from a, to a,. We shall associate a finite set of integers with
each singleton critical value a in the list (0,4) and term these integers
eritical invariants of p, and F,. Foremost among these critical invariants
of p, are its T'-index ka, its “free index” s* > 0, and its positive “torsion ®
index” ¢% defined only when s®= 0 and a > q,. Free indices and torsion
indices are defined in [16]. Paper [16] gives the group theoretic back-
ground of this paper, while [12] gives its more geometric background.

Given an arbitrary value ¢ of F, the theorems of Part ITI show that
the integral invariants of the groups H,(F.,Z) are determined by the
critical invariants of the largest of the 7T'-eritical values a = a,< ¢ in
the list (0.4) and the integral invariants of Hy(F,, Z) where F', = F,—p,.

The invariance of critical invariants. Let % be a homeomorphism
p—h(p) of thg manifold My onto a manifold M,. Let F be a continuous
mapping of M, into R such that F(p) = F(h(p)) for p ¢ M,. Our de-
finitions will show the following. 7 is TND if and only if F is TND. If
Pais a T-critical or I'-ordinary point of F, then k(pa) will be, respectively,
a T-eritical or T-ordinary point of F. Bach critical invariant N of Pa
will be a eritical invariant of (pg).

The existence of TND functions on M. If M, is a compact differenti-
able manifold of class at least 2, the existence of a TND function on M,
was made clear by Morse in 1927. See [10] and § 6 of [15]. Eells and Kuiper
in [4] have gone beyond the differentiable case and established the
existence of TND functions on combinatorial manifolds. More generally
Kirby and Siebenmann have affirmed the existence of TND funections

(1) F'G abbreviates “finite generation” or “finitely generated.”

(?) By the integral invariants of a homology group are meant its Betti number
and torsion coefficients.

(*) The torsion index i of a T'-critical point p, is not to be confused with a torsion
coefficient of Hy(F,, Z) or Hy(¥,,Z).
2%
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on each topological manifold M, for which # is neither 4 nor 5. This
affirmation is found in a deep study [7] (*) of the classification theorems
of metrizable topological manifolds of finite dimension. TND functions
on & compact topological manifold were first defined and studied in [12].
We here continue this study, seeking to make clear the implications of
the existence of TND functions in homotopy and homology theory. The
general coneépts and theorems of Cerf [3] are part of this evolving theory.
Noncompact manifolds. The restriction of this paper to compact
- manifolds is for simplicity only. One could obtain similar results on
a connected, noncompact manifold provided with a TND funection F
such that for each value a of F, Iy is compact. Cf. Theorem 23.5 of [15]
for the differentiable case. In this more general case there may be a‘count-
ably infinite set of T'-critical points.

Part 1. F-tractions on M,

§ 1. TND-functions ¥ on M,. We shall recall the definition of a TND
function # on M,, as given in [12].

Let #, ..., 2, be coordinates of a point 2 ¢ B". Let Z, be an origin-
centered closed n-ball in B" of radius g, and Zq its interior. Let 0 be the
null #-tuple (0, ..., 0).

DEFINITION 1.1. A point ¢ ¢ M, will be called a T'-ordinary point
of F, if there exists an injective homeomorphism

(1.1) 2—Wy2): Zi—My
such that ¥y(0) = ¢ and for some sufficiently small scalar g, >0
(L2) F(E) = F(Q)+2nee (v Z)

where 2, is the ath of the coordinates 2y, ..., 2, of z.

The gondition (1.2) implies that the level sets of F' in the neighbor-
hood Wy(Z,) of ¢ are images under ¥, of open sets on a set of parallel
(n—1)-planes.

DrriNtrioN 1.2. T-critical poimts of F. A point o of M, which is
not a T'-ordinary point of F' will be called a T'-critical point of F.

Let & be an integer on the range 0,1, ..., n. Set

— e — B R LR =Qu8) (2 RM).

A T-critical point ¢ of F will be said to have a T-indew % if there exists
a homeomorphism (termed canonical) of form

(1.4) 20 (2): Z,—M,

(1.3)

*) Our refere?ce to Kirby and Siebenmann is to one of a series of papers by these
authors on topological manifolds. It was obtained by writing to Kirby and Siecbenmann.

e ©
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into My, such that &,(0) = o and for fixed o and some sufficiently small
scalar g,

F(®,(2))—F (o) = Qulz)e, (2.

(1.5)
We set
(1.6) b,(%)=1N,, & L)=DN;

as (%) in [12] and term N, and N} inner and outer canonical neighborhoods
of o on My.

When k= 0, (1.5) shows that #F(p) = F (o) for p e N, When k= n,
F(p) < F(o) for pe Nk.

DEFINITION 1.3. TND functions F. The function F will be termed
TND, if corresponding to each T'-eritical point o of F, there exists
a canonical homeomorphism &, of Z, into M,, conditioning F as in (1.5)
and defining a T'-index % of o.

The condition (1.5) requires that the level sets of F' in the neighbor-
hood @,(Z,) of o be the T-images of level sets of the quadratic form @
in a neighborhood of the origin in RE™

We assume that F is TND.

The set of T'-ordinary points of F in M, is clearly open. The set of
T-critical points of F is accordingly closed in M, and hence compact,
since M, is compact. If o is a T'-critical point of F, one shows readily
that each point in N} other than o, is T-ordinary. As isolated points in
the compact set of T'-critical points of F, T-critical points of F' are finite
in number.

A metric on M,. As a compact topological manifold, M, admits
a metrie which induces the topology with which M, is given.

T critical values. If o is a T'-eritical point of F, F(s) will be called
a T-critical value of F. A value of F' which is not T'-critical will be called
T-ordinary. If ¢ is a T-ordinary value of F, the level manifold F¢ is
a compach (n—1)-manifold without boundary. If ¢ is a T-critical value
of F, the deletion of T'-eritical points of F' on F° from F° will yield an
open (n—1)-manifold on M.

Singleton 7T'-critical points and values of F have been defined in § 0.
A singleton eritical value e will be assigned a T-index k= k, equal to
the T-index of the unique T-critical point p, for which F( Pg) = a. We
shall prove the following.

TarorEM 1.1. If there ewists a TND function F on M, there exists
a TND function F on M, each of whose T -critical values is a singleton
critical value.

1) Conditions (1.2) and (1.4) in reference [12], multiplied on the right by sealars g,
and g,, respectively, should hold for some choice of these scalars as positive numbers.
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Moreover, if I is given, I can be defined so as to have the same
T'-critical points as F with the same T'-indices and with singleton critical
values which differ arbitrarily little from the T'-eritical values which
they replace. The following lemma implies this. In this lemma, as else-
where, CX will denote the complement in My, of a subset X of M,.

LeMMA 1.1. Let F be a TND-function on My and o a T-critical point
of F for which F (o) is not a singleton T -critical value of F. Let & be a pre-
scribed positive constant.

It is possible to redefine F in a closed subneighborhood H of the neighbor-
hood N* of o, leaving F(p) unchanged for p « CH, so as to replace T by
a TND - function G on M, such thai o

(i) o is the only T-eritical point of G in H.

(i) The T-index ¥ of o, relative to ', is the T -index of o relative to @.

(ili) G(o) is a singleton critical value of G such that
(1.7) 0< |G(o)—F(o)| < .

Proof. One readily defines a O*-mapping
(1.8) z—A(2): B"—R

such that A(2) = 1 for |¢]| <1 and A(2) = 0 for |j¢| =
ficiently small the mapping z—u(2) with values
{1.9) pE)= —d— .. 22+ + .. +A+el(z) (s e RY
has no critical point other than z= 0.

DEFINITION OF @. We refer to the homeomorphism &, of Z, onto N *
introduced in (1.4) and set

5 I e >0 is suf-

(1.10) H=0,7) (o=}.

Then H is a compact subset of N} and CH is open in M,. Set
(1.11) G(p)=F(p) (p<CH),

{1.12) G(p)=TF(o)+u@e, (pelN;)

subjeet to the condition, p = @,(z) for [l¢l| < 2. The sets CH and N* are

open subsets of M, whose union is M, and whose intersection is N “—H.

Both (1.11) and (1.12) define G(p) on this intersection, but consistently ().
From (1.12) and (1.5) we infer that

(1.13) G(p) = F(p)+eg, (peN,),

taking account of the fact that 4(¢) =1 in (1.9) when ||¢] < 1
We continue with a proof of the following.

(*) Since i(s)==0 in (1.9), when [jg] > £
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() The mapping @ is TND on M,.
To verify («) set N¥—o= N¥. Note that the subsets

(1.14) N,, CH, N

of M, are open and have the union M,,. We shall show that the restrictions
of & to each of these sets is TND. This term is defined on open subsets
of My as on M,. That G{N, is TND follows from (1.13). That G|CH is
TND follows from (1.11). That each point of ¥* is T-ordinary relative
to @ follows from (1.12), subject to the condition p = &,(2), and from the
fact that the mapping 2—pu(2) of R™ into R has no critical point other
than z=0.

Thus («) is true.

Statement (i) now follows from (1.12), while (ii) follows from (1.13).
Statement (iii) will be true, in accord with (1.13), if e is sufficiently small.

This completes the proof of Lemma 1.1. Theorem 1.1 follows.

Singleton notation. It is assumed that ¥ is a TND-function on M,
whose T'-critical values a are singleton values, and are listed in (0.4).
With each such value a there is associated the unique 7T'-critical point pa
at the F-level a. The T-index of p, will be denoted by k= k, and will
be termed the T'-index of a, as well as the T-index of ps. If o = p,, the
canonical homeomorphism @, associated with ¢ as in (1.5), when k= k,
will be denoted by ®2. The canonical neighborhoods N, and N of o
introduced in (1.6), will be denoted by N* and N;% respectively.

