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Semi-continuity of set-valued monotone mappings
by
P. Kenderov (Sofia)

Abstract. A slight generalization of the theorem of Kuratowski-Fort on eontinuity
almost everywhere of a semi-continuous set-valued mapping is obtained. The result
is applied to the study of monotone set-valued mappings. It is proved that every maximal
monotone mapping F: ¥ — 2% is upper semi-continuous. Then, due to the Kuratowski—
Fort theorem, it follows that F is lower semi-continnous almost everywhere (in the
sense of category). It turned out that the set-valued mapping F must be single-valued
at all these points of lower semi-continuity. Se, under some conditions, every maximal
set-valued monotone mapping is single-valued almost everywhere. As a corollary one
can obtain the theorem of Mazur that every continuous convex function, given in
a Banach space ¥, is Gdteaux differentiable almost everywhere, provided ¥ has a count-
able dense subset.

Introduction. In the first part of this article we will deal with the
following theorem of K. Kuratowski:

TeEoREM (Kuratowski [5], p. 79). Suppose that X is a compact metric
space and Y is a metric space. Let F: ¥ —2% be an upper -(resp. lower)
semi-continuous set-valued mapping. Then the set of points at which F' is
not lower (resp. upper) semi-continuous is a set of the first category (in such
a case we will say that B: ¥—2% is lower (resp. upper) semi-continuous
almost everywhere).

Later on, Fort strengthened this result:

TeEorEM (Fort [2]). Let F: Y—2% be an upper (resp. lower) semi-
continuous mapping with compact images (= F(y) being compact subsets
of X for each y ¢ Y), and X be a metrizable space. Then the mapping F is
lower (resp. upper) semi-continuous almost everywhere.

It is important to point out that the Kuratowski-Fort result is
symmetric with respect to both kinds of semi-continuity. If F is upper
semi-continuous, then it is almost everywhere lower semi-continuous,
and if 7 is lower semi-continuous, then it is upper semi-continuous
almost everywhere.

The author has shown in [4] that for upper semi-eontinuous mapp-
ings the theorem of Fort can be improved. There is no need to suppose
that the topological space X (let us denote its topology by 7) is metriz@ble.
It is enough to say that there exists a metrizable topology ¢ on X which
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is weaker than 7, i.e. ¢ C 7. Unfortunately, this result is not symmetric
with respect to both kinds of semi-continuity. As Example (1.7) S]J‘OWS,
this result does not remain true for lower semi-continuous mappings.

One of the possibilities for obtaining a “symmetric” generalization
of the theorem of Kuratowski-Fort is to put conditions only on the
mapping F: T—2% or on the set A= {F(y): y « ¥} C 2%, instead of any
demands on the whole space X. The results of this sort are gathered
in § 1. In § 2 it is shown how to use the results of § 1 for the study of set-
valued monotone mappings (*). The main result here is that every set-
valued monotone mapping has to be single-valued almost everywhere
(under some conditions of ecourse). This gives us an approach to the study
of the differentiable properties of a convex function given in a Banach
space. It is known (Rockafellar [8]) that the subgradient 0 of the continu-
ous convex function ¢: E—E (F being a Banach space and B being the
real line) is a monotone mapping. Thus, & () is a single-point set for almost
all ¢ E. On the other hand, the function ¢: F—R is Gateaux differenti-
able at some point @ ¢ F if and only if () is a single-point set. Thus we
obtain the theorem (Mazur [6]) that ¢: F—R is almost everywhere
differentiable, provided E has a countable dense subset.

The author is indebted to V. A. Geiler for the useful discussion of
the results of § 1; in particular, Theorem (1.9) is a product of his influence.

§ 1. Set-valued mappings. Let X and ¥ be topological spaces.

(1.1) DeriNITION. The (set-valued) mapping F, assigning to each
y e Y a subset F(y) C X, is said to be upper semi-continuous (resp. lower
semi-continuous) or, for brevity, w.s.c. (resp. L.s.c.) at the point y, ¢ ¥ if,
for every open set 0D F(y,) (resp. 0 ~F(y,) # 0), there exists an open
neighbourhood V»y,, such that 0D F(y) (resp. 0 ~nF(y)# @) when-
ever y eV.

