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in oD from 2, to, 8ay, 2, such that each component of D?*— f contains
some points of K. Then ‘
w(f(a)) = wlolleg, #]) % 7% B * e[z, 201)]
= wle(l#;, #5) * 7] w]B * ollz, #0))]
is the product of words in J. This completes the proof of the theorem. @
: As an example of this theorem, consider the crosscap; this is the
projection, in general position, of an embedding of the projective plane
in R% To find its knot group we note that there is only one region, Xy, and
only one are of double points. Thus we have one generator, oy, and two
relations; the first is oy = o7, the second is oyor Yo, 07t = 1; thus the
knot group is isomorphic to Z,. Similarly one may consider the embedding
of the Klein bottle in R* whose projection in R% iy a surface with a single
circle of self-intersection and find the knot group of this. embedding to
be isomorphic to Z;.
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Two notes on abstract model theory ,
II. Languages for which the set of valid sentences
is semi-invariantly implicitly definable
by

Solomon Feferman * (Stanford, Cal.)

Abstract. It is shown that if I is an abstract model-theoretic language, the syntax
of I is represented in a structure U = (4, ...), the Lowenheim-Skolem property holds

down to card (A) and kg is uniformly ii.d. in I then the set of L-valid consequences of

a et S of sentences is s.ii.d. in I whenever § itself is so definable. This generalizes
a theorem of Kunen for admissible fragments of L ,,. The final part of the paper relates
this to a program of study of good properties of model-theoretic languages.

Introduction. The aim of this note is quite different from that of
the preceding [F2], though it makes use of the same general preliminaries.
In content, it is a sequel to [F1], § 3 where some connections were studied,
for arbitrary languages L, hetween implicit definability of the satisfaction
relation kr and logical properties of L. The basic relevant notions of [F1]
are recalled below, in particular that of the syntax of L being represented
i a structure U = (4, ...) and (relative to any such representation) that
of kg being wniformly invariantly implicitly definable (uiid) in L. We add
here & related notion of a subset § of A being semi-invariantly implicitly
definable (siid) in L (*). This includes Kunen’s definition in [Ku] of siid
for admissible structures A = (4; &, By, ..., Bx) as a special case, and
in the same line extends model-theoretic generalizations of recursion
theory. Kunen showed that being siid is equivalent to other proposed

* Guggenheim Fellow 1972-78. The preparation of this paper was begun at the
U. E. R. de Mathématiques, Université Paris VII and completed at Stanford University
under N8I Grant GP 34091X during that period.

(*) To be morve precise, several variants of the notions siid are introduced and com-
pared in § 2. In accordance with one of these, uiid is rewritten # -uiid,.
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generalizations of being wcmﬂswel y  enumerable, at leagt for countable
admissible UA.

The main result obtained here (§ 3) is that for L represented in oA
= (4;...) (and satisfying some elementary. conditions): )2 if the Lowenheim-
Skolem property holds down to card(A) and kg is uiid in L then the set
§8-Vdy of L-valid consequences of a set 8§ of semtences is sild in I whenever
S 45 siid in D. In particular, the set Vdi of L-valid sentences is siid in L.
These generalize the corresponding conclusions of [Ku] for arbitrary
admissible fragments of L, ,. It will be seen that the proofs isolate the
ideas of Kunen’s work in abstract terms. § 4 situates the results within
an extended discussion of good properties of model-theoretic languages.

§ 1. Further general preliminaries. It is assumed throughout, ag in [F2],
that L is any regular, L, ,-closed language. Fmy(7) denotes the class of
formulas of L(r), explained as in [F2], 1.2. This determines the meaning
of <2y, the clementary substructure relation for L.