§ 2. F'-deformations. F'-deformations will be defined after we have
defined deformations of a more general character.

Let  be a real variable termed the time. Liet I = [0, 1] denote an
interval for t. With us a deformation of a subset 4 of a topological space
4 is a continuous mapping

(2.0) (p,)=>D(p,t): AxI—y

such that D(p, 0) = p for each p e A. We shall denote D(p,?) by p,.
Given p ¢ A we say that p, replaces p under D ai the time't. We set D(p, 1)
= D,(p) and term D,(p) the final image of p under D.

By the carrier [D| of D is meant the image of 4 x I under D. We
say that D deforms A on a subset X of y if |[D|C X.

Retracting deformations. A deformation D of A is said to be a de-
formation retracting A onto Dy(4), if D deforms A on A and leaves each
point of D,(4) fixed.

In case y is a differentiable manifold M, retractmg deformations
which are adequate for our purposes are relatively easy to define.
When M, is no longer differentiable, retracting deformations of the
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desired types may fail to exist. There is, however, a larger class of de-
formations which serve our purposes and will now be defined.

DEFINITION 2.1. Tractions. A deformation D of a subset A of 4 will
be termed a traction of A into a subset B of A (possibly A) if D deforms
A on 4 into B and deforms B on B.

PBach “deformation retracting 4 onto B” is a “traction of 4 into B”
but a traction of 4 into B is not, in general, & deformation retracting 4
onto B. However a “traction of A into B” shares with a “deformation
retracting A onto B a fundamental property: there exist isomorphisms (1)

(2.1) Hq(-A-,Z) ~ Hy(B,Z) (g=0,1,..,m).

See Theorem 3.1.

The following definition is given in [12], p. 192. A related definition
is given in [11], . 30.

DeFINITION 2.2. An F-deformation of 4 on M,. A deformation
of A on M, which replaces each point p € 4 by a point p; at the time # is
called an F'-deformation, if F(p) = F(p;) for each #e[0,1] and ped,
and is called a proper F-deformation of 4, if in addition

(2.2) F(p)<F(p) (whenever p, # p).

An F-deformation which is a traction is called an F-traction.

Recall that a T-critical value a of I is, by hypothesis, a “singleton
value”, assumed at just one T-critical point of I denoted by pa. See
singleton notation at end of § 1.

DeriviTION 2.3. The T-(k-dise), K* For each integer & such that
0 <k <n, we introduce the open (?) k-dise,

(2.3) wp={2eR" &+ .. +25<4; 2y, = ...= 2= 0}

in R" Note that w,= 0 and that w, is an origin-centered n-ball in E™
on which ||z < 2. Let a be a T'-critical value and o = p,, the T-critical
point at the F-level a. Let &% be the canonical homeomorphism &, of Z,
onto Ny, of Definition (1.6) when o = p, and & = k,, and denote this
set N, by N,% Using the same homeomorphism &% wo introduce
a T-(k-disc), the subset

(2.4) K= 0%w,) (k= la)
of N;% It is clear that N and its subset K“ satisty the relation
2.5) KSC N* AT,

(*) With us an “isomorphism” is understood, a priovi, to be surjective unless the
contrary is noted.
(*) That a 0-disc 0 is open is a econvention.
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We say that K®and N:¢ are related by &;. Note that K is a T-(k-dise)
included in N;% meeting F* in just one point o.

The following lemma is basic. Its formulation differs trivially from
the formulation of Lemma (*) 2.1 of [12]. It is proved in [12].

Levma 2.1. Let 0= pa be an arbitrary T-critical point of F with
T-index & = ka. Let N3, NJ® be canonical neighborhoods of o, defined as
in (1.6) when o = pa and k = kq. Corresponding to o there exists a proper
F-deformation A, of M, with the following properties.

I A, leaves o and CN;® pointwise fived.
II. 4, displaces each point of N %—og,

ITT. A4, deforms N§ on N¢ into the T-(k-disc) K% defined in (2.4).

IV. 4, deforms K% on iiself onto K°.

The F-level sections of K° when % = k;. The definitions of wgz in
(2.3), and of K® in (2.4), show the following. If 1<k <n and if ¢ is
a value of ¥ on K°— ¢, the section of K* at the F'-level ¢ is a topological
(k—1)-sphere. If k= 1, this section is a pair of distinct points. These
sections of K® vary continuously with ¢ and shrink to ¢ as ¢ increases.
When k=0, K= o.

In § 3 of [12] the following lemma is established as Lemma 3.1.

LeMyA 2.2, There ewists a proper F-deformation A of M, onto M,
which leaves each T -critical point of F fiwed and displaces each other point
of My.

The following lemma refers to a T-eritical value a of ¥ and to
the subset
(2.6) Fo o ={pecM,| F(p)<a}(*
of M. Theorem 3.1 of [12] is established with the aid of the deformation 4
of Lemma 2.2 and implies the following.

LevmaA 2.3. Let a be a T-critical value of F and (a, b] an interval free
of T-critical values of F. If ¢ = pa, there exists an F-traction D of Fy into
owFy (%)

Let N¢ be a canonical neighborhood ¥, of ¢ = p4, introdueed in § 1.
Lemma 2.3 has the following corollary.

(1) In ref. [12], T abbreviates topological. The following table of notational errata
of [12] is appended:

Page 189, 190, 190, 193, 194, 195, 197
Line —5, 3, 8, —4, 14, —13, 6,8
Symbol y, 7, D, 7, Z, pRe, B

Replacement  ¥,, M, Doy My 2L peRE, B
() In [12] F,_ is denoted by S,-.
(%) F,_ is empty when a= a,.
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COROLLARY 2.1. Under the conditions of Lemma 2.3 the following is
true. If ¢ € R is such that a—¢ is sufficiently small and positive, then D is
an F-traction of Fy into N¢ U Fo if ke > 0, and into o v Fe if ko= 0. If
a= ay, Fc is emply.

The F-deformation D of Lemma 2.3 of Fy is into a final image D,(Fy)
CouF,_ . This final image is closed and is accordingly included in
N U F, for a suitable choice of ¢, with a—¢ sufficiently small and positive.
When kg =0, N%~ Fo=o; hence Dy(Fy)CowF, when ke=0. (Cf
(1.5) and (1.6).)

Preparation for Theorem 2.1. The formulation of Theorem 2.1 requires
the definition of a T'-saddle of F at each T'-critical point pe for which
ks > 0. The set K% defined in (2.4), is on F,, and below the F-level a,
except for the point o. K® will serve our purposes as a T-saddle of p,
if we out off from K? all points definitely below a suitably chosen F'-level
¢ < a. With this understood we give the following definition.

DEFINITION 2.4. A T-saddle L of I at pe. Our T-saddle is defined
only when k = k; > 0. Let ¢ be a value of F on N7 such that a >¢> q,
where a is the T'-critical value next below a. We set

@0 L% = {pe K" az=F(p)>c}

and term L%® a T-saddle of F at o = p,.
It is a consequence of (2.4), (2.7)" and the choice of ¢ that

@.7y" L*C N® A F,

and that L*® meets F* only in o = pa.

Corollary 2.1 leads to the following basic theorem.

TEEOREM 2.1. Let [a, f] be an interval in which o is the only T -critical
value. Let y be a value in [a, f1. If ¢ < a and a—c is sufficiently small,
there ewists an F-traction d of F, into L>° v F, when k, > 0, and into ¢ v Fe
when k, = 0.

Proof. By Corollary 2.1, there exists an F-traction D of T, into
NeoPF, it k=k,>0, and if a—e¢ is sufficiently small and positive. If
A2 is the F'-deformation 4, of Lemma 2.1 when ¢ = p,, then by III of
Lemma 2.1 the product F-deformation d = A%D will satisfy Theorem 2.1
when % >0 and a—c¢ is sufficiently small.

In case k== 0, D of Corollary 2.1 will gerve as d of Theorem 2.1.
Thus Theorem 2.1 is true. '

Permanent notation. If o = p, is a T-critical point with T'-index
k= ks >0, a deletion of o from Fa, or from the sets K* and L*° included
in F,, will yield sets to be denoted by

(2.8) ¥,, Ko, I,
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respectively. 7, is similarly defined and non-empty when %, = 0, provided
@ is not the minimum 7'-ecritical value a,.

The following theorem supplements Theorem 2.1.

THEOREM 2.2. Let a and b, with a<< b, be T-critical values of F such
that (a, b) is an interval of T-ordinary values of F. There then exists an
F-traction of Fy into Fg.

The proof of Theorem 2.2 is begun by verifying the following state-
ment.

(i) If b is given as in Theorem 2.2 and if ¢ ¢ R is such that b—e is
sufficiently small and positive, there ewists am F-traction d of T, into F,.

Proof of (i). Let k= k be the T-index of 5= p,. Suppose that
k= ky > 0. It follows from Theorem 2.1, with « and y of Theorem 2.1
both taken as b of Theorem 2.2, that if b—¢ is sufficiently small and
positive, there exists an F-traction D of ¥, into a set of form 1>y F,.
It is trivial that there exists an F-deformation D' of I u ¥, onto 7,
retracting 7¢ T, onto ¥, so that D'D is an F-traction d of F, into H,.
Thus (i) is true when %, > 0.

When % = ky = 0, statement (i) follows from Lemma 2.2, since I, is
compact when k= 0 and contains no T-ecritical point at the F-level b.

It follows from Theorem 2.1 with ¢, f of Theorem 2.1 taken as a, ¢,
where @ << ¢ << b, that there exists an F-deformation D'’ of F, into F,.
Hence the product deformation D''d is an F-traction of F, into F,.