Mappings like ¥ will be denoted by F: ¥—2%, or F: ¥ —2& where
v is the topology of X. :

(1.2) DEFINITION. We will say that the mapping F: ¥ —259 ig
countably u.s.c. (vesp. countably Ls.c.) on Y-if thére exists a pseudometric
topology ¢ on X such that

a) p is weaker than = (i.e. 7 contains g),

b) Fis g-u.s.e. (resp ¢-ls.c.) at some y e ¥ if and only if it is v-w.s.c.
(resp. z-ls.c.) at the same point y.

(1.8) TerorEM. Let F: T—2%7 be an us.c. (resp. Ls.c.) mapping
of the topological space Y into the topological space X, and let the following
two conditions hold:

a) F(y) is a compact subset of X whenever y ¢ ¥,

(*) All definitions are given in their appropriate place in § 2.
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b) F is fzouniably Ls.e. (resp. countably w.s.c.).
Then F s l.s.c. (resp. w.8.c.} almost everywhere,
The proof of this theorem is a simple combinati
: ion of
of Fort cited above and Definition (1.2). ° the theorem
B (1.4) OOROLLAI?Y. If F: Y—2%9 45 an usec. mapping with compact
images (=T'(y) being a compact subset of X for ye¥) and there exisis
a metrizable topology o on X such that eCr, then F: Y2 45 £ 146
almost everywhere. ) ' o
Proof. If we know that F is countabl
rem (1.3). To show that this is the case we
proposition.

(1.5) PROPOSITION. Lt v =1, be two Hausdor topologies
= ogies on X
and F: Y—2% be a 7,-w.5.c. ma 3 oy s

: . pping with T, - compact images. Then F' is
7i-l.s.c. ab some point y e ¥ if and only if ¥ is Tp-Lls.c. at the same point,

Proof. It is sufficient to show that if F is not 7:-1.5.6. at the point
%o € XY, then it is not 7,-Ls.c. at the same point y,. Suppose that F is not
7;-1.8.¢. at y,. Then there exist a point %, ¢ P(y,) and a 7,-open set 0 » Ty
such that, for each neighbourhood Usy,, the equality Flyp) ~0=@
holds for some yye U. Choose such a Yywe U for every neighbourhood
U >y, and consider the get By =UUVF(yU), where V is an arbitrary (but

y ls.c., we can apply Theo-
will use the following general

(o4
fixed) neighbourhood of ,. Evidently,
basis. Now we will need the following

(1.6) LEMMA. Let £ be the filter generated by {Bv}ysy,s and & be an
wlirafilter €D & Then & Ty -converges to some point of F(y,).

the sequence {Bv}psy, is 2 filter
lemma.

Proof. SuppoAse the contrary. Then each 2 e F(y,) is contained in
& 7;-open set Oy ¢ &, Since F(y,) is compact, we can find 2 finite sequence
k

@yy Wy .oy #p SUch that J 0,0 F(y,). As the mapping F is 7-us.c.,
P

I =1 k
B (V) = UVF(y) C U 0, for some neighbourhood V ¢ y,. Then By C U o,
ve 1 i "

A T=1 ~ =1
and iU Oy ¢ £CE. Since £ is an ultrafilter, it has to contain at Iealst one
=1
Oy ©=1,2,..., & but this is impossible because O, ¢ .
We get a contradiction and the lemma is proved.
Let us consider now the set ¢ = N B» (B» being the z;-closure

Be
of the set B); it follows from the lemma th%it C is non-empty and € C F(y,)
because for each we ¢ there is an ultrafilter &D £ that converges to .
The set € is 7,-compact as a 7 -closed subset of F(y,) and it does not
contain the point @ (By™~ 0=@ whenever V>y,). Let W,>a, and
W32 0 be two 7,-open disjoint subsets of X. Such a pair of sets exists
because the topology 7, is Hausdorff, 4, ¢ € and 0 is 7,- compact (7, > 1,).
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Let us now remark that the set W, must contain some By (otherwis
there would be an ultrafilter £D & u (X\W,) which would converge to
some point w0 n(X\W,)=@). If ByCW,, then By ~n W, C W, ~
A W, = @. This shows that F: ¥ —2% i not 7,-L.s.c. at 4,. Proposition (1.5)
is proved, and thus also Corollary (1.4).