1.1. Lowenheim-Skolem properties. By the cardinality card(9t) of
a structure M= (<M, ...) is meant card(U M;). Let x be any in-
jed
finite cardinal.
DeriNiTioN 1. L is said to have the global L-8 property down to x if
whenever %, CM and card (M) < » < card (M) then there exists M,

such that

Iy My C M C M, card (M) < %, and
(i) M, %L .
DEFINTTION 2. L is said to have the local L-8 property down to s if

whenever M, C 9N, card (M) < » << card (M), ¢ «Ste;, and MEg then
there exists M, with ‘

(i) My C M,y C M, card (M) <

(i) My 3 @. ‘

Exawmpres. These are with reference to the list BWl-E5 of [I'2], 1.3.
We are particularly concerned with whethet L- S holds down to card(4)
for I represented in A. (The general notion of representation, in 2.2 helow,
is not needed here.) Verifications of the statements ave standard.

El. Ly (4 admissible). Global Z-8 holds down to ecard(4d). Ifor
A C H (%), local L-8 holds down to .

E2. L4(Q,). When card(4)<< %, local L-8 does not hold down to
card(4). Global L-8 holds down to card(4) for admissible 4 with
card(A) = »

B3. L,,(0) (o-logic). Global L-8§ holds down to w.

B4. L2, (2nd order logic). Local L-§ does not hold down to .

B5. L,,, » inaccessible. Global -8 holds down to .

#, and
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1.2. Reducing the number of sorts. Tt suffices to deal with single-
sorted struetures in the case of L4, by means of the method of unification
af domains which replaces consideration of (£ .) by that of
Uo My; My, My, ..., My, ..). This method can algo be applied to other
languages, such as the La(@,); but it cannot be applied, to 2nd-order
logic in the treatment followed here, according to which each domain
M; of “individuals” must have an associated domain M;s = T(M;). A slight-
ly weaker requirement is that one can trade any domain M; for
a unary predicate when JM; happens to be a subset of some other M.

DupinrroN. L is said to have the sort-reduction property if for each
7 ¢ Typz with

‘:'Ij~ 0<i<nl -

(a) Sort(v) = {My, My, ..., Ma},
and with each ¢ e Fm(7) and each I eS'trL(r), for which

(b) M= (M, My, ..,

nz=1,

Mn; By, ..)  and M, C M,

are associated respectively, a new +° ¢ Typr, a formula ¢ of L(s0), and
an L-structure P° of type 70 satisfying the following conditions:
(i) Sort(z%) = Sort(r)— {M,}, Symb (+°) = Symb(r) v {M;} (consider-
ing M, as a unary Ielmtlon symbol).
(i) MO = (My, ..., Mu; My, By, ...).
(iil) The free variables of ¢° are the same as those of ¢, excel')t that
each #@ is replaced by a variable z®.

(iv) If ¢ is any assignment to the free variaples of ¢ then
ME@(s) < M F g(s).
It is easily seen that the languages E1-E3 (among others) have the
sort-reduction property. Whenever this property holds for Z and we have
local L-8 down to card(4) then fromexistence of expansions %A’ of A

having certain properties we can obtain existence of such ' without
new sorts. This idea is applied in Theorem 3 of Section 2.3 below.

1.3. Joins of indexed structures. ]

Derinttion. L is said to have the join property if with each v e Typz
is associated =¥ ¢ Typr having at least one new sort I, such that we have
operations @ + ¢%, <MD er+ > My, and M+ M, satistying the follow-

el
ing conditions:
(i) (Join) (2 M) e Strz(z¥) whenever M « Strz(r) for each 4el,

and. 2 My = e )

C i€l
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(ii) (Projection) Tf M € Strr(z¥) and M= (I,
for each ¢ eI and Z M)y = My, for cach ke I

.) then 3}%(1) € StTL(T)

X

(iit) If ¢ eI‘mL( ) then ¢¥ e Fmy(r®) and ¢* has the free variables
of ¢ together with a new free variable u of sort I.

(iv) For any Mt = (I, ...) e Strz(r%), 4 ¢ I, p e Fmy(r) and assignment s
to the free variables of ¢ in I,
ME @%(4, 8) < My Fo(s).