Thus Theorem 2.2 is true.

Introduction to Lemma 2.4. Let o= p, be a T-critical point of F
with a positive T'-index % = k;. We seek a neighborhood X of o relative
to F,, such that there exists an F-deformation of X which retracts X

“into a T-saddle L*® of F at o= p,. Taking account of the definition
. of I in (2.7)" and of K* in (2.4), one sees that a neighborhood of pg

relative to F,, with the desired property, is defined by the union X*° of
all sections of N7 with F-levels in the interval [¢, al. We suppose that
a—¢<< 1 and note that
(2.9) X4 = N¢n(F,—F,_)=DPHA) (cf. (2.4))
where
A={zeZ| 0= 0,Qx2) =c—a} (cf. (1.5)).

LEMMA 2.4. When k = kg > 0, there exists an F-deformation @ of X*°,
retracting X° onto the T-saddle L*° of F at 0 = Pa.

Let B be the subset of 4 of points (2, ..., 2,0, ...,0) e A. Then
(2.10) X%t = @Y A); L* = DPYB) (cf. (2.7)).
One readily shows that there exists an F-deformation retracting 4 onto B,
in which a point 2z e A4 is “replaced” by a point 2z(f) e 4 as i increases
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from 0 to 1, with Qu(#) = Qule(t)). Lemma 2.4 is satistied by a de-
formation d in which, as t increases from 0 to 1, each point Pi(z) in X*°
is replaced by ®{z(t)) as 2 ranges over A.

§ 3. Relevant theorems in singular homology theory. We shall be con-
Gerned with singular homology on a topological space y. Use will be made
of Eilenberg’s definition in [5] of singular r-eclls. No triangulations of x
are presupposed. See also § 26 of [15].

Given y and the ring Z of rational integers, the singular 7-cells on y
are combined linearly, with coefficients in Z, to define a Z-module,
denoted by C,(x,Z). The singular r-cells on x form a basis for C.(y,Z)
in the sense of Bourbaki [2], p. 11. The elements of C.(x, Z) are termed
r-chains. The homology groups H,(x,Z) are well-defined for each rational
integer 7. They are trivial if r<C 0.

The following notational innovation is very useful.

DEFINITION 3.0. ((u, x)). If u” is an r-cycle of Cy(x,Z) then (", )
shall denote the subset of r-cycles in C,(x,Z) which are homologous
to u" on x. One can regard ((u", y)) as an element in H(y, Z).

DeFINITION 3.1. The chain-transformation p (Eilenberg). Let there
be given a continuous mapping ¢: x—y  of a topological space y into
a topological space z". A singular g-cell o? on x is defined by the elass of
“equivalent” mappings = of vertex-ordered euclidean ¢-simplices into y.
COf. § 26 of [15]. In a chain-transformation,

(3.0) p: Olz, 2)— 0y, Z2) (¢=10,1,2,..),

“induced by ¢”, the image po? on y’' of a g-cell o¢ on x is defined by the
compositions @ o7 with @ of the equivalent mappings 7 into y which

define o?. The mappings @, so defined for cells ¢%, are extended linearly,

over Zto define the mappings (3.0). Rilenberg shows that ¢ is permut-
able with the boundary operator 8. Natural homomorphisms

(CRY 9yt Holy, 2)—~Ho(y', Z2)  (g=10,1,..)
are induced by .

Let 2z be a g-cycle (over Z) on y and d a deformation of y on y. If
dy is the terminal mapping of d, the homology 2 ~d,# is valid on the image
under ¢ of any carrier [2| of 2. By a carrier |z] of # is understood any subset

of ¥ on which the cyele 2 is well-defined. Cf. Corollary 27.1 of [15].
. The F-“tractions” defined in § 2 induce isomorphisms as follows.

TeEOREM 3.1. Let y and x' be topological spaces, with x' a subspace
of y, and let d be a traction of y imto y'. Isomorphisms

(3.2) Go: Holy's Z) > Ho(y, Z)  (¢=10,1,...)

are induced in which, for each q-cyele z on i, ((z, 1)) is mapped onto ((2, 1))

icm

Topologically nondegenerate functions 29

The homomorphism &, of Theorem 3.1 which we have affirmed to
be an isomorphism of Hy(y', Z) onto Hy(y,Z) is induced by the inclusion
mapping ¢ of y" into y. It is clearly an isomorphism if the following is true.

(a) Bach ¢-cycle on y is homologous on y to a g-cycle on y'.

(b) Bach g-cyele on y' which is bounding on x is bounding on '

In fact G, is surjective if (a) holds and has a null kernel if (b) holds.

Proof of (a). Since d deforms i on x into y’, (a) is clearly true.

Proof of (b). Let d; be the terminal mapping of d. As is well-known,
one can associate with d a linear homomorphism (see § 27 of [15])

d: O3, Z)—~0Cy(x,Z) (r=0,1,..)

such that for each r-chain ze 0\ (x,Z)

(3.3) odz = dyz—o— doz .

Moreover, the definition of & in [15] is such that a carrier |dz| exists on
a subset X of y if d deforms |2] on X. (Lemma 27.1 of [15].)
As in (b), let u, be a g-cycle on y' such that

(3.4) U, =0y, ,

where y, is a (g+41)-chain on yx. By virtue of (3.3)

(3.4)" ody, = 4,y,—y,— doy, -

On applying & to the members of (3.4)” and making use of (3.4), we
find that

8.4)"

By hypothesis both ﬁlyx and du.. are on yx', so that (3.4)
u, ~0 on y', confirming (b).

Theorem 3.1 follows from (a) and (b).

Relative homologies over Z. Relative homologies were introduced
by Lefschetz. Suitably modified, relative homologies will serve in § 4 to
characterize the effect on a group Hy(F,,Z) of replacing F, by Fu. Here
a is a T-critical value of F, with T-index k= ks >0.

Given a topological space x, a subspace A # o of y is taken as
a “modulus” and the pair (y, 4) termed admissible. The gth relative
homology group is denoted by Hy(x, 4,Z). On passing from a field & to
the ring Z, Theorem 28.4 of [15] leads to the following theorem. The
proof is similar to that in [15]. .

TemorEM 3.2. Let (1, A) and (i, A') be admissible pairs with 3’ C x
and A’ C A. Let d be a deformation retracting y onto y' and A onto A’ with dy
the terminal mapping of d.

0= &Elyx— u,—0du .

rr

implies that
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Corresponding to_the inclusion mapping i of (', A') into (x, A) the
chain transformation 7 induces isomorphisms

(3.8) Hy(y', 4, Z)“’HQ(XiA?Z) (g=10,1,..)

under whose respective inverses the vel. homology class on x of a g-cycle
z,mod 4, corresponds to the rel. homology class on y' of d, z,mod 4",

The proof of Theorem 28.4 in [15] shows the following: N

(a) A g-cycle z,mod 4 is homologous on ymod 4 to the ¢-cycle d,z,
on yx'modA'.

{(b) A g-cycle u, on x'modA’ which is bounding on ymodd is
bouding on y'mod A’ R

Statement (a) implies that the inclusion induced homomorphisms (7),
are surjective, while (b) implies that the kernels of these mappings are null.

Theorem 3.2 follows.

Excision. Among the axioms of Eilenberg and Steenrod, formulated
on page 11 of [6], is found the Excision Axiom. Our next theorem formu-
lates a simplified version of the Excision Axiom adequate for our purposes.

THEOREM 3.3. Bwcision. Let y be a metric space, A a p%'opew subspace
of x and A* a subspace of A such that for some positive e

(3.6) (x—4),Cy— A%,

where (y—A), is the open e-neighborhood of y— A, relative to .
There then exist isomorphisms,

(3.7) H!I(X_A*JA“-A*’ Z);’HQ(ZyA;Z)y (g=0,1,..)
induced by the inclusion mapping
i (g— A% A—A%)—(y, 4).

The proof of Theorem 28.3 of [15] yields a proof of the above Excision
Theorem, provided, of eourse, the field X of [15] is replaced by the ring Z
of integers.

DEFINITION 3.2. #:-mappings J&. The mappings of homology groups
into homology groups which have been introduced in this section have
all been isomorphisms. We shall now define an “inclusion induced”
homomorphism

(3.8) JE HyF,, Z)—»HyFay Z) (a>ap q=0,1,...)
which may or may not be an isomorphism, depending on the value of g,

on the T-index %k, of ¢ and other integral critical invariants to be
introduced.
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Let 75 be the inclusion mapping of F into F, and ¢ 1, the corregponding
chain-transformation

(3.9) g O Fey Z)—CyFa,Z)  (g=0,1,..).

For each q there is thereby induced a homomorphism of the form (3.8).
One sets (7,)+ equal to Jg- We term J¢ a 3 -mapping. Whether Jg is an
isomorphism or not, it is of basie mlportanee Ifzisa g-cyclein G‘q(F,,, Z),
then in the notatlon of Definition 3.0

(3.10) Tg( (=, 7)) = (=, Fa)

in accord with the definition of (7,),.

Part II. The finite generation of the groups Hy(F., Z)

§ 4. The homology groups Hg(Fa,,Fu,Z ). We shall characterize the
groups Hy(Fq, F,,Z) when a > a,. It will then be relatively easy to give
an inductive proof that for each T-critical value a > a, of F' in the list
(0.4), Hy(Fq, Z) is FG and to conclude that Hy(F., Z) is FG for each value ¢
of ' on M,.