Unfortunately, Corollary (1.4) is not “symmetric” with respect to
both kinds of semi-continuity. The following example gives us a l.s.c.
mapping F: ¥—2% which is rowhere us.c., although the demands of
Corollary (1.4) are satisfied.

(L.7) Exawrre. Let X be the usual two-dimensiohal plane with
a coordinate system Owzy, and ¢ be the usual metric topology on X. By
7 we will denote another topology on X which is defined by the following
rule: the subset U C X is v-open if and only if, for every line g which is
parallel to Oz or Oy, the set g ~ U is open with respect to the usual topo-
logy on g. Obviously v = ¢. Let ¥ denote the real line (— oo, —+oo), and
F: ¥Y—2% be the mapping given by the formula Fy)= {(y,a) e X:
0 < a <1} It is not difficult to see that F is v-Ls.c. at every point yeX,
and F(y) is 7-compact for each y « ¥. Despite these facts, F is nowhere
u.s.e. To show this we will consider the set

Uye= EN{(e, lgo—al): —c0 <a< o005 a# yp} .

It is 7-open and among all the sets F(y),y e ¥, it contains F(y,) only.
Thus ¥ is not w.s.c. at the point ¥,.

Our second example will show that the metrizability condition in
Corollary (1.4) cannot be omitted. More exactly, an w.s.c. mapping F,
which is nowhere Ls.c., will be given.

(1.8) ExavpLE. Let ¥ denote the unit segment [0, 1] with its usual
topology, and X, be the same set with the discrete topology. Put
X = BX, — the (ech-Stone eompactification of X,. The identity mapping
f: Xy—Y is continuous and it can be extended by continuity on g.X; = X.
The extended mapping (we will denote it by the same letber f) is closed,
i.e. the images of closed sets are closed. This implies that the set-valued
mapping ¥ = f7: ¥—2% is ws.c. Let now y,e ¥. The point y, is an
open subset of X = fX,, which intersects F(yo) = f™y,) (because v,
«f7(yo)), but, among the sets of the form Fly) = fy), F(y,) is the
only set that contains y,. Therefore F' is not Ls.c. at y,.

Let now X be uniform space with the uniformity

U={U: UCXx X}
(Kelley [3]). By U[4], where 4 is 2 subset of X and U el, we will denote,

as usual, the set {# ¢ X: (a, @) ¢ U for some g « A}. On the set 2% we will
consider the so-called uniformity of Hausdorff . It has a basis made
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up of sets of the form T = {(4, B) ¢ 2%y 2. U412 B and U[B]D A}
where U e 1. ’

(1.9) TumOREM. Let F: Y—2% po qn us.e. (resp. ls.c.) mapping,
with compact images, of the topological space ¥ into the uniform space
(X, N). Suppose that the wniformity induced in 9 — Fly): ye T}C2xX
by U is metrieable. Then T is almost everywhere 1.s.c. (resp. ws.c.):

Proof. We shall use Theorem (1.3) once more; so we have to prove
first that I is countably Ls.c. (vesp. countably w.s.c.), Let {U)2, C U be
such sets thut {7}, generate the metrizable uniformity of 9. We can
assume that Uy 0 Uy o U, CU,, i = 1,2,3,.. and that all T; are
symmetric. Then there existy (Kelley [3],) a pseudo-metric d(@, z,) on X
such that

Upy C{(21, @) e X X: dw, @) < 12" C U,.

Evidently, d(x,, #,) generates on U the same uniformity as U does, i.e. for
each U el there exists an. e >0 such that the inequalities O,(F(yo))
={weX: dlz,Ply))< e} DF(y) and O(FW)DF(y,) imply the in-
equalities U[T'(y,)] D F (y) and ULE(y)] D F(y,).

The following lemma will complete the proof.

(1.10) LuMMA. Let T, ¥ and X be as those in (1.9), and F be ls.c.
(resp. w.s.0.) af some point Yo € X with respect to the topology of d(xzy, z,).
Then I ds 1s.c. (resp. ws.c.) af y, concerning the uniform topology. (The
meaning of this lemma s that I is countably semi-continuous in the sense
of Definition (1.2)).

Proof. There is no need to recall that F is uniformly ls.c. (vesp.
uniformly w.s.c.), if and only if, for each Uell, an open Vsy, exists
such that ULF(y)] 2 F(y,) (vesp. ULF{y,)] D F(y)) as soon as y ¢V (here
we essentially use the compaetness of images F(y), y ¢ ¥).