All fomiliar Tanguages (including EL-BB) have the join property. We
llustrate the verification of this for L, and for v single-sorted with one
binary relation symbol R. Given My = (My; Ri) for ¢ eI, take

S = (I, U My U{%}xm, Y dikx i)

el iel
Thus Sort(z®) = {I, M} and Symb(v%) = {M"*, R"}

R* ternary. Inversely, given
M= (I, M; M*, R¥

of type 7%, define My = (M ,; Ryy) by
@ e My < <6, 2> e M*

with M"* binary,

and @,y e Ry <= (i, 2,y « B,

o™ (%, ...) is obtained from ¢(...) by mplmcing cach atomic R(z,y) by
R*(u, ©, y) and replacing each quantifier Az(...) by A@lM*(w,x,y)~...].
The join is thus a kind of disjoint union operation dizplaying the index
set a3 a new sort. This particular method of realizing the join property
must be modified slightly in special cases like 2nd order logic.

§ 2. Representation of syntax; implicit definability of syntactic and semantic
notions.

2.1, Valid conseqﬁence.

DEFINITION. Given S CS8te(r) with Mod(8) 0 and ¢(z, ..

. vy @n)
In Fmy(z) write

Ste

/\w«nfp .
{(p @ eSte(r) and S kel

‘when Mod (S) = 0 we write S— Vd(z) =
when § is empty.

it Mod () C Mod (A @ ...
S—Vd(r

4. 8§ is omitted in these notations

2.2. Representation of syntax in a structure.

DEFINITION 1. L is said to be represented in U relative to {TABYD geu
(A --) is an L-structure and each m,(w) is an L-formula such that:

icm

Two noles on apstract modei: theory. I

115

(1) U Bte(r)[z e Typz] C 4,

(i) A F ma(a) for each ae 4,

(iii) F [oma(@) Amaly) =2 = y] for each ¢ e A.

By (i), (iii), not only does =, define a in U, but it defines a unique
clement o' in each structure satistying 3 asm,(x).

It is not required that ¥ be single-sorted; 4 is just a distinguished
domain of W. Bub we shall assume that A is of mazimum cardinality among
the domains of A, i.e.

(1) card (A) = card (%) .

The principal example is that of sei-theoretical representation, i.e. where
A= (4;¢) and 4 is a transitive set. Namely, if T contains L4, conditions
(ii) and (iii) are satistied by use of the following (inductively defined)
Ls-formulas:

(2) ta() = N\ Y[y ez \/ \/Mb(?/)]’
(3) 7a(2) = wa(2)A )\ /\ \/' YY) (

beTCi{a))

Roughly speaking, u, describes a with respect to its members, while m,

describes it with respect to its entire set of predecessors, taking b <rc®
Z, b e TO({a}).

Twery familiar language L (including those in E1-H5), for which
Ster is a set, has a representation in o transitive A such that L contains L.
For in every case formulas are built up from atomic formulas by repeated
application of syntactic operations and constitute certain coded well-

Jounded trees; these can be identified in a canonical manner with certain

sets in the cumulative hierarchy.

Remark. It may be expected that all “natural” languages which
will ever be used will have such a set-theoretical representation. One
might therefore think of including this as part of the abstract definition
of model-theoretical language. That has not been done here (or elsewhere)
since many (if not most) results of abstract model theory do not depend
on such a build-up. (Bven the results below require only special aspects
of such a build up, just those given in the preceding definition.) It is also
possible that languages with some kind of non-well- founded formulas
could be used for counter examples.

The language L, , is not represented in a set. One could extend the
notion. to that for re’presentability in classes, but it seems preferable to
deal with L, , where 7, satisfies explicit closure properties (such as
satisfying ZIT') in place of Ly ,.

(*) Correction to [F1], § 3.3(2): write \/ly for V¥, asin formula (3) of the text here
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* .