The neighborhoods X*° of o= g, relative to ¥, when k= k;> 0.
X%¢ was defined in (2.9). Note the inclusions ’

(4.0) Fo D X%D L% (cf. (2.7)).
Deleting o from each of these sets one finds that
(4.1) ‘ F,D X%D I~

Preparation for Theorem 4.1.
Levma 4.1. If @ is the inclusion mapping,

i (X%, X (F,, F)) (k=1ka>0)
then T induces the isomorphisms,
(42) (D), HyX*, X%, Z)2HdF,, o, Z)  (g=10,1,..).

That the homomorphism (7) , induced by the chain-transformation 7
is an isomorphism is a consequence of Excision Theorem 3.3. One identifies
(x,4) of the Excision Theorem with (¥,,F,) and sets F,— X*° = A%,
With this understood

(4.3) A*CA, X%=y—A*, Xoo=4-4*

The excision condition (3.6) is satisfied, since a sufficiently small
e-neighborhood, relative to Fy of y— 4 = pq, is included in y— A" = X°
when k = kg > 0.
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The isomorphism (4.2) follows from Theorem 3.3.

According to Lemma 2.4 there exists an F -deformation retracting
Xa¢ onto the T-saddle L%, holding ¢ = p, fast. It follows from Theo-
rem 3.2 that if ¢ is the inclusion mapping

(4.4)' i (L%, Loy —(X%¢, X%°) (e >0)
the chain transformation 7 induces isomorphisms,
(4.4)" L, I Z) 2 HyX*, X%, Z)  (9=0,1,...).

From this result and from Lemma 4.1 we infer the following.
THEOREM 4.1. Let ¢ = p, be a T-critical point with positive T -index
k= Fkq. If J is the inclusion mapping

(4.5) J: (L%, 19— (F,, B (ka > 0)

. -
the chain transformation J induces isomorphisms,

(4.5)" HyL, L%, Z) > Hy(Fy, Foy Z)  (g=0,1,..).

Preparation for Theorem 4.2. Theorem 4.2 will make clear what are
the invariants of the Abelian groups (4.53)". By virtue of Definition 2.4
of the T-saddle L*° one sees that there exists a homeomorphism,

Or: LA, (k= ks >0)

of I*® onto an origin-centered %-ball Az in RF, with O(ps)= 0. Setb

A, = A3—0. Under @, L*® is mapped homeomorphically onto 4.

A classical theorem then implies the following. (Cf. Theorem 28.1 of [15].)
Levya 4.2. The chain-transformation Oy induces isomorphisms,

(4.6)  HyL%, L% Z)sHydy, 41, Z) (4= 0,1, .; b=ks>0).

The Abelian group Hy(dy, 45, Z), k >0, is free, as is readily shown,
and has a base of dimension 6%. This group is trivial except when ¢ = %,
and when ¢ =k has a base which consists of a single element of infinite
order. Because of the isomorphisms (4.5)"” and (4.6) we infer the following.

THEOREM 4.2. The homology groups (4.8)" are free. They are trivial
except when q= k. When q="5% >0, o base for these groups consists of
a single element of infinite order.

Preparation for Theorem 4.3. According to Theorem 4.2 when the
T-index of o = p, is a positive integer & = ka, a base of the free group
Hy(¥,, F,,Z) consists of a single element of infinite order. Such an
element is the homology class of special %-oycles x, on FumodF, which
we shall term saddle k-cycles of o = p,, and shall now characterize.

Three definitions are required.
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DEFINITION 4.1. A prebase for a relative Tomology group. Given g rel.
homology group Hy(x, 4,Z) which is free and has a finite base, a set
of non-trivial relative g-cycles, one from each relative homology class
in a base for Hy(y, 4, Z), will be called a prebase for H,. A preba;e may
be empty.

We seek a prebase for the group Hy(F,, FQ,Z )y k> 0. Aceording to
Theorem 4.2 it will consist of one k-cycle on F'y, modF,. We shall define
a prebase which is given by a single singular %-cell (taken mod ¥,) which
is sishply carried by F, in the sense of the following definition.

DEFINITION 4.2. Simply-carvied singular q-cells. A singular g-cell
on M, iy defined by an equivalence class (Eilenberg) of mappings
7: s—My of vertex-ordered g-simplices s into M,. If the mappings 7 are
homeomorphisms of their domains s onto their images 7(8), the resultant
singular g-cell on M, will be said to be simply-carried.

We give a fundamental definition.

DEFINITION 4.3. A saddle k-cell x,. If k= ks > 0, a singular k-cell
which is “simply-carried” on some T'-saddle L% of p, with p, an interior
point of the carnier of %, will be called a saddle k- cell of p,. Taken modL™°,
#q will be called a saddle k-cycle on L modL>°.

TurorEM 4.3. If a T-critical point o= p, has a positive T-index
k = kq the following is true.

(i) A saddle k-cell x4 of pa which is simply-carried by a T-saddle L™°
of pa and is taken modL®, is a prebase of Hy(L*™°, Z“’“, Z).

(i) Such a saddle k- cell taken modF,, is a prebase of HyF,, T, Z).

Proof of (i). To prove (i) use will be made of the isomorphism (4.6),
supplemented by the following affirmation.

(o) Let y*, & >0 be a singular k-cell simply-carried by Ar with the
center 0 of Ay in the interior of the carrier |y of y*. Taken modd,, y* is
a k-cyde on Apmod A, which is a prebase of Hy(dy, 4y, Z).

The proof of («) is elementary and will be left to the reader. One
should note that the carrier |9y*| is a topological (k—1)-sphere (*) on 4 *
whose “Jordan” interior on A contains 0. The readers will find Lemma 29.0
of [15] useful in proving ().

Granting the truth of («), Theorem 4.3 (i) follows from Lemma 4.2.
For the isomorphism (4.6) is induced by the homeomorphism @ of L™*
onto Aj. Under the inverse of & the cycle ¥* on Ay mod A, of () goes
into a saddle k-cycle x, of p, on L**modL*, which is a prebase of
Hy(Le, 1, Z).

Proof of (ii). If J is the inclusion mapping (4.5)" and x, a saddle
k-cell on L*° which, taken modZ‘“, is a prebase of Hy(L*®,1L*°, Z),

(*) A topological 0-sphere is understood to be a pair of points.
3 — Fundamenta Mathematicae T. LXXXVIII
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then by Theorem 4.1 Jra will be a prebase of Hx(F,, F,, Z). Statement (i)
follows, since Jra = #g0OLF, .

T-saddles L%° are a means to an end, the definition of saddle %- cells
of ps on Fy. In the following corollary of Theorem 4.3 the ends rather
than the means come to the fore.

COROLLARY 4.1. If #a(1) and x4(2) are two rel. saddle %-cycles on Iy
of the same T-critical points o= Pa with T-index & = ka, then for some
choice of ¢ as 1 or —1

(4.7) na(1) ~exa(2)  (on FamodF,)
and consequently,
(4.8) Ortg(L) ~ eDna(2)  (om Fy).

Proof of (4.7). According to Theorem 4.3 hoth x4(1) and #s(2) are
prebases of the free Abelian group Hy(F,, Fyy Z). The relative homology
(4.7) is implied.

Proof of (4.8). The homology (4.7) implies that

(4.9) #a(1)— exa(2) = 2e 6% (%o = k)

where ¢®+! and ¢* are infegral chains on F, and F, respectively. The
application of & to the members of (4.9) yields (4.8).

A critical homology class ((x,, F,)}. Corresponding to a saddle k-cell
#q of a T'-critical point p, of positive T-index k= ka, the homology
class of 8%, on ¥, is denoted by ((8x,, F,)) and termed a critical homology
class of F,. (Cf. Definition 3.0). It may be regarded as an element in
Hk_l(l'f’a,Z) According to (4.8) any other critical homology class of 7,
has the form e((dxa, F,)) where e = —1. As an element of Hy._, (F,,2),
the order of ((aua,Fa)) may be finite or infinite. We now define a basic
invariant 7%

DEFINITION 4.4, t% The torsion indew t* of ps when ky > 0. The order
of ((exa, ) in Hy_,(F,,Z), when finite, will be denoted by #* and
termed the torsion (1) index of p,. No definition of ¢ is given when the
order of ((0xq, F1,)) in Hy_,(F,, Z) is infinite.

If ¢° exists, it is positive and for each saddle k-cell x, of pa

(4.10) t%Bxa~0 (on F,).
If u+# 0 is an integer such that
(4:11) wrg~0  (on F,)

then ¢* exists and u = me® for some integer m # 0. This is an elementary
result in the theory of cyclic groups. )

() The torsion index ¢* is not: to be confused with a torsion coefficient of Hy.,(Hy, Z).
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DEFINITION 4.5. 1a. A k-cycle on Fy, *-fold Uinking. When & =k, > 0

and ¢ exists, (4.10) holds and there accordingly exists a k- chain ¢* on 7,
such that

(4.12) %%q = Be¥
and hence a k-ecycle
(4.13) la=t"%—~c"  (on Fy).

We term A, & k-cycle which is #%-fold linking on Fa, which belongs to Pa
and is associated with xg.

The following lemma is a consequence of Corollary 4.1.

Lpvma 4.3. (i) Any two t°-fold linking k-cycles lo(1) and Aa(2) on Fy
satisfy a relative homology
(4.14) A1) ~ ea(2)

where ¢ has one of the values 1.

(i) If 1q is a 2*-fold linking k-cycle on Fy, then pls~0 on FymodF,,
for no nonnull integer p.

Proof of (i). The relative homology (4.14) follows from (4.7) and
(4.13).

Proof of (ii). It follows from (4.13) that
(4.15) (on. Fymod¥,) .