Suppose now that F is uniformly us.c. ab Yoe ¥ and ls.c. with
respect to the pseudometric topology. Let U e 1 and & > 0 be such that
ULF ()12 F(y,) and ULF(y)]2 F(y,) as soon as O[F(y,)) D F(y,) and
OfF (4,)) D F'(y,). Then an open V> g, exists such that O{F (y)) D P (y)
and O(F(y)) D F(y,) for each yeV. This means that U[F(y)]DF (y)
whenever y e V. Hence F i uniformly ls.c.

Replacing “w.s.e.” by “Ls.c.” and “l.s.c.” by “u.s.c.” in the last part
of the proof we deduce the “(resp. w.s.c.)” part of the lemma.

§ 2. Monotone mappings. We shall now obtain some results on the
semi-continuity of monotone mappings. ‘ A

Let B be a Hausdortt locally convex space, and B’ he its conjugate
(= the set of all continuous linear functionals on E). By <z, y) we shall,
a8 usual, denote the value of the functional y e B’ ab the point ¢ E.
§ — Fundamenta Mathematicae T. LXXXVIII
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(2.1) DEFINITION., The set-valued mapping I E—27 is said to be
monotone if {B— Xo, 1~ Yoy = 0 for yie T(ms), 1 =1,2. Aget ACEXE
is said to be monotone if, for each pair of its elements (21, yi) e 4, 1= 1,2,
{By— Ty, Y3— Y>> 0. A is a maximal monotone set if it is not a proper
part of a monotone set.

The graph ¢ = {(z,y) e X E': y e T(x)} of the monotone mapping
T: E—2% is a monotone set. If this graph happens to be a maximal
monotone set, then T is (by definition) a maximal monotone mapping.

By means of the Zorn lemma, it follows that every monotone set
can be included into a maximal set, i.e. for every monotone mapping
T: E—2%, there exists a maximal monotone mapping T: H—2% guch
that T(z) C T(x) whenever « ¢ E.

In what follows, we will consider E to be a Banach space and
T(z) # O for each z¢ B. ‘

The next theorem is of great importance for our considerations.

(2.2) TeporEM (Rockafellar [9]). Every mawimal monotone mapping
T: E—2% s locally bounded, i.e. for each w, ¢ B, there exists an open V > x,

such that T(V)= U T'(») is a bounded subset of B'.
zeV

(2.3) ProrosrrioN. The graph G = {(z,4) e EX B: y e T(®)} of every
magimal monotone mapping T: BE—2" is a dosed subset of Bx (', o(E', B)
where o(B, B') s the weakest topology on B' with respect to which all elements
of B, regarded as linear functionals on B, are continuous.

Proof. Let (z,,9,) « & be a convergent net in E x (¥, o(F’, E)) and
lim(,, 9,) = (%, ¥,). This means that #,—z, in F and Y,— Yo in
(B', o(&, B)). Then #,— 2—a,— in B and y,—y—y,—y in (B o (B, B)),
where (z,y)e . Let us prove that (z,—a,y,— Yy —={By— T, Yo— Y
Indeed,

K@= 85 Yo Y — (B~ 2, Yo— )| = |8~ @)~ (B~ 1), Yo— y>+
T <=2, (Yo ¥)— Wo— Y)>| < K&y— 0, Yy— Y|+ [<0y— 5, Yo 10D

The second term on the right-hand side of the last inequality tends
to 0 by the definition of ¢(E’, E). The set {y,: a > ap} is bounded when «,
is large enough for T is locally bounded. Then the set Y=y, 0= o}
is also bounded, and

K#a— 0y Y931 < Ollg,— | >0 .
Thus
0 < lim <@, —, Yo—Y> = Bo—Fy Yo— ).

Due to the maximality of 7, it follows that (@9, Yo) € G. The proof ig
completed.
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( 2.4). COROLLARY (Browder [1]). Let the suppositions of Proposition,
be satisfied. Then T(z) is a convex and o(E', E)-compact subset
Proof. The o(®', F)-compactness of T'(x)
of Theorem (2.2) and Proposition (2.3).
£ 41,9 ¢ T(2), y « T'(5) and 0< a< 1, then

(2.3)
of E.
is a simple consequence

(o=@, y— (ot + (1— @) y,)>
= a{@— o, Y~ Y>+ (1— o) <@— &5, y— 9> = 0 .