Before languages with infinite formulas were taken up systematically,
one considered representations in the natural numbers, or in the set of
all finite sequences from a finite alphabet. For representation in 90
= (w;<<) we may take each un(x) (n ew) to exp‘recsq thcu; @ hag exactly
n—1 predecessors, and m.(z) = wal®m)A A\ AN 9 pmly

MEN

We assume throughout  the following that W= (4,..) s any
L-structure and {moa(®)) 404 a0y sequence relative to which I is representable
in UA. 7y denotes the type of A

DeriNtrroN 2. For U’ = (A’
and call A’ -a =-ewtension of A, if

(i) A CA and

(ii) A’ F ma(a) for each a e A,.
More generally we write »: 9, —;QI" if

, o) of type TQ[,‘ we write 20, C, %,

() »: YA is an-embedding and
({i)" A’ F owafn (@) for each a e9Yy.
In the case of set-theoretical representation for W= (d,s) 4,C A4
= (4', B'), then %, C, A’ just in case A’ iy an end-ewtension of Ay. Thus,
more generally, there exists » with »: .%Io > A’ just in case W’ is isomorphic

to an end-ewtension of Uy; in that case » is unique. Given a e 4y, a’ ¢ A’
- we have

W' F mala’)

if and only if ¢’ = »(a). Then »: TC({a}) >’ for the restriction », of ».

2.3. Juvariant implicit definability of subsets of A. We shall have to
make considerable use in the remainder of the paper of projections of
L-elementary classes. Following [F2], 1.1(1), we write:

1) METe_ e 2 3 ev'—Bxp(M) (M kg),

whenever 7, v’ « Typz, v C 7’ and ¢ e Stez(z'). When there is no ambiga-
ity, we simply write 9t F 3¢ if this holds.

Some motivation for the following definitions and comparison of the
terminology with previous usage will be found in the next section 2.4.
We abbreviate (semi-) invariantly implicitly definable by (s)iid.

The subscript @ abbreviates exira (for the case of possibly new gorts)
and 4 abbreviates sharply.

L, is assumed to be any language contained in L ([¥11, § 3.1); for
simplicity this can be taken so that

(2) Ster, C Stey,.
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In particular, when L is L, .-closed we assume that L,, is contained
in I in this sense (of course with types and structures 1estncted as for L).

DmrinirioN 1. Suppose 8 CA. Then § is said to be siid, (resp. 4idz)
in L, if there are v and ¢ satlsfymg

i) " e Typz, v+ 2 Ty {8}, @ e Steg, (v,

(i) [, 81k Ap, and

(i) if [A', 8] & Jp and A C, A’ then SC8 (vesp. S =
said to Dbe siid (resp. #d) in L if, in addl’mon

(iv) Sort(v™) = Sort(z).

Note that equivalently in (iii) we can write »: ¥ — A’ in place of
UAC, A and »(8)C A (vesp. »(8)= 8 ~»(2)) in the conclusion.

DeriNtrioN 2. 8 is said to be 3f-siidy (resp. 3f-iid,) in I, if there
are =¥, ¢ satisfying (i), (i) of the preceding and in addition: (iii) if

[, 877k 3p and W' Faaa’) then aeS=a' ¢S (resp. acS<a c8).
Again we drop » if Sort(z*) = Sort(v).
Of course all of these definitions may be given just as well for 8 CA™

The notions with « are called wnrestricted; each notion obvmusly
implies ity unrestricted version.

THEOREM 3. Suppose

(1) Iy satisfies the sort-reduction property and

(i) L, satisfies the local L-S property down to card(A).

Then each of the notions siid, iid, 4 -siid, :l:):»féid (in L) is equivalent
to its wnrestricted version.

Proof. Suppose § is siid by ¢ in L By local L-§ down to card(4)
(= card ()) we can assume there exists an expansion A+ of [, 8] which
satisfies ¢ and is of the form:

= [y 8, (M, .y Mnj By, -.)]
My are all the new sorts and

Myw..voM,CA.

8" ~A4). S is

where My, ...,

Then by successive reduction of sorts, we obtain ¢° in Z; and %*° where
A E 7, Y0 = (U, 85 My, ..y

but with M, ..., My now considered as unary predicates in 4. Suppose
[, 87k dg® with AC,A'. Then we have some B=[U,45,..] of
type =+, which satisfies ¢°. Then B is of the form &° where & is an ex-
pansion of [, 8] of type v+ which satisfies ¢. It follows that SC 8"
and henee that 770 and ¢° fulfill the conditions to make S siid in I,. The
argument proceeds in the same way for -siid, as well as for iid and

.Z'I’L, Ro’ -An]
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#-1id. For the latter two we can also make use of the following, which
is easily proved. '
LeMMA 4. S is 4id in Ly < S and A— 8 are siid in Ly. The same holds
with the qualifications 4= on both sides, as well as for the unrestricted versions.
All of the foregoing may be relativiced to parameters a, ..., ay in A
simply by replacing U throughout by [, ay, ..., ax]. This i3 unnecessary
in the case L, = L since there we have every m, available to defino a;.
All notions relativized to some choice of parameters are indicated in
boldface.