Moreover #;, taken mod¥,, is a prebase of the free group Hy(F,, F,,Z)
in aceord with Theorem 4.3 (ii), 8o that uxs~0 on F,modF, for no non-
null integer u. Reference to (4.15) shows that (i) is true.

This completes the proof of Lemma 4.3.

Theorem 4.4 distinguishes between the cases in which a torsion index
t* of p, exists or does not exist.

THEOREM 4.4. If the T-index k = ko of a T'-eritical point pa is positive,
the following is true.

(i) In case pa has a torsion indew t* and Ay is a t°-fold linking k- cycle
on Fy, associated with pa, then if ¢k is a k-cycle on F,

(4.16) (on FymodF,)

(on FamodF,)

Ag~ t%q

ek ~mly

Jor some integer m (possibly zero).
(ii) If mo torsion index of p, ewists, then if X is a k cycle on Fy

(4.17) (on Famodlf”a) .

In both cases (i) and (ii), Theorem 4.3 (ii) implies that for some
integer u (possibly zero) :

(4.18)

3%

e+~0

k41

6% = g6k (on F,modF,)


GUEST


. ) ©
36 M. Morse Im

for a snitably chosen chain ¢%™* on F,. From (4.18) we infer that in both
cases (i) and (if)

(4.19) ubrg~0  (on Fy).

Proof of (i). If = 0"in (4.18), (4.18) implies (4.16) with m = 0.
If u # 0, (4.19) implies that x is an integral multiple mz® of #%, since z*
ig finite. In this case (4.16) follows from (4.18) and (4.15).

Proof of (ii). In the case of (ii), (4.19) implies that x = 0 in (4.19).
Otherwise t® would exist contrary to the hypothesis of (ii). When u = 0,
(4.18) implies (4.17).

Thus theorem 4.4 is true.

We shall now establish a corollary of Theorem 4.2 which will be
ugeful both in Part IT and Part III. Here the T'-index kg = 0.

COROLLARY 4.2. Concerning the -mapping Jg, &> ay, of Defini-
tion 3.2, the following is true.

(i) Kerd,; =10 when q # ka—1.

(it) Jg is surjective when q # ka. )

({ii) When q is neither ko nor ka—1, Jg is an isomorphism of Hy(F,, Z)
onto Hy(Fo, Z).

Proof of (i). If ¢ (1) is a ¢-cycle on F, such that ¢- + 0 on 7,
we ghall show that ¢2 ~ 0 on F, when ¢ # k,—1, implying thereby that
kerJ2?= 0 when ¢ # ks—1 (cf. Definition 3.2).

Suppose on the contrary that there exists a (g--1)-chain & such
that ¢ = 8¢&*. The chain ¢} is then a ¢ycle on F,modF,. Since g+1# %
by hypothesis of (i), Theorem 4.2 implies that ¢4**~0 on F,modF,, or
equivalently

(4.20) o = e oLt
Since 9%+ = ¢ by hypothesis of this paragraph, (4.20) implies that

2 ~0 on F,, contrary to the hypothesis of the preceding paragraph.
We infer that (i) is true.

Proof of (ii). It is sufficient to show that if ¢} is a g-cycle on F,
if ¢ # ko and if a > ay, then for some ¢-ecycle ¢2 on F,,
(4.21) . A ~cl  (on Fg).

The homology is trivial when ks = 0 and a > a,, since Fy is then
the union of sets (?) ', and p, whose closures are disjoint.

When % = ks >0 and ¢ # ks it follows from Theorem 4.2 that

(4£.22) & =0 el (on Fy)

(%) Subseripts — or 4 Will]'_udiozu;e that the chain or cycle is onlﬁa or I, respectively.
(*) Strictly p, should be denoted by (p,) when considered a set.
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for suitable chains ei’;"l and ¢? . An application of & to the members of (4.22)
shows that ¢Z is a g-cycle. With this understood, (4.22) implies (4.21),
on taking ¢ as ¢-. Thus (ii) is true.

Proof of (iii). Statement (iii) follows immediately from (i) and (ii).
Thus Corollary 4.2 is true.

§ 5. Proof of finite generation. The prineipal theorem of this section
follows.

TEEOREM 5.1, If v is any value of F on M,, the homology groups
Hy(F,,Z) are FG.
- The proof of Theorem 5.1 is induetive in character. To make this
clear each 7' -crifical value a we shall seb

(5.0) Hy(Fo,Z)= Hy

, , (g=10,1,..)
(5.0)" B(¥,,Z)= H? '

and corresponding to the listing (0.4) of the T'-critical values a, of F,
shall list the homology groups

(5.1) Hp,HP, ..., Hy (¢=0,1,..).
It is trivial that the groups Hp are FG. We shall give an inductive proof
of the following.

THEOREM 5.2. Hach homology group in the list (5.1) is FG.

Before coming to the proof of Theorem 5.2 note that Theorem 5.2
implies Theorem 5.1 by virtue of the following lemma.

LevwmA 3.1, If y is an ordinary value of F and if a is the mazimum of
the T-critical values of F less than y, then if i is the inclusion mapping
of Fginto F,,, the corresponding chain-transformation 7 induces isomorphisms,

(52) HFa, Z)>H(F,, Z)  (g=0,1,...).

Proof of Liemma 5.1. It is a corollary of Theorem 2.1 that there
exists an F-traction of F into F,, so that by Theorem 3.1, (5.2) holds
as stated.

Proof of Theorem 5.2. It is sufficient to prove Lemmas 5.2 and 5.3.

LeEMMA 5.2. If a, is a T-critical value in the list (0.4) with a, > aq,
then if H¥~ is FG, Hg is FG.

Proof of Lemma 5.2. According to Theorem 2.2 there exists an
F-traction of Fa, into F,_,. Hence by Theorem 3.1 there is an iso-
morphism ‘
(3.3) Hy > Hy

Hence H is FG if Hgr is FG. Thus Lemma 5.2 is true.
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i:EnImIA 8.3. If a, is a T-critical value in the Uist (0.4) with a, > a,,
then if He is FG, HY is FG. .

Proof of Lemma 5.3. Set a = a,. Let & = ks the T-index of 4.
Three mutually exclusive cases arise:

Cage I. k=0,

Case IL. k>0, g#%,

Case IIL. £ >0, g=F. ;

Proof in Case I. In this case Py is the union of two disjoint closed
sets o= pg and F,. Lemma 5.2 follows trivially in Case I.

Proof in Case IL J7 is a homomorphism. Accordin_g to OOI‘O.H&I'Y
4.2 (ii) J5 maps H’g onto Hj when q # k. A finite base fo? Hy, gccordmgly
goes under J onto a set of generators of Hy. Thus Hy is FG in Case IT.

Case ITL. We shall make use of Theorem 4.4, distinguishing between
the cases in which a torsion index #® of p, exists and does not exist.

According to (i) of Theorem 4.4, when t* exists, an arbitrary %-cycle
% on F, is such that

(5.4) et ~mly (on FymodF,)
for some integer m, or equivalently
(5.5) € = mAg+ ek o®

for suitable chains %™ and e on F, and F,, respectively. Tt follqws
from (5.5) that ¢ is a k-cycle on F,. We draw the following conclusion
from (5.5): if gy, ..., ¥, is a prebase for Hf the homology classes (Def.3.0)

(5.6) . ((lu,l”a))y ((f’/n Fu))7 ey ((%‘:Fa))
generate Hy. -

According to (ii) of Theorem 4.4 when ¢* does not ewist, an arbitrary
k-cycle ¢¥ on F, is such that

(8.7) ¢k ~0 (on FymodF)

and one concludes again that HZ is TG.

Thus Lemma 5.3 is true and, together with Lemma 5.2, implies Theo-
rem 5.2. Theorem 5.1 follows, as stated previously.

We add a theorem which is related to the theorems of this seetion
but which is not needed to prove Theorem 5.1.

* THEOREM 5.3. If ¢ is any value of F on My and if g >n, the homology

group Hy(F., Z) is trivial.

It follows from Lemma 5.1 that Theorem 5.8 is true if and only if
each homology group in the sequence (5.1) is trivial for q>n.
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The isomorphism (5.3) is valid for any T-eritical value a,> g,.
Moreover, inclusion induced isomorphisms,
(5.8) E’gfgﬂg‘{' (g >n)

are valid by (iii) of Corollary 4.2. For ¢ >n each homology group in the
sequence

(5.9) Hp: B HP: ..o B, H>
is aceordingly trivial, since Hp is trivial.’
Theorem 5.3 follows.
Part III. Critical invariants of 7'-critical points p,

§ 6. Program for Part III. We are concerned with relations between
successive groups in the sequence

(6.1) Hp: B, He: Hg B L B H

Here ¢ is on the range 0, 1, ... Groups in this sequence, which are separated
by a colon, admit an inclusion induced isomorphism of form (5.3). Let a be
any one of the T-critical values a, ..., a,. In Definition 3.2 we have
introduced an inclusion induced homomorphism

(6.2) Jg: Hi—H?  (a>ay q= 0,1,..).

It follows from Corollary 4.2 (iii) that J¢ is an isomorphism if ¢ is neither %,
nor k;—1. In § 7 our attention will be restricted to the case, ¢ = k4, while
in § 9 we shall study the case, g = k,—1.

Each group H7 is a direct sum

(6:3) Hy=3@®358

of its “torsion subgroup” % and a complementary free subgroup $Z,
termed a “Betti subgroup” of HZ. The decomposition (6.3) is possible,
since the group HZ has been shown to be FG. We shall similarly represent
HJ as a direct sum

(6.4) Hy= 8D %

of its torsion subgroup and a complementary Betti subgroup 3'5;.
Of particular interest is the sequence,

(6.5) , Bo: By, BB L B, Be,

of Betti subgroups and the sequence,

(6.6) T g B B,

of torsion subgroups. Groups separated by a colon are isomorphic because
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(5.3) holds. Groups in these sequences separated by a .comma. are iso-
morphie, except at most when ¢ = k4 or ke—1, in accord with Corollary 4.2.

