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Projections of knots
by
Dennis Roseman (Jowa City, Towa)

Abstract. In this paper we define and study projections of PL n-manifolds in R+
and derive an algorithm for caleulating the fundamental group of the complement of
the »-manifold similar to the Wirtinger presentation for knotted circles in R3.

In this paper, we define and study projections of PL #-manifolds
in B™*?, and derive an algorithm for caleulating the knot group (i.e., the
fundamental group of the complement of the manifold in R™*?). This
algorithm generalizes the classical presentation of knot groups as in [2].
In Yajima [3] knot groups of orientable 2-manifolds in R* are studied;
our results extend this further in two ways: to higher dimensions, where
general position is more of a problem, and to non-orientable manifolds.

‘We will be concerned with closed (i.e., compact without boundary)
n-dimensional PL submanifolds of R™2, If M™ is such a submanifold
and iy M —R*® is the inclusion map, then the knot type of (R™*2, M™)
1§ the PL ambient isotopy class of 4,. Frequently, to avoid excessive
notation, we will use the letter I to also denote the image of 7.

In order to describe the general position of a map we will use the
following definitions as in Zeeman [4]. If f: ¥ > Y is a map and » an
integer, we will define S,(f) = {# ¢ X: f7f(z) containg at least r points}.
We will define 8,(7) to be the closure of 8,(f), and let Br(f) = {# ¢ X: no
neighborhood of w is embedded by f}. Then we will have X = §,(f)
D 8,(f)D ..., and Sy(f) = Sy(f) v Br(f). If f is a PL map of polyhedra,
then these subsets of X will be subcomplexes of some subdivision of X.
Also, a map. will be called non-degenerate if it embeds each simplex.

‘We will consider B**2 as the set of all (n-+2)-tuples of real numbers,
and B+ = {(@y, ..., L,y,) ¢ B"® with 2,,, = 0}. Then II: R""*- Rt
defined by II{(#y, -y Tpysy Tpya)) = (@15 oy Tngq, 0), Will be called the
projection of B"* onto E"*'. The map h, called the height function, is
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defined by h{w, ...,
denote I7(X).

PROPOSITION 1. Given (R™"2, M) there is an isotopy @, of R'"® such
that I | M is non-degenerate.

Proof. Let @, .., %, denote the vertices of M. Let Q(wy, ..., @n)
be the union of all %-dimensional subspaces, K, of B**? with &< n--2,
such that K is parallel to some k-dimensional affine gubspace of Rn*+?2
spanned by a subset of {w, ..., #m}. If §"*' is the unit sphere of R"*?,
then 8™ —Q(ay, ..., #n) will be dense in 8" and, in particular, non-
empty. Choose ve 8" —Q(wy, ..., ¥n) and considering o as a veetor,
let H be the (n-+1)-subspace in R*® orthogonal to ». Then the orthogonal
projection of R"** onto H will embed each simplex of M. If ¢, is an isotopy
which takes H onto R™* by means of a rigid rotation, then ¢, is the iso-
topy we wish. @

For the definition of #-ghifts, sece Armstrong and Zeeman [1]; the
construction of a #-shift will be contained in the proof of the following
proposition, we will not need Brouwer triangulations since our embeddings
are Bueclidian space. This proposition will be used in applying established
general position arguments to our particular situation.

ProrostTioN 2. (Shift lifting lemma). In  suitable triangulations,
if ¢ is a t-simplew of M with g a local t-shift of IT o iy with respect to o,
then there s a local t-shift, §, of s with respect to o such that IT o § = g,
and such that § is isotopic to iy, and § is the restriction of am isotopy of B2,

Proof. Let K, (L, K), and (L*, K*) be triangulations of M, (R**2, ),
and (R, M) such that 4y 18 simplicial, I7: R™2 R iy simplicial,
and IT o 4y non-degenerate. Let ¢ be a t-simplex of K, &= in(c), and
o = II(5). Let K, (T, K", and (L*', K*’) denote the second bary-
centric subdivisions of K, (I, &), and (I*, K*), respectively.