2.4. Comparisons with previous notions. These wore introduced suc-
cessively by Fraissé [Fr], Kreigel [Krl] and Kunen [Ku] for model-theoretic
generalizations of recursion theory to a wvariety of structures . The
generalized notion of recursive subset S of W =: (4; Fy, ..., Br) given in
[Fr] agrees with that of being iid in I, , if we replace A C, A by A CA".
The definitions of [Ku] apply to structures ¥ = (4; &, Ry, ..., By) with B
binary and make use of a relation of transitive extension C, generalizing
that of end-extension. The notions siid (iid) of [Ku] are equivalent to
those here of siid, (iid) in L, if we replace C, by Cp. This includes as
a special case the definitions given for ordinals (o; <<, Ry, ..., Rs) in [Kr].

The other cases of principal interest are the % = (4; ¢, R,, ..., Kx) which

are admissible (w.r. to Ry, ..., Rg). In these particular cases, being siid
in L, relative to the set-theoretical representation {m,>,., agrees with
Kunen’s siid because C_ is the same as end-extension. Kunen obtained
various results on the explicit definability of siid sets. In particular he
showed for countable admissible ¥, that siid agrees with X, (rel. to )
i.e. with the class of sets proposed as U-recursively enwmerable by Kripke
and Platek (3).

The motivations for these definitions are perhaps better understood
if one considers the ideas for the proof in the particular case that L, = L
=L, A= (0;<, Ry, ..., Bx) and SCw of:
(1)
The forward direction makes use of the completeness theorem Jor L, .
It is the converse which interests us here. If § is 1.c. in, By oy B, it may
be given by an elementary inductive definition using previously obtained

8y, ..y 8w a8 auxiliaries. Take ¢ to be the conjunction of all the inductive
- -clauses involved (with o', defined in terms of < ), so that

2)

S is siid < 8 is rec. enwmerable in Ry, ..., R .

(w;<; By, s By, 8, S5 ey S) Fo.

’ () Eunen also obtained characterizations for uncountable 1% a8 well, in some cages
a8 % and in other cases as II}. An elegant refinoment of theso for arbitravy admissible 20
was found by Barwise [B2]. ' :
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Whenever it is verified on the basis of ¢ that a e § (where of course @ e w)

- we make use only of some finite segment of w. Hence for each a ¢ § there

exists b e w with b > a such that if
(3) (A5<, R, .., 8,8,..)Fp and (4’;<’) is an end-extension of
(b, <) then aed'.

It follows that § is siid.

In fact we can obtain here the stronger conclusion that § is % -siid
simply by adjoining to ¢ the statements 1 and ¢ that there is a leagt element
and that every element has a unique successor (resp.). Once the position
of a iy fixed by m,, the veritication of a e §’ holds equally in any structure
{3) satistying pA Ano.

2.5. Invariant implicit definability of semantic notions. The followin
definition was given in [F1] (*). Here w abbreviates uniform. )

DurrNrwioN 1. Suppose T': Stri(r) +&(4) where 7 ¢ Typr, 7o A 7= 0.

Tis 4-uiidy in L; if for some <+ and 6 we have:
(i) T Dy v U {T} and 6 e Ster, (),

(ii) for each M e Stry(z), [A, M, T(M)] £ 36, and

(ili) if aed and [, M, T77FA0 and A’k my(a’) then o' €T <« a
< T(M).

It is clear ow one would define notions of usiid and uiid with or
without # or @ However, only the preceding will be used below.