By virtue of the maximality of 7, it follows that oY1+ (1—a)y, e T(ax,).

(2.5) TEEOREM. Every mazimal monotone mapping T: F—s2ECEE)
s upper semi-continuous (w.s.c.).

Proof. According to the local boundedness of T, there exists an
open V s 2, such that the set T (V) is bounded. This means that T (V) is
a relatively o (F', B)-compact subset of B’ Admitting that T is not u.s.c.
at ©, we can find a o(E’, B)-open set UD T(z) and a net {z},CV,
@,—, such that T'(m,) ~ (B'\U) # @. Let Yo € T(x,) ~ (B'\T)C T(V).
Without loss of generality we can consider that the net W o(E', B)-
converges to some ¢, < ', Since the graph of T is closed (Proposition (2.3)),
(@0, Yo) € G, i.e. Yy e T(2,). On the other hand, the set B\U is o(¥’, E)-
closed and has to contain y,. Thus v, € (B'\U) ~ T (%) = &. We reach
a contradiction and the proposition is proved.

(2.6) ProrostrioN. If the set-valued monotone mapping s lower

semi-continuous (l.s.c.) at some point m, e B, then the set T (z,) has only one
element.’

Proof. Suppose the contrary: there are Yoy Fo € T (1) and y, # 7.
Then there exists an ¢ ¢ E such that &= (e, Yo—Yo> > 0. The sequence -
Tn = Zy-+(1/n)e converges to z, and, since T is Ls.c. at By, T (a) N
n{y e B Ke,y—yd| < 4} # & when » is sufficiently large. For some
Ym e L(wn) N {y e B': [<e, yo—y>| < §e} we have

0 < <m— @y, Ym— Foy = (1/m)<{e, Ym— Fo>
= (1jm}(<e, Ym— Yo>+ <&, Yo Tod) = (1/m)({e, Ym— Yoy —&)
< (1/m)(}e—e)< 0.

The proposition is proved.

(2.7) TemoREM. Let B be a separable Banach space, and T: B—2%
be a monotone set-valued mapping. Then T is almost everywhere single-
valued, i.e. the set {z < B: T(x) has more than one element} is of the first
category in H.

5%
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Proof. Without loss of generality we ean consider 7' to be a maximal
monotone mapping. In this case T: B—2% is u.s.c. with respect to the
topology o¢(E', B), and the sets T(z), zeX, are o(F',FE)-compact
(Theorem (2.5) and Corollary (2.4)). On the other hand, there is a metriz-
able topology ¢ on Hp < o(H', F) because E has a countable subset which
is everywhere dense in H. Applying Corollary (1.4) we obtain that the
mappiﬁg T: B—2WE-5) js 1.5.c. almost everywhere. As Proposition (2.6)

shows, at all these points of lower semi-continuity, the set 7'(z) has only

one element. The proof is completed.

Let us now discuss the connection between the monotone mappings
and convex funections given on H.

Suppose g: E—R (where B denotes the usual real line) is a convex
funetion. It is known that, for every x, ¢ B, there is at least one y, < B’
such that the inequality o(z)— ¢ (%) = (&—,, ¥o> holds for each # e F.
For fixed z, ¢ B pub d(m) = {y ¢ B': ¢(x)—o(n) > @—x,, y> whenever
@ e B}, It is known (Rockafellar [8]) that &: F—2% is a maximal monotone
mapping. Having this and Theorem (2.5) in mind, we obtain the following
result of Moreau. :

(2.8) CoROLLARY (Moreau [7]). The mapping 8: E—2E oE.B) 4o
upper semi-continuous.

It is not difficult to see that the continuous convex function p: E—R
Is differentiable in the sense of Gateaux at the point @, e B, if and only
if 8(x,) is a single-point set. Thus, in this case, Theorem (2.7) can be
rewritten in the following way:

(2.9) CorOLLARY (Mazur [6]). Let p: E—R be a continuous convex
function on the separable Banach space. Then @ is almost everywhere dif-
Jferentiable in' the sense of Gdteaus, i.c. the set of points, at which ¢ is not
- differentiable in the sense of Qdteauwn, is of the first category in E.
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