Let B be the regular neighborhood in I of & modulo its boundary
(e, B consists of all closed simplexes of I' which meet the interior of 7);
B Wﬂl be an (n--2)-ball. Let B* = IT(B y; then B* will be an (n-+1)-bhall,
and in fact will be the regular neighborhood of o* in IL*' modulo its
boundary. '

Let B =1i3(B~ M). Let », », and v* denote the barycenters of
o, 6, and o* respectively. Then |B|= |vo8B|, |B] = |# o&B], and |BY|
= |[v* o 8B"|. Let f,: B—B* denote the restriction of 17 o iar; then f, is the
join of two maps: the restrictions of I7 ¢4y to » and to &B.

Our ¢-shift will now be defined. First we need to find a point w* e B*
near v* such that:

(i) w* is contained in the open star of v* in B*;
(if) w* is joinable to 8B*;
(iil) w* is in general position with respect to the vertices of B*.

Byys) = Bppp. Generally, if X C R™ 2 we will let X*
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We next define a homebmorphism, j, of B* to be the join of the map
which sends »* to «* and the map which is the identity on 2B*. Then j is
2 homeomorphism of B* which is fixed on 8B* If we then define g, by

9y =17 o f,, then g, is ambient 1sotoplc to f, keeping 6B fixed. The map ¢
defined by

M—B
s on B

IT o i on
g =

will be called & 1-shift of IT o 4y with respect to ¢. (Note that ¢ is homo-
topie to' IT o dp.)

‘We may finally lift this shift by choosing a point 4 in =~

(i) @ is contained in the open star of % in B

(ii) u is joinable to &B;

(iii) % is in general position with respect to the vertices of (B)

We then proceed as before, defining a homeomorphism, j, of B to
be the ]om of the map which sends 4 to % and the identity of 85; then
defining ¢, = 9 ° %,, Where 4, denotes the restriction of iy to B. We may
now define § by

u*) such that:

. iy on  M—B,
I= g, on B.

We will then have § isotopic to i, and [Tog=y¢. ®&

ProvosITION 3. Given (R™2, M) we may find an isotopy v; of R™t?
such that IT oy, o dp 4s in general position.

Proof. By Zeeman [4] one may inductively define a sequence of
arbitrarily small ¢- shifts, g%, ¢ = 1, ...; » where g™ is obtained by a 1-shift
of IT o ipr; g is obtained by a t-shift of g¥? for = 2, ..., p, and such
that ¢® ig in general position.

Corresponding to these, by Proposition 2, we may find ¢-shifts with
associated maps §® such that I7 o j® = ¢® for each i. Furthermore,
79 will he ambient isotopic to the identity by an isotopy ¢, and §?
will be isotopic to g for 4 =2,..., p by an isotopy ¢{?. We will then
define y; to be the composition-of the isotopies ¢f?, i=1,..,p. =B

We will say that M* is self-transverse if for all ¢, if @ e Sy(IT o ip)—

— 8441 (IT o ipg) (€., @ is a point of order exactly ¢) then there is a neighbor-
hood, U, of &* in B*"* such that II7Y(U) ~ M is a disjoint collection of ¢
open n-disks, B;, and a homeomorphism f: U ~R"™* such that f(z) = 0,
and each f(II(By)) is an n-plane containing 0, and the ¢ n-planes, {flr (B¢))}
are in general position in R™ (i.e., the intersection of any r of them is
(n—+1)—7r dimensgional.
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LevMA 4. Given (R™2, M), there emists am isotopy, e, of B"® such
that II(ps (M) is self transverse.

Proof. For each i=1,..,n+1, let D;= {r e ¥ such that there
exists exactly i—1 points, p, such that II(p) = II(z) and h(x) > h(p)},
Dy denotes the closure of D; in M; let Dy= Di— Dy.

Let K, (L, K), (L*, K*) be triangulations of M, (R"*2, M), (R", 3*),
respectively, such that 4y is simplicial, IT o 45 is simplicial, non-degenerate
and in general position. Let K, (L', K'), (L*", X*"") denote the second
barycentric subdivisions of these triangulations. Let N, be the derived
neighborhood of D,mod D, in M. Then I7|Int N, is a locally flat empbedding;
it is an embedding since there are no self intersections, locally flat since
all non-locally flat points of M* are images of branch points of IT o 4.