The main application of interest is to the function Trr or more
precisely Tr; . for any ¢ Typr (renamed so as to be disjoint from ty,)
where

) Tro(M) = {p: ¢ e Ster(v) & ME ¢} .
DeriNrrroN 2. Ly is adequate to truth in L if Trp is 4 -uiid, in L, for
each v e Typs. :

It was shown in [F1], § 3 (“Adequacy Theorem”) that L4 is adequate
o truth dn dlself, for any admissible A.; the same method of proof also works
for all familiar languages (including B1-E5). Roughly speaking, to prove
this we first considered the usual implicit definition of the satisfaction
relation,

Satz(M) = {¢s, ¢>: ¢ e Fma(r) and s e P and M E [sT}

(8) The symbol #: and subscript # were not used in designating "this notion in [F1];
they are added here to ‘be in aceord with Definitions 1 and 2 of §2.5. :
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where I is the set of all finite (or eventually constant) sequences
from 9t M is introduced as an auxiliary sort. This is a sharp (4) im-
plicit definition because the answer to each question: is (s, ¢ ¢ Sat(9t)?,
is determined simply by the answers to: iz <s', v e Sat(IM)? for proper
subformadas v of ¢ (80 ¥ <qq @). The uniformity lies in using the same 0 to
express the inductive clauses independent of 9. In contrast to the syn-
tactic role of A, WVt must be kept fixed in [A’, M, 77, ...] in order that
quantitication be absolute.

It is seen from the proof that already L, , 4s adequate to truth in L 4.
In fact, the same holds for the languages B3-EH, ie. the implicit defini-
tion of truth in these L can always be givén by an ordinary finite formula,
using of course the restriction of satisfaction to L-admitted structures.
This gives interest to the following observation.

TueoreM 3. Suppose L, is L, ,-closed and that L, is adequate to truth
in L. Then whenever § is siidy in L it is also siidy in L.

Proof. Let ¢ e Ster(r") satisfy the conditions to make S sidy in I,
and 0 the conditions to make Try .4f-uiids in ;. We add the para-
meter 0 to A considered as an element ¢ of 4. Then the sentence 0 AT(¢)
of I, expresses that ¢ is true and serves to make § giid, in I.

COROLLARY 4. If, in addition to the hypotheses of the preceding theorem:
(). Iy satisfies the sort-reduction property, (ii) L, satisfies local L-8 down
to card(4), then § siid in L, implies 8 siid in L,.

CororLARY 5. If further, L has the set-theorelical representation in
A= (A4;¢) and LsCL then 8 siid in L < S sild in L,.

In particular, as we have seen, all these hypotheses apply to L = Ly
(4 admissible) and I, = L, .

§ 3. The principal theorems.

THROREM 1. Suppose that L satisfies the join property and that L is
adequate to truth in dtself. Then for each v e Typr, Var(r) 48 4% - siidy in L.

THEOREM 2. Under the same conditions as Theorem 1, if 8, C 8bey(7)
and S, 1s siidy in L then Sy— Vdg(z) is stidy in L.

THREOREM 3. Under the same conditions as Theovem 1, if in addition
(1) the local L-8 property holds down to card(A) and

(i) L satisfies the sort-reduction property ihen we can conclude that
Var(z) is 3 -siid in L and that S,—Vdg(v) s siid in L whenever S, is
sitd in L. .

Proofs. We begin with a proof of Theorem 2. We then see how to \

get the stronger conclusion of Theorem 1 in case §, = 0.
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Let 8 == 8,—Vdy(v) be the class of valid consequences of §,. Since
by definition § = A when Mod(8;) = 0, we may assume Mod(S,) # 0.
Thus for each a4,
(1) a el < aeSter(r) & VIR[M « Mod (Sp)= M F a]