The dimension of a Betti group B7 is termed the gth Betti number
of F. Similarly the dimension of a Betti group $B; is termed the gth Bett
number of F,. The torsion coefficients of the groups &, and ¥, are defined
in the usual way and termed torsion coefficients of dimension ¢ of 7,
and F,, respectively. ‘We shall show how these invariants change (if at
all) as one passes from ¥, to F,. The only dimensions g for which there
can be a change as one passes from ¥, to Iy, are the dimensions ¢ = &,
or kq—1.

Critical invariants. Program. The data needed to determine the
changes in the torsion coefficients and Betti numbers as one passes from
¥, to F, are certain integers termed eritical invariants. They are as-
sociated with each T -critieal point Pa. )

Itk = kqa > 0 and one compares B with B¢ and i with §7 (asin § 7)
the critical invariants are the T'-index % = %, and the torgion index z* of
Pa, introduced in Definition 4.4. If %= 0 a torsion index t* is not defined.

If k= k¢ >0 and one compares By, with By, and §g_, with F2_,
(as in § 9) the above critical invariants must be supplemented by other
critical invariants, including integers s*> 0 defined in § 9. As will be
seen, these invariants are determined for each T -critical point Pa for
which k=%, >0 by the critical homology classes = ((8xs,F,)) in
H, (¥, Z), introduced in § 4. Here #, is the “saddle k-cell” of Defi-
nition 4.3. The integers s® were first defined in [14]. '

It follows from the definition of each of these so-called “critical
invariants” that they are unchanged if If, is mapped by a homeo-
morphism % onto another manifold i, and.F replaced by a mapping I
of I, into B such that F(p) = F(g) when g = h(p).

§ 7. ¥rom H¢ to HY o > ap; &= k,. Use will be made of the inclusion-

induced homomorphism
(7.1) ¢ H{—H? (Definition 3.2)
in case @ >a, and k= k,. As we shall see in Theorem 7.2, the homo-
morphism (7.1) may not be an isomorphism. However, the restrietion
%3¢ is an isomorphism, as the following theorem explicitly affirms.
TemorEM T.1. If @ is a T-critical value of F' such that a > a,, then
for k= TFa, the torsion subgroup §% of R is mapped isomorphically onto
the torsion subgroup ¥ of HY, by the restriction J¢ of J% to Ir.
If §¢ is trivial we understand the theorem to affirm that 4% s trivial.
Since JF is a homomorphism, J2 is a homomorphism
(7.2) Jf: §i-3%
into §%. By hypothesis of this seetion k = &, and o > ay. Hence kerJ ¢ = 0
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by Corollary 4.2 (i), so that kerd ¢ =0, and JEis an injective isomorphism.
It remains to show that J? maps &% onlo F%. To that end we prove the
following.

(2) Corresponding to each nontrivial k-cycle e on By such that
(5, Fo)je 32 (R=tFa, a > ay)

there evisis a k-cycle ¢* on F, such that e ~é* on F,.

The case k= k,=0. In this case FF is trivial, so that (o) is
trivially true.

The case k= k; > 0. Since %, > 0, Theorem 4.4 can be applied to
prove («). Two subcases are distinguished.

Case I. k. >0 and a torsion index % of Pe fails to exist.

Case II. k; >0 and a torsion index #* of Pa exists.

Proof in Case I. In this case (4.17) of Theorem 4.4 (ii) holds and
implies that e} ~e% on F, for some k-cycle ¢ on F,. Thus (x) is true
in Case I.

Proof in Case IL In Case IT it follows from Theorem 4.4 (i) that
(4.16) holds. By hypothesis (7.3), r¢¥ ~0 on F, for some mon-null in-
teger r. The homology (4.16) then shows that

(7.4)

(7.3)

0~rmis (on Famodli’a) .

However, (ii) of Lemma 4.3 implies that (7.4) is possible only if m = 0.
From (4.16), with m = 0 therein, we infer that ek ~ef on F, for some
k-cycle € on F,. Thus (a) is true in Case IT, as well as in Case I.

Completion of proof that J maps §2 onto 2. We refer to ¢ and e®
of (e). Since J§ is induced by the inclusion mapping of ¥, into F,,

(7.5) Tk, Fo) = ((¢%, Fa))  (by (3.10)) .

One infers from («) that
(7.5)" (65, Fa)) = (€%, Fa)) < 3.

Since kerJi= 0, it follows from (7.5) that ((e® , 7)) e $5.

Thus J¥45) = ¥4 so that Theorem 7.1 is true.

We state the following corollary of Theorem 7.1.

CoroLLARY 7.1. If a>a, is a T-critical value of F with T-indew
k= Fa, then Hy, is free if H is free. More generally, the torsion coefficients
of Hi and HY (3f any exist) are identical.

Betti subgroups. It remains to show how Betti subgroups $¢ of HE

are related to Betti subgroups B¢ of HE when a > a, and &k = k,.

Notation. To that end let
(7.6)

Upy ey Uy (B 20)
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be a Dbase for $%. When ks = 0, let ps be the 0-cycle with carrier p,.

When ks = 0 and a > g, let

(7.7) ’ wf, ., ulf

be the images of the respective elements (7.6) under the -homo-
hisms J%: (7.1). ‘ . -

morl}.fl ko >(;c and if a torsion index #* of ps ex1sts,_ a t?-fold linking

k-eycle A, exists in accord with Definition 4.5. Consider the 1.101nolc?gy

class ((1,1 Fm)) of A, on F,. The second principal theorem of this section

’

follows. o L '

THEREOREM 7.2. (1) When k= ko >0 and a torsion index t* of p, fails

to ewist, the elements (7.7) give a base for a Betti group 35;2 of Hj.
: (ii)’ When k= kg >0 and a torsion index t® of pa ewists, the elements

(7.8) (M'Z; Fﬂ))v “:1#7 X ] “34:}

give a base for a Betti group Bi.
(iil) When k= ko= 0 and a > a, the elements,

(7.9) ((Pa: Fﬂ))y “:LH:, ey “?:a
give a base for a Betti group 9Bf = 3. .

Proof of (i). Statement (i) is a consequence of the following lemma.

IEMMA 7.1. When k= ke >0 and no torsion index t* of p, ewists,
the homomorphism Jg: (7.1) s an isomorphism.

Under the hypotheses of Lemma 7.1, Theorem 4.4 (i) implies that J§
is surjective. Moreover kerJy;= 0 when a > g, z.md k = ks by Corol-
lary 4.2 (i), so that J§ is an isomorphism when ¢° fails to exist. The lemma
follows and implies (i) of Theorem 7.2. )

Proof of (il). Let H¢ denote the image of HE under J%. Since
kerJ%= 0 the homomorphism ()

(7.10) Jo HI—HE

is an isomorphism, so that the set of elements (7.7) is a base for a Betti

subgroup $2 of HE. . B .
Since a torsion index #* of p, exists by hypothesis of (i), a £*-fold

linking k-eycle 1, exists. The relation

(7.11) f={{(%, Fa), HY (2)

follows from. (4.16) and the isomorphism (7.10). That is, when #“ exists,
((Az, Fa)) and HZ generate HZ.

() Strictly, not Ji, but a homomorphism, say J& induced by J&.
(2) If an Abelian group A4 is generated by the elements in subsets Ay, ..., 4&n of 4,
one writes 4 = {4,, .., Au}.
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Statement (ii) follows if Hf is a Girect sum,
(7.12) B = {{(%a, 7o)} @ Ay .

That (7.12) is true is a consequence of (7.11) and (ii) of Lemma 4.3, which

implies that for no integer u # 0 is 4((2a, Fa)) an element in HE.
Proof of (iii). Statement (iii) is consequence of the fact that when

kE=1Fs=0 and a > a,, F, is the union of disjoint closed sets, p, and 13’,1.
This completes the proof of Theorem 7.2.

§ 8. Elementary group quotients A|W. Certain general theorems on .
Abelian groups presented in [16] will be recalled and will be applied
in § 9. For references to relevant bhooks on groups see [16].

OBJECTIVES OF § 8. There is given a FG Abelian group A, together
with a cyclic subgroup W = {w} of A generaied by an element we A. One
seeks to determine the Betti numbers and torsion coefficients of AW in
terms of minimal data on A and W. We shall describe such data.

Recall that Abelian group 4 Whieh is FG is a direct sum
(8.1) A=3B D%

of its uniquely determined torsion subgrdup ¢ and a “ecomplementary”
free subgroup & of 4, termed a Betti subgroup of A. % has a base

(8.2) Ury sty (AiMB = B, possibly 0)

consisting of f§ elements of 4, every non-trivial linear combination of
which (over Z) has an infinite order in A. In general & is not uniquely
determined by %, nor the base (8.2) uniquely determined by 3. However
the number £ is independent of the choice of the free group complementary
to & and of the choice of a base of B. We term B the Beiti number of A.