_ Consider the simplexes of NymodoN,, ¢y, ..., 6p ordered in decreasing
dimension. An in Theorem 4 of Armstrong and Zeeman [1] we may define
t-shifts for these simplices and associated maps g“'), i=1,..,p such
that ¢ will be transimplicial at points of | ay; ¢® will agree with I7 o iy

j<i

of N,. Let N, be the derived neighborhood of D,modD, in M. Then the
proof of Lemma 6 of [1] shows that ¢®(IntN,) will be transverse to
¢P(Int N;). By Proposition 2, we may find a map §® isotopic to iw,
by an isotopy fixed off of N, such that ITog® = ¢ and § is the
restriction of an isotopy of R™® To complete the proof, we proceed
similarly with Ny, ..., N, .,, inductively finding isotopies ¢{® of N, in B2
such that IT o g¢ will be transimplicial, and therefore transverse to each N,
with j<i. =&

If M C R™* is such that IT o iy is in general position, and it M* is
self transverse, then we will say that M is in general position with respect
to projection. In this case we need to consider the following subsets. Let
D = 8,(IT o iar)— 84(IT o inr); D denote the closure of D in M 3 D will be
called the set of pure doublepoints. Also let Z = Sy(IT o in); Z denote the
closure of Z in M. Let {Z}} k=1, ..., p be the components of M—D;
2 denote the closure of 2y in M. Then 7|5, is an embedding for cach F;
however, I7|Z; may not be an embedding since it may fail to be J1-1
on 92;. Bach Zy is a relative n-manifold, see Spanier [5]. We also note
that each I will be locally flat in B"™, since the non-locally flat points
%nu%*correspond to branch points of the projection and thus be contained
m .

Lmvma 5. (Separation lemma). Hach 3% is an open ovientable n-mani-
Jold, and is two-sided in R™. (i.e., 3% lies on the boundary of ewactly two
components of R"1— ).

Pr.o of. We have already established that 5% is an open locally flat
n-manifold in B**%. We will need the following proposition:
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PROPOSITION 6. The map H™M¥)—H™(M) induced by the restriction.
of IT to M 18 an onto map for any coefficients, in particular H™M*; Z,) # 0
sinee H™(M; Zy) # 0. Also, the Map H“(E;;, 327;) - H"( Xy, 062%) induced by
the restriction of IT to Xy is an isomorphism.

Proof. Let C™(X) denote the j-dimensional simplicial cochains on X,
& denote the j-dimensional coboundary operator and let I7¥: C7(M™)
- (M) be the cochain map induced by JI|M: M —M*. Since I7 is a 1-1
mapping of the n-simplexes of M to the n-simplexes of M*, II* is an
isomorphism and its restriction gives an isomorphism of the cycle groups
ZMM*) - ZMM). Now II*: HM*)—H™ M) will be onto iff [T*B™(M™))
C BY M), where B"™ refers to the coboundary groups; but this follows
since 76" = " LT*,

Similarly, since X} can be considered as X with identifications on
8y, then the cochain map induced by I7|Zp from the C/(Z%,82%) to
¢/ Xy, 82%) I8 an isomorphism for any coefficients and for all §, and thus
HY X%, 0Z}) is isomorphic to H™(Z,8%:). B

We will now show that 3} is two-sided. Let #= {X C M* such
that X = |J 2% where {¥]} is a subcollection of {Z7}}. # is partially

]

ordered by inclusion; let < denote striet inclusion. For each k, let &
= {X e # such that I} CX and such that for any Xj C X, the map
HYX; Z,) —HX— Z}; %), induced by inclusion, is not an isomorphism}.

Next we show # £ @ by showing that M* e #;. Let N = M—2X;
then N* = M*—3¥. Consider the diagram below, which is part of the
homomorphism of the cohomology sequence of the pair (M*, N*) induced
by the restriction of IT to J, (coefficients are to be taken in Z).