< VIM[INE Sy=> MF aY. v
Then « ¢ S < MM E S, and M # a]. For each a e A choose M, in such
a way that
{2) if adS then MkES, and MlEa.
Take M, to be arbitrary of type = when a e §. Thus
(3) el < {Vo(beSy=MuEb)= Mk a}.
Let, 0 make Tr; . 4 -uiid, in type +*. In particular,
(4) (i) for each a e A, there is a v+-expansion I of [A, My, Tr(Da)]
such that MY k0 and
(ii) if [, WM, T'1F 30 and WA’ E mp(b’) then
b eT < beTr(M).
We write T as the unary relation symbol for Tr in 6. Using the join pro-
perty, take ‘
(5) MZ= Y MF, 7= type of M2
' aed

M may be considered to be an expansion of A, M¥ = [, ...]. For each
formula @y, ..., 2x) of type =t we have a formula ¢%(u, %, ..., zz) of
type =¥ such that for aecd, s in M,y
(6) Wk g(a, ) = Ma Fp(s) .
More generally, given any % of type +% with 9= [, ..., A = (4, ...)
and given any o' ¢ A’ we can form R, so that for each assignment s
in Wm') .
(") NE (/’E(a'ri §) < E"t(a') Eo(s).
Note for the following that (T(0))” hag the form T%(u, v).

Lot p give the gild, for 8, in type 7 We may assume 7% 1 7° = Ty
Thus there exists "
(8) W = AU, 8, _] with M* k9, such that whenever [A, ']k Iy and

AC, A then §,C 8"

4 hag a symbol S, for §,. Both M*, M have A as their =y-retract, and

their union forms a structure that we denote IN*:

) | M == MO M= (U, Sy _y ] -
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The following sentence I" will be shown to provide an siids of §; it contains
the siids of §,, together with the statement expressing that 0 holds in
each M7, together with a statement expressing (3). This uses a new
symbol S.

(10) "= A\ u0(u)A /\it{S [/\'D(So
Here u,v range over the sort A By all of the preceding, [IN*, 87

0) = T, 0)) = T5(u, u)]} .

[QISbn,-, JRT, e
(11) N, 8, S, F3r.
Suppose now that
(12) [, 8, 81k 3r with AC, A",

Thus [, 8§, 8] has an expansion in type v* u 7 which satistios 17 this
expansion is @ union of two structures [, §;, 1 and [, ...] of types'v*,
7 resp. We have 4 C A’, A k my(a) for each o e 4 and

(13) (@) [, 8] Iy,
() [, .15 A\ ub(u)
y (i), 8 C 8. By (ii) we can form structures 9, for each a’ e A’, of
the form
(14) Ry = [, Diyyy Liays -] a0d Ry k0 .

From (4)(ii) we have for any b e A and o' ¢ 4/,
(15) beTiy <beTr(My,) .

Note that T%a’, b’) is interpreted in [, ..] as b’ ¢ Tiune
the proof, we show for each a e.4 that

(16)

To complete

aeS=>aehl.
Suppose @ e 8. By (10), (12) it suffices to show that

(17)  the assignment ¢ to «'in [, 8,8, _,.

-] satistios A\ o(S,(n)
=T, v)) = T%u, u).

Here the hiypothesis is équivalent to

v [0 e Sy= b’ eT(a>]

Assuming this we have in particular Vb[b e S,= b e 7T @, o by (1B}

@ ESy. Then also él)t(a) Fa since ael8= 8—Vdz(z). Again by (15),
ae Ty, Le. a satisties T5(u, u), q.e.d.

For the proof of Theorem 1 where § = 0 we can simply take

(18) I'= Nubu)n \ ulS(uw) o T5u, )] .

icm°®
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This is satisfied in [MT, §]=[A, 8
here, suppose

(19) [, 8k 3r

;] To show that we have = -siid,

and  a'ed’” and Yk ma(a’) .
We still have (14) and (15) as above. Thus if a €8, i.e. a is valid, then
My E @ 50 a’ e Tpy; henee T%a’, o) is satisfied and o e &' by (18) (19).
Thus (19)= ((4:6b'=> o' € 8') which is as required for - siid.

Finally, Theoremn 8 is a direct corollary of Theorems 1 ,2 and § 2

Theorem 3. By the results of § 2.5 this generalizes [Ku] Theorem 32
4. Good properties of model-theoretic languages.