The torsion coefficients of . It is & classical theorem that a finite,
non-trivial Abelian group, &, is a direct sum of a finite set of cyclie sub-
groups which can be canonically arranged so as to have orders G1y Qoy ory G
exceeding 1, each of which, except ¢m, is divisible by its successor. These
integers are uniquely determined by F and are termed the torsiom coef-
ficients (1) of 7. ) '

Elementary divisors ED of §. If is known that a finite, non-trivial
group, ¢, is a direct sum 5@ ... @Dy, of eyclic subgroups g; such that
the order of g is a power p¢' of a prime p; and g: is a subgroup of no cyclic
subgroup of ¥ whose order is a higher power of p;. Such a direct sum is

(*) When ¥ is the torsion subgroup of A, torsion coefficients and ED of & will be
called torsion coefficients and ED of 4.
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called a cyclic primary decomposition (abbreviated CPD) of §. The prime
powers

(8.3) Dy ey D
which are the orders of the respective summands in a OPD of ¥ are called
elementary divisors, ED of §. The ED of ¥ are said to be normally arranged
if py=p>= . 20, and if, when pi= P, then €;= ¢;yy- ¢ uniquely
determines a set of normally ordered ED’s.

We state a classical lemma.

TEvwA 8.1, Canonically ordered torsion coefficients of o FG non-trivial
Abelian group ¥, determine and are umiquely determined by normally ovdered
ED of ¥ (See [8], p. 147.)

DEFmTION 8.1. A basis of a FG Abelian group A. Suppose that A
has a torsion subgroup with a CPD

(8.4) F=(0)®.. O} (@ied).
Let % be a Betti subgroup of A with a base (u%, ..., 1g). The seb of elements
(8.5)

of A is called a basis for A.
An arbitrary clement w e .4 has the form,

(6, >0; i=1,...,0)

Uy voey Ugs By g ooy By

(8.6) W= iyt e+ ppUs - M B A MT,

where u; is an integer uniquely determined by w and the choice of the
basis (8.5), while each m; is uniquely determined by w and the choice
of the OPD (8.4), provided m; is restricted to integral values such that

(8.7) (1=1,2,..,0)-

Minimal data on 4 and W.In I, IT, IIT, IV we present data adequate
for meeting the ohjectives of § 8 outlined above. These data follow.

I. A Dbasis of A (Definition 8.1) of form,

0 << my < ordera;

Uy wony Ugs Dyy ooy By -
II. A normally ordered set
(8.8)

of BD of 4 of form (8.3). v ‘
IIT. A generator w of the eyclic subgroup (*) W of 4 and & profile
of w, that is, a set

(8.9)

Tyy weey Ty

fiyy weey Mgy My ey My

(t) We term W the critical cyclic subgroup of A.
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of coefficients in an admissible representation (8.6) of o, subject
to (8.7).

IV. An integer s > 0, termed the free index of W, defined as the GCD
of the integers g, ..., uz of (8.9), zero, if these integers all vanish.

We shall give another, but equivalent, definition of s.

DrFINITION 8.2. The free index s of W. We set s= 0 if and only
if W has a finite order. If W has an infinite order; s is finite and positivé,
with a value defined by the following lemma.

LemuMA 8.2. With a “critical” cyclic subgroup W of A of infinite order
there can be associated a positive integer s which is unique among positive
integers with the following property.

If w is an arbitrary generator of W and B an arbitrary Beiti subgroup
of A, there exists o basis of B with a first element ug such that

(8.190) (mod 3) (*).

Lemma 8.2 follows from Lemma 3.1 of [16] and its proof.

Theorem 3.3 of [16] gives a first indication of the meaning of the
free index s of W. It may be restated as follows.

TEEOREM 8.0. Suppose that A is torsion free and that the free index
of Wis s. Then A|W is torsion free unless s > 1, and when s > 1, the first
and only torsion coefficient of A/W is s.

It will be noted that the minimal data contained in I and II depend
upon A alone, while the data contained in IIT and IV depend upon both A4
and W. In our application of this section in § 9, A and W will be replaced
by H¢_, and W%_,, respectively, where W§_, is the eritical cyelic sub-
group of HE , to be introduced in Definition 9.1. The analogue of the
integers m; in III and s in IV, thereby appearing in § 9, will be called
“critical invariants”™ of the T'-critical point p,.

In the first of two principal theorems of this section we relate the
Betti number of 4 to that of 4/W. In the second of our two principal
theorems we show that the above minimal data on A and W enable us
to evaluate the torsion coefficients of A/W. The minimal data on 4 in-
clude the normally ordered ED of 4, or equivalently by Lemma 8.1,
the torsion coefficients of A.

THEEORBM 8.1 (i) If the free index s of W is positive, A|W has a Betti
number one less than that of A.

(i) If the free index s = 0, A|W has a Betti number equal to that of A.

Theorem 8.1 (i) is included in Theorem 3.2 of [16]. Theorem 8.1 (ii)
is included in Lemma 4.1 of [16].

W= suy

() Given & and y in 4 we write x = ymod§ if z—y ¢%, where § is the torsion
subgroup of 4.
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To formulate Theorem 8.2 we introduce a ¢+1 square matrix

n,
N
il =

n, 0

My My - .o TS

in which the elements in the diagonal are the ED (8.8) of § followed by
the free index s of W. The elements m,, ..., m, in the last row are taken
from the profile of a generator w of W, as presented in (8.9). Elements
in the matrix |jasyl, other than those in the diagonal and last row, are
zero. The integers m; are subject to the condition (8.7). The rank of this
matrix is ¢-+1 or g, according as s>0 or s=10.

The second principal theorem of this section follows.

. THEOREM 8.2. The invariant factors ewceeding 1 of the above (g4-1)-
square matriz ||layll, if properly ordered, give the torsion coefficients of A[W.

Theorem 8.2 is proved in [16]. It is formulated separately in [16]
as Corollary 3.1, when.s > 0, and Corollary 4.1 when s= 0.

We add Theorem 3.1 of [16].
THEOREM 8.3. If the free index s of W is 1 the torsion subgroup of

A[W is isomorphic to the torsion subgroup of A and the Betti number of
AW is one less than that of A.

§9. From HZ_, to H2 ,: k= k, > 0. We shall apply the theorems
of §8 on A/W, setting '

(9.1) A=HE ; W=Wi, (k=5Fk.>0)

where W¢_, is a cyclic subgroup of HZ_, now to be defined.

DEFINITION 9.1. The critical oyclic subgroup W_, of HE .. Liet x4 be
a saddle %-cell of p, (Definition 4.3). Then ox, is a (k—1)-cycle on F,
whose carrier is a topological (k—1)-sphere. We shall set
(9.2)

Wiy = {{(0%a, o))} (h=1%s>0)

and term Wj_, the critical cyclic subgroup of HZ ,. According to (4.8)
of Corollary 4.1, the pair of homology classes - ((8xa, F,)) in HE is inde-
pendent of the choice of », as a saddle k-cell of pg.

A principal property of a saddle k- cell %, on ¥, is that, taken modl'?’“,
it is a rel. k-cycle and, as such, is a prebase for the rel. homology group
HyF,,Fyy Z). Cf. Theorem 4.3 (ii).

‘We shall prove the following theorem.
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TeroREM 9.0. The eritical oyclic subgroup W e g :

of the inclusion induced #-homomorphism, # Wi of Hioy s the lernal
It Hll:—x"’Hawl s

of Definition 3.2.

Proof of Theorem 9.0. We must show th i i

. at both of the inel

(a) Wi, Ckerdg_;; (b) kerdg_ C Wi, o
are valid.

Proof of (a). It suffices to show that generator

w = (8, F,)) of We_, (see (9.2))

annihilates J% ;. Now w and Ji—1(w), by definition are the homology
classes of 0%, on ¥, and 7, respectively. Since dx4 ~ 0 on Fy, w < kerd®
The inclusion (a) is thus valid. ’ o
Proof of (b). It suffices to show that if a (h—1)-o k- g
—1)-eycl 1
bounds on Fg, then ( )-eycle o= on F,

(9.3) {(a®1, F ) e We_, .

Proof of (9.3). By hypothesis on a*-%, there exists g k in &%
= -ch
on F, such that ’ o e

(9.4) k

kE __ k-1
oe; = a¥

The %-chain e* is thus a k-eycle on FymodF,. As a prebase of
HyF,, Fy, Z), namod ¥, is such that there exists an integer g, a chain ekt
on Fy and a chain ¢* on F, such that

(9.5) 6% = prg-Bekti 4 ok

ﬂgle application of 2 to both members of (9.5) shows (with the aid of (9.4))
that .

(9.6) a¥ ™t = udugt-86*

from which (9.3) follows.

Thus the inclusion (b), as well as the inclusion (2) holds, and Theo-
rem 9.0 follows.

Theorem 9.0 has the following corollary.

COROLLARY 9.1. The natural homomorphism

(9.7) Hg_l/WZ—x_’El‘z—l (k= Fkqs>0)

induced by J¢_, is an isomorphism.
. That the mapping (9.7) is biunique follows from Theorem 9.0. That
1t 13 surjective follows from (ii) of Corollary 4.2. Thus Corollary 9.1 is true.
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Applications of the theorems on W/4 of § 8. The objective of § 9 is to
relate the invariants (%) of Hg_l to the corresponding invariants of HE |,
understanding always that & = ks > 0. The special case in which &= J,
= 0 is considered in § 7 but not in § 9. See scheme outlined in § 6. Here
as elsewhere a is a critical value of 7. In § 9, a > q,.

Suppose then that & = kq > 0. In this case the sequence of homology
groups
(9.8) By H o Wesy Hiy
will serve our purpose of relating HE_, to HZ_,, with HE_[We_ serving
as a mediator, A/W, between II¢_, and HZ_,. According to Corollary 9.1,
the last two groups in the sequence (9.8) are isomorphic. The data needed
to relate the invariants of the first two groups in the sequence (9.8) include
the following.