HY MY, N*) > HY(IY) —— BN )—> 0

. \LH# lu# ln#
MM, N) ——> HYM) ——~ HYN) —0

Now H™M), H*M,DN) and H™(M*, N*) are isomorphic to Z, by the
Lefsehetz duality theovem (Spanier [5]) since each is compact relative
manifold orientable over Z,; the map j is an isomorphism by exactness
of the bottom row since H*(N) = 0 (N collapses to an (n—1)-dimensional
subcomplex); J0%: HYM*, N*)—H*M, N) is an isomorphism by Propo-
sition 6 since, by excision, this map is equivalent to the map H" X, 0XY)
- H"( Xy, 03)); thus by commutativity of the left hand square, j* is not
a zero map; therefore, by the exactness of the top row, the map 1%, although
onto, is not 1-1.

Let Wy be a minimal element of # (i.e., Wy e % and if ¥ ¢ 4 with
Y < Wg, then ¥ ¢ A). Such a minimal element will be called a Xy-cycle.
We will show that H™ Wg; Z,) is isomorphic to Z,. First we show:
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PrOPOSITION 7. If X e 4, Yg X with X—Y = £f and HY(Y; Z,) = 0,

then. H™(X; Z,) is isomorphic to either 0 or Z,.

Proof. By excision, HY(X, ¥; Z,) ~ HYZ2},0%}; Z,) ~ Z,, and thus

around dimension n, the cohomology sequence of the pair (X, ¥) is
ZBLH"(X)-»O. Thus H™X) iy the image under j of Z,; therefore H"(X)
isOor Z,, ®&

Now if W, = X%, then it follows from the above proposition with
X = 2%, and ¥ = 82X} that H™Wy; Z,) ~ Z,, otherwise H™(Wy; Z,) and
BYW,— 2% Z,) would be both zero and thus isomorphic contradicting
the assumption that Wy e ;. Next suppose that W, s Z%F. Then we

where

»
must have H™27; Z,) = 0. We may suppose that W= {J X}
i=0

q
i = Zy. Let Vq::.on 25 By the minimality of Wi, for all ¢< p, we

have, with Z, coefficients, H"(V,_,) isomorphic to H™V — qu) and since
Vo = a’
HYVy35 Z,) = 0. Applying Proposition 7 with X' = Wi and Y=V, _,,
we conclude that H™(Wy; Z,) or 0; but it cannot be 0 since then Wy could
not be in Jbx; therefore H®Wy; Z,) ~ Z,. B

By Alexander duality, H™(Wy) is isomorphic to H(R™1—1) for

any coefficients, where , denotes reduced zero-th homology. The number

of components of B**'— W is one more than the rank of H (R*"— W),
thus the number of components is two.

In order to complete the proof of Lemma 5 we need:

PROPOSITION 8. Let K be a component of B™'—1* If 3* ~ K =0,
then 275 C K.

Proof. Using the fact that each Ef is locally flat and connected,
one can show that the set of points of )J:‘ ~ K is both open and closed
in 57; thus 5}C K and it follows that S}C K. m

Now let the components of B**— W be ¢ and D. If B is a component
of B™*'—M", then either BC ¢ or BCD. Let ¢ be the component of
B¥*—M* contained in ¢ such that I} C ¢, such exist gince some com-
ponent contained in ¢ must meet T} and thus by the above proposition,
its closure must contain . Similaxly let D’ be the component of R I*
contained in D such that j C D'. Now X} is contained in the boundary
of these two components and only these components of R*+'—M*

It remains to be shown that 3} is orientable. If £ were non-orient-
able the{l 2 would be mnon-orientable and H"™( Xy, 8y Z) = 0. Let N
= Wi— X}; since H"(W. 13 4y) = Z,. It follows from the definition of Wy
that H™N; Z,) = 0, thus, by Alexander duality, N does not separate
E™, and H™N,Z)=0. By excision, HYWg, N) ~ HYZE, 83%) ~ 0.
Thus in dimension n, the cohomology exact sequence of (W, N) with.

% it follows that for all g<p, HV,; Z,) =0, in particular,
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7 cocfficients becomes 0~HYWy, Z) -0, and HYWi; Z) = 0, thus Wi
does not separate R™'. But we have already established that it does
separate; thus X} could not have been non-orientable. This concludes
the proof of Lemma 5. @&

Let H be an (n--1)-plane in B+ parallel to B, we may assume
that M is between H and R™*. If X C B"*%, then X will be II"(II(X)) ~ H.
For our basepoint in the caleulation of the knot group, we will take a point
ay ¢ H such that @y ¢ M*. If x e R**2 then ot will be the line segment
between @ and 4, »~ will be the line segment between » and *. Tf X C B*+?,
then X == Ja", X~ = {Ja".

wveX zeX

A directed path is a path with a particular ordering of the points;
we will denote this ordering by <. If {#, ..., 2x} are points of R"*%, by
the path (@, ..., 2¢) we will mean the directed path from =, to z; consist-
ing of straight line segments joining «, to @,.,; at times, to conserve no-
tation, this symbol will also refer to the unordered path. If L is a directed
polygonal path, —I will denote the path L directed in the opposite di-
yection, Suppose I is a polygonal path in R"™2>—M with endpoints a
and b, directed from a to b, and such that a* and b* are not points of M™,
then (L) will denote the loop in E**—M given by the polygonal path
(g, @, @) L% (b, b, @), where the operation # is path composition, and
we note that — o(L)= p(—1I).

Tor cach region X7 choose a polygonal path L; in R"** with end-
points a; and b; such that Ly~ M* consists of o single point of X
between a; and by, that intersection being transverse. Let oy be the homo-
topy class of the loop ¢(Ls), then o(—1I;) e o7t (In the case that M is
orientable, we might wish to choose the direction of L; to be consistent
with the orientation of M as in the classical case ([2], Chapter VI), or
ag in Yajima [3].) .

- ProrositioN 9. Let L be a path with endpoinis « and b in R””——OM
directed from a to b, such that L* ~ M* consisis of a single point 1:’; €%,
and so does IT~Ypy) ~ L and such that L* is transverse to M* at pk;; Then
o(L) represents o*® where ¢(p*) is defined as follows. Let p = I p*y ~ L,
g =Y p*) ~ M, then s(p*)=0 o h(p) >n(g) &(p*)=1 if h(p)
< h(q) and if a* is in the same component, X, of RML— M as ay; e(p*)
= —1 otherwise (i., h(p)<h(g) and b* < X).

Proof. If &(p*) =0, then LT ~n M =0 and ¢(l) is nulhomotopic
in R"2— I, the nulhomotopy carried by L+ o O, (L), where (,[Y] de-
notes the cone on ¥ from , that is, this set is the image of a map of T x I
into B**2— I which gives the nulhomotopy.

Let ¥ be the component of B*™*— M* which contains‘b*. If; e(p*y=1,
let @ be a path in X from a* to a;, B a path in ¥ from b} to ¥, Let B be
the disk, perhaps singular, in B™** whose boundary is the path @ = Lz
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* B % (L71)*. Then there is a homotopy between 9(1}) and o (L), carried
by the set Ch(@) v @F W I~ VB ULyu R U 0, (R), see Fxg la). In
the case e(p*) = —1, we leb @ be a path in X from b* to of; R a path
in X from b} to a¥*, and similarly proceed to show that ¢ (L) is homotopic