DEFINTTION 9.2. The free indes s®. When k= ks, >0 one identifies
Hf_, and W¢_, with 4 and W of § 8. The free index of W = W2_,, given
by Definition 8.2, is denoted by s% There are two cases. In both cases

= kg >0. i

Case L. Order Wj_, finite. In this case s* = 0 and #* exists by Defi-
nitions 8.2 and 4.4 respectively.

Case II. Order Wg_, infinite. In this case s* is the finite positive
value s associated with W= W{_, in Lemma 8.2. A torsion index ¢“ fails
to exist by Definition 4.4.

Theorem 8.0 gives the following first indication of the meaning of s
when & = kg > 0.

TEBOREM 9.1. Suppose that & = ks > 0 and that H2_, is torsion free.
Then Hy_, is torsion free unless s°>1 and when s*>1, has a unique
torsion coefficient s°.

Proof. Theorem 8.0 implies that when &k = k. > 0 and HZ_, is torsion
free, then FH¢_ [W2_, and hence its isomorph Hj_, (Corollary 9.1) is
torsion free unless s*>1, and when s°>1, has a unique torsion coef-
ficient s%

With a- similar use of Corollary 9.1 and of the three groups (9.8) we
infer the following from Theorem 8.1. Here %k = &g = 0.

TumorEM 9.2 (i). If the free indew s* of W_, is positive, Hy_, has
o Belli number which is one less than that of HE_,.

(i) If the free index =0, HZ_, has o Beili number equal to that
of Hy ;.

Similarly if #, is a “saddle k-cell” of p, (Definition 4.3), Theorem 8.2
implies the following. :

(\) By the invariants of a finitely generated: Abelian group we have meant its
Betti number and torsion coefficients. See Lemma 8.1.
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THEOREM 9.3. If ,, ..., N, are the elementary divisors of HE ., if the
integers My, ..., m, are taken from the profile (8.9) of a generator ((6ota, Fa))
of Wi_y and if s = s is the free indes of Wi_,, then the torsion coefficients
of H_, are such of the invariant factors of the matriz llas)| of § 8 as exceed 1.

Theorem 8.3 similarly implies the following.

THEOREM 9.4. If k= ky >0 and if the free indew 5* of W_, is 1, the
torsion subgroup of HY | is isomorhpic fo the torsion subgroup of H%_,,
and the (k—1)st Belti number of F, is one less than that of F,.

§ 10. The existence of T-critical points. We are supposing that I, is
a compact, connected topological n-dimensional manifold upon which
a TND function ¥ is defined with critical values

(1.0.0) BK<on<..<a,,

of singleton type. If @ is any one of these values, p, denotes the corre-
sponding T'-critical point. As we have seen, the T-index & — kg of p, is
on the range 0,1, ..., n. Let m; be the number of 7-critical points with
T-index k (Definition 1.2). For ¢ =0, 1, ..., let Ba(My) be the gth Betti
number of IM,.

We shall prove the following. Cf. Theorem 30.1 of [15].
THEOREM 10.1 (i) The Betti numbers B M) are finite and wvanish

for ¢ >mn.

(ii) The following relations are valid:

My = o Ma) ,
My— My = Bi( Mn)— fo( Ma) ,
(10.1) My— M+ My = Bo( Mn)— By( M)+ Bo( Ma) ,
Mo Mgy = Mg oo (1000 == Bp( M) — B3 (M) + oo (—1)"By(IL,) .

(i) The relations (10.1) imply the inequalities,

(10.2) mi > (M) (k=0,...,n).

Proof of (i). f(IM,) is finite, since HZ is FG (Theorem 5.1). More-
over f{My) =0 when ¢ >n, by Theorem 5.3.
" The following two lemmas aid in proving the relations (10.1) of (ii).
Levwa 10.1. Let a be a T-eritical value of a T-critical point pg of
positive index k= kq. Then ‘

(10.3) Bra(Ho)— By—s(Fg) = 0 or —1,
(10.4) Br(Fa)—Bu(F) =1 or 0,
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according as s*=0 or 5% >0. Moreover
(10.5) Bu(Fa) = Po(Fa) (b # g or g+1).

Theorem 9.2 implies (10.3).

According to Definition 9.2 when k=l > 0', s“=. 0 or 57> 0,
aceording as the torsion index % exists or fails to exist. With this ynder-
stood Theorem 7.2, (i) and (ii), imply (10.4). Moreover (10.5) follows

iy true.
ollary 4.2 (iii). Thus Lemma 10.1 ig ' B
ﬁomAC(;condylemma is needed to prove the relation (10.1). It makes

uge of integers ag and y, defined for ¢ =0,1,2, ... a8 follows.
I. When ¢ >0, ag=yg=0. - N
II. When ¢=1,2,..,7, ag and y, equal the number of 1'-critical
points pe of T-index ¢ with s*= 0 and s* > 0, respectively. . :
IIT. When q = 0, agis the number of T -critical points with T'-index 0,

" and yg= 0.
LEvyma 10.2. The Betti number

(10.6) B M) = ag— Vs (€=10,1,2,..).

Proof of (10.6). We refer to the T'-critical values ay, < a; < ...<a,
of ¥ and, for i=1,..,» and ¢= 0,1, ... seb

(10.7)’ A= B o) — B F o) s
(10.7)" D= BF ) B,(Fz)
go that

A;"I'-D; = .Bq(Fag)""ﬁq(Faiﬂ) .
Hence for ¢=0,1,2,... ,
(10.8) 1 M)~ BTy = (Ap+ D)+ o + (4t Dp)

Now each value 4= 0 in (10.8), since there exists an F\-traction of Fa‘
into 7y, ., by Theorem 2.2, and hence an isomorphic mapping of Hy(F'y,, Z)
onto H;(lFm_l,Z ), by Theorem 3.1. We infer from (10.8) that

(10.9) B M) — By Fy) = Dit D2 ... +-Dy.
The difference D} has the value
(10.10) PolFo)— Bl Fa)  (i=1,2,..y9)

and by Lemma 10.1, equals 1 when ¢=Fk, and s%=0. It equals —1

when g+1 =1k, and s% > 0. Otherwise the difference (10.10) is zero.

Relation (10.6) follows.
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Proof of (ii) of Theorem 10.1. For each & on the range 0, 1, y My
set ex = my— Br(M,). The relations Mk = ax+yx, arevalid for k=0, 1L.,n
and with the relations (10.6) imply that e, = 3, Yr+1- Since y, = 0

(10.11) ST eg e (D =gy, (B— 0,1,..,n).

The inequalities follow from the relations (10.11). The final equality in
(10.1) is & consequence of (10.11) when % = » and the vanishing of y,,. ;.

Proof of (iil) of Theorem 10.1. The relations (10.2) are a trivial
consequence of the relations (10.1).

Extension I of Theorem 10.1. Theorem 10.1 remains valid if
in the formulation of Theorem 10.1 one replaces 14, by F., where ¢ is
any value of ¥ and my denotes the number of critical points of ¥ on 7,
of index %. The proof of this extension is similar to the proof given when
Fe= M,. In making this extension the main body of the paper is altered
only by replacing M, by F,.

Extension II. In this extension one drops the condition that the
critical values be singleton. Theorem 10.1 Temains valid. The main body
of the paper requires simple but non-trivial modifications in which the
critical points at each ecritical level are ordered.

Extension III. In this extension one replaces Z by an arbitrary
field. The resultant homology groups are free. One omits § 8 and the

theorems in § 9 that concern torsion groups. This modification is trivial
and simple to apply.
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P-ideals and F-ideals in rings of continuous functions

s

by
David Rudd (Norfolk, Virginia)

Abstract. A ring of continuous functions is a ring of the form C(X), the ring of
all eontinuous real-valued functions on a completely-regular Hausdoxff space X.

The author defines two classes of ideals in C(X), P-ideals and F-ideals, which
are analogs of P-spaces and F-spaces. He then discusses properties of these ideals,
such as their structure spaces and zero-sets of their members, and characterizes those
spaces X for which there exist P-ideals (or F-ideals) in 0(X). :

Introduction. If X is a space so that every prime ideal in O(X) is
maximal, then X is said to be a P-space. We extend this concept to ideals
in rings of continuous funetions by defining a mon-zero ideal I to be
& P-ideal if every proper prime ideal in T is a maximal ideal in I. It is
known [2, 14.29] that C(X) is a P-ideal, i.e. X is a P-space, if and only
if its real structure space (vX) is a P-space. We show that a modified
version of this theorem holds for .P-ideals. We also characterize those
spaces whose rings of continuous funetions possess a P-ideal.

It X is a space so that mI (= {f] f ¢ fM}) is prime for every maximal
ideal A in C(X), then X is said to be an F'-space. We extend this coneept
also to ideals, by defining a non-zero ideal T to be an F-ideal if mM is
prime whenever 3 ;l_) I and M is a maximal ideal in @ (X). We are then
able to show that I is an F-ideal if and only if its structure space is an
F'-space, an analog to the theorem that X is an F-space if and only if
BX is an F-space. We are also able to characterize those spaces whose
rings of continuous functions possess an F-ideal.

Preliminaries and notations. The reader is referred to section 2 in [4]
for most of the preliminaries. Familiarity with [2] is also assumed.

It feC(X), then Z(f)={o| f(z)= "0}, posf= {al f(s) >0}, and
negf = {z| f(z) < 0}. If fe C*(X) (ie. fis bounded), then f denotes the
extension of f to SX. In general Z(f) D Z(f)’ (= clgx Z(f)) but intyxZ(f)
= intgx Z (f)".

We shall use the letter M for maximal ideals of C (X), and M,
= {fl f(=) = 0}.

We regard X as the structure space of ¢(X). Thus if U is open in f.X,
U= ~{M| M D I} for some ideal I in O(X).
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