to o(—Ig).
In R"“, let P = {(@,; ., Tpyy) With wp=0}, P = {2 eP with
=0}, P.={reP with o, <0}, Q= {(@,..., 2, with &, =0}, Q.
{Jo eQ with o =0}, Q= {ze@ with 2, <0}, G=P ~Q. By our
self-transversality, if #* ¢ D* then there exists a neighborhood, U, of &*
in B*™*' and a homeomorphism g: U —E"" such that g(z*) = (0, ..., 0),
and ¢(U ~ M*)= P ~ Q. We next deﬁne the following subsets of M.
Let P’ = (gII)™Y(P), P = (gI)"M(P.), P_ = (¢II)"YP_), similarly define
Q' Q’+, and Q.. Then we may write P Cxy, PLCX;, @,CZE, and
Q. C Xy, where Xy, Xy, X, Xy are not neccmmly all distinet, see Fig. 1 b).
Let y be the component of D* which contains #* Let .bp = I (a*) ~
APy @y = IT72*) ~ Q. TE T(wp) > h(x,), we will say that Iy v Xy is the
over Surhce at a*. WG will show 1:11&1; this definition is independent of
choice of x* ey, Let V = {&* ¢ y such that T u X is the over surface
ab 2%}, then V is open in y since Z; w T ig the over surface for every point
in ¢ J*l( ); similarly, y—V is open in y and by connectedness of y, ¥V = y.
In B"*, let § be the square 8 = {w ¢ R"*, with |oy] < 1, |#,,] = 1,

Wy = ... == @y = 0}; we wish to consider the following points in U corre-
sponding to points of 98. Let
Tf = 9—1((17 0,..,0, 1))7 7‘; = g_.l(("']v 0,..,0, 1)) )

7‘: = g—l((_‘la 0: ey 0’ '““1))a "": = g‘l((la 02 -"7' OJ “—1));

Projections of knots

=
-}

Pf=fl*‘(%'f\13+)7 p;“:g—l(agmg+)’
Py=gT8NP), pi=g7 (8 nQ).
See figure 1b).

TurorEM 10. IL(E™:—M) has the following presentation. There is
one gen emtm, ox, for each component, 5% of M*— D*. For each component,
y, of D* there are two relations as Jollows: choose an a* ey,

L) oi= oy if Ty Xy is the over surface at r*,
1I0) o 6(171) F(m,f) 'o“(m) a(p,,)__ 1,

where e(p}) is (Zefmm(l as in Proposition 9 via the path (ri_i, 75) for i £ 1,
e(p%) determined via (v}, r¥).

Proof. We first remark that we have shown that relations of type I
do not depend on the choice of * ¢ y; similarly one can show that rela-
tion II does not depend on the choice of z* ¢ . We also remark that we
may describe relation IT as obtained as follows: let §* be a small oriented
simple closed curve about y which meets £, £¥ 5% 3% in one point,
transversely, and let s* ¢ 8*— M*, then by considering §* as a directed
path from s* back to s*, relation IT is obtained by setting w[o(8*)]= 1
where w[p(8*)] is defined below. We can see that this relation does not
depend on the choice of s* or the orientation of S*.

Let I’ denote the free group on the symbols {04}, let R be the smallest
normal subgroup of ' containing the words o,0; and o5 ¢2g: E(”*) oS0,
we will show that JI(R"*—3f) is isomorphlc to the quotlent group F/R
by defining a homomorphism f: F —II(B***— M) which is onto, such
that the kernel of f is . The map which sends each generator, o; of F' to
the element representing the loop ¢; in JI;(R**— M) extends to a unique
homomorphism of F to [I,(R***— M), this will be our map f. If a P,
and we represent a by the word w = o -0% - ... - 05", &= 4+ 1 then f(a) is
represented by the loop of-o%-..-oi"; conversely we note that if
o= 0% of ... o represents an element of IL(R™*— M) and f(a) =«
then a is represented by the word of-0% -...-¢i. We will let this word
be denoted by w(a). Next we show that f is onto. If a e IT,(R*"2— M)
we may represent it by a directed polygonal path, I, in R***— M with
the following properties:

1) I* contains no points of D* (this can be done since D* has co-
dimengion 2 in R™*1),

2) I* intersects M*— D* transversely in a finite number of points
5%, ...,p;“n where p;"<p;“< .. < py,. Let ¢; be points of L such that a
=gd<picdcpi<a<. < <pn<cn=u;. We define s(p])
via the path (¢;_;; ¢;) as in Proposition 9; and then by that proposition
we will have I homotopie to the loop g((co, €1)) % 0 (eyy €2)) % voe * 0((Cpy s Cm))
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e ok * o
and thus represented by the word ofPVoi™ ... of¥, where p} e 2}

we will denote this word by w[e(L*)]..

We next will show that the kernel of f is B. Suppose that a ¢ I' with
f(a) = 1; then the loop f(a) is nulhomotopic in R"**—M. Let g: D?
- B2 M give this homotopy as follows: let #, be the point of D? corre-
sponding to (1, 0), then if we consider D2 to be the directed path from g,
to 2, counterclockwise about 2D%, then. g[a.D* represents f(a). Let B = ¢(D?).
By choosing g appropriately, we may assume that

1) ¢ is piecewise-linear,

2y IT o g is non-degenerate,

3) B*nZ"= @ (since Z* has codimension 3 in R"1),

. 4) B*intersects D* transversely in a finite number of points g¥, ..., g%,

and B* intersects each X% transversely. .

(In the case n==1, we will need to use the following in place of (4):
if o* is a 2-simplex of B* then o* ~ D* C Int o™, and do* meets cach are I}
transversely.) Such a map, ¢, will be called a nulhomotopy in general
position. If X CD? let X' =g(X). If # and y are points of aD? then
[#'y y'] will denote the directed subpath of ¢(6D?) from 2’ to y'.

Let J = (IT o g)"YM™), K = (IT o gy~ D*). K is a collection of points

in IntD?, and J is the union of proper ares in D? and simple closed curves -

in IntD? whose intersections are transverse and constitute JC (an arc
o= D? iy proper if a ~2D* corresponds to the endpoints of a).

ProposrTioN 11. If g: D*—>R"2—M is a nulhomotopy in general
position with K = @, and 2, is any point in 8D%—J, 2, + 2, then w (o[, 2,])
= [w(Q[zi’ 28])]_1 .

Proof. We will use induction on the number of components of J.
If J has one component then J = (ITg)~*(3}) for some k. It J ~ 8D = @
(i.e., if J is a simple closed curve in the interior of D?), then for any z,,
w(o[#, 2]) = w(o[2y, 2]) = 0. If J ~ oD 5= @, then J ~2D? consists of
two points p and r with say p << r. Let ¢ be a point of &D* such that
p<<g<r. Now by Proposition 9, o([z,¢']) e o™, We will show
that 1) if e{(p")¥) = 0, then &((')*) = 0; 2) otherwise &(p')*) == — &(r')*).
Let p” = II7Y(p")*) ~ I, 7" = IT™H(r')*) ~ M. IE &(p)¥) = 0, then h(p’)
>h(p"); by connectivity of J', we may argue that therefore all points
of J” lie above the corresponding points in M, in particular, h(r') > h(+"),
and thus &(*)*) = 0. To consider case (2); suppose that e((p')*) = L.
‘Then h(p’) << h(p") and (z)* lies in the same component, X, of Rr+i— i1
a8 ay. As above, we sec that all points of J' lie below corresponding points
«of M and so, 2(r') < h(+"'), and since (g)* ¢ X, e((r’)*) = —1. The case
&((p)*) = —1 is similar. Now by checking the three cases 2, << # < 2,
DP<zZ<7r r<z <z, one may verify our proposition. For example,
in the first case, w(ele, 2,1) = 1, w(gle], #)]) = oLEMgye@®),
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Next, suppose that J has n+1 components, # > 1. It is not difficult
to find a proper are, 8, in D* with one end point 2,, the other, say 2,
such that D*— § contains sonie components of J, § meets each component
of J at most once, see Fig. 2a). Then the closure of each component is
a nulbomotopy in general position satisfying our inductive hypothesis.
There are two cases: 2, < 2 < 2, and 2,<C g, << 7;. We wiil examine the
first case, the second is similar. Tiet w, = w(p[2;, 21]), we = w(0[2], 251 % f~1),
wy == w(a(B)), wy = wlolz;, &), wy = w(o[e],#)). We wish to show thatb
wy = w;". By our inductive hypothesis we have w, = w;* and w, = w;L
Thus we have wy = wyww,w, = w; wywy* = wy™.

From the above proposition, we see that if K = @, then the word
a=w(f (a)) is equivalent to 1 < and therefore a R in general by in-
duction on the number of points in K.

Suppose that K consists of one point, say d. Let B be a small regular
neighborhood of d. Let 2, be a point of 6B—J and let g be a proper arc
in D*—1IntB from #, to # which meets.J transversely; let 6 be an arc
parallel to f, with the same properties from, y, e £D? to y, ¢ 8B such that
J ~eD? C (2, ). Orient 8B counterclockwise and let o be the directed
path from v, to 2, v the directed path from 2, to y,, see Fig. 2b). Let
wy = wlo(le, vol)l, we=wlo(d)], wy=wlo(0)], we=wle(B™], ws
= 0[p(r)], and wy=wle(¥,7))]. Clearly, it can be arranged that
wy == 1 and w,=1. By Proposition 11, considering the disk bounded
by the path [y, z]* f*7 %67, we see that w,= w;* Considering the
disk bounded by the path [z, yo] * S o ™" we see that wy = wywsw,
= 1w Wy, . By the remark following the statement of our theorem, with S*
corresponding to [(8B)]*, we see that wyuw, = wy ¢ B. Now w(f(a)) = w;w,
==y 1 =w, and w, is a conjugate by w, of an element of R, therefore
w(f(a)) ¢ R. :

Now suppose that K consists of n-+1 points. Let § be a proper are
2 — Fundamenta Mathematicae, T, LXXXIX
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in oD from 2, to, 8ay, 2, such that each component of D?*— f contains
some points of K. Then ‘
w(f(a)) = wlolleg, #]) % 7% B * e[z, 201)]
= wle(l#;, #5) * 7] w]B * ollz, #0))]
is the product of words in J. This completes the proof of the theorem. @
: As an example of this theorem, consider the crosscap; this is the
projection, in general position, of an embedding of the projective plane
in R% To find its knot group we note that there is only one region, Xy, and
only one are of double points. Thus we have one generator, oy, and two
relations; the first is oy = o7, the second is oyor Yo, 07t = 1; thus the
knot group is isomorphic to Z,. Similarly one may consider the embedding
of the Klein bottle in R* whose projection in R% iy a surface with a single
circle of self-intersection and find the knot group of this. embedding to
be isomorphic to Z;.
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Two notes on abstract model theory ,
II. Languages for which the set of valid sentences
is semi-invariantly implicitly definable
by

Solomon Feferman * (Stanford, Cal.)

Abstract. It is shown that if I is an abstract model-theoretic language, the syntax
of I is represented in a structure U = (4, ...), the Lowenheim-Skolem property holds

down to card (A) and kg is uniformly ii.d. in I then the set of L-valid consequences of

a et S of sentences is s.ii.d. in I whenever § itself is so definable. This generalizes
a theorem of Kunen for admissible fragments of L ,,. The final part of the paper relates
this to a program of study of good properties of model-theoretic languages.

Introduction. The aim of this note is quite different from that of
the preceding [F2], though it makes use of the same general preliminaries.
In content, it is a sequel to [F1], § 3 where some connections were studied,
for arbitrary languages L, hetween implicit definability of the satisfaction
relation kr and logical properties of L. The basic relevant notions of [F1]
are recalled below, in particular that of the syntax of L being represented
i a structure U = (4, ...) and (relative to any such representation) that
of kg being wniformly invariantly implicitly definable (uiid) in L. We add
here & related notion of a subset § of A being semi-invariantly implicitly
definable (siid) in L (*). This includes Kunen’s definition in [Ku] of siid
for admissible structures A = (4; &, By, ..., Bx) as a special case, and
in the same line extends model-theoretic generalizations of recursion
theory. Kunen showed that being siid is equivalent to other proposed

* Guggenheim Fellow 1972-78. The preparation of this paper was begun at the
U. E. R. de Mathématiques, Université Paris VII and completed at Stanford University
under N8I Grant GP 34091X during that period.

(*) To be morve precise, several variants of the notions siid are introduced and com-
pared in § 2. In accordance with one of these, uiid is rewritten # -uiid,.
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