4.1. Background. The following expands on the discussions of Bar-
wise [B1], Introduction, and at length in Kreisel [Kr2], concerning

(i) good properties of languages L, and

(ii) suggestions for finding new languages with such properties. I use
“good” o cover what they had variously described as: useful, simple,
basie, pleasing, balanced, coherent, ete. As examples of such properties
one particularly had in mind the holding of sunmble generalizations of

(@) the compactness theorem,

(b) recursive enmwmerability of the valid sentences, and

(e) the interpolation theorem.

At the time of those discussions there was reason for optimism due
to the achievements on (a)-(c) for countable admissible L4 of Barwise [B1],
which at the same time showed the superiority of generalizations obtained
by definability eriteria in place of the crude cardinality criteria initially
considered. Thix optimism was bolstered by the progress being made
on (a), (b) for uncountable L4 in [Ku] and [B2]. It continued with Keisler’s
results [K] giving (), (b) for fragments of L, ,(Qy,). However, the failure
of interpolation in all these languages was annoying. Since then there
have been no evident successes, let alone with the fairly specific scheme
proposed by Kreisel [Kr2] (ef. 4.4(1) below). This has led to pessimism
by some ag to the prospeets for further progress.

Abstract model theory should provide the proper se’cbmg in which
to give precise formulations of the desired properties of languages.

It i8 conceivable one could then use such formulations to obtain
definitive nogative vesults, theveby justifying the current pessimism.
Personally, T do not think such will be found, but rather that abstract
negative results will be useful to remove wide classes of languages from
consideration. An exammple of this kind is already to be found in Bar-
wise [B3].

The following is an attempt to formulate good properties of languages
in abstraet terms. As emphasized by Kreisel, the progress with the L4
consisted in generalizing the notion of finiteness alongside generalizations
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of being recursive and semi-recursive (recursively enuraerable) for sets
of syntactic objects. This notion is to be chosen not only with the com-
pactuess theorem in mind, but also with the idea that the syntactic objects
themselves, considered as sets in the cumulative hierarchy V, should be
generalized finite. Since we are after syntactically natural languages here,
it is appropriate to restrict attention to I having a set-theoretical ro-
Dresentation in some U= (4;e¢,..) with 4 ¢V, A trangitive.

Remarks. (i) As already stated, the syntactic objects in a natural
language are canonically represented by coded well-founded trees, and
hence may be identified with elements of V. It should not be expoctiod,
though, that every element of A corresponds to a syntactic object.

(ii) The aim here relates to the problem of finding good generali-
zations of recursion theory (g.r.t.), but only for structures U of sets. Tt is
expected that a good g.r.t. should also be able to provide suitable notions
for any structure A. ' :

4.2. Some good properties (preliminary), These are formulated in
terms of I, %, and three abstract classes F, R and sR of subsets of 4 called
respectively the U-finite, A-recursive and N -semi-recursive sels. The first
task is to set down desirable properties which interrelatie all five; then
the question will be how to choose I, .oy SR 80 as to satisty them. This
section will concern recursion theoretic properties, i.e. which do not in-
volve L explicitly. (They could involve I implicitly in those cases where F,
ete. are defined in terms of I, as, for example, suggested in 4.4(2) below.)

- It is asswmed that
(1) (i) AeV, 40, 4 is transitive, and
(i) 4 is closed under {,}, U and TC.

Then sub-relations of 4 are certain subsets of A; also functions are identi-
fied. with their graphs. The following hypotheses are fairly standard.
(2) () FCRCsRC P(4). '

(i) R = sR ~ sR.

(iii) F is closed under v, —(4) and $R is elosed under WS

(iv) sR is closed under substitution by A-recursive funetions.

(v) The functions {,}, | and TC are A-recursive.

(vi) The e-velation on 4 is 9-recursive.

These are not intended to exhaust desirable recursion-theoretic propertics.

Remark. In the search for stronger languages than presently known,
A will likely satisfy very strong clogure conditions, including heing admis-
sible. But languages represented in some A satisfying weak clogure con-
ditions could be useful in other Ways, e.g. in proof theory. For this reason
closure of R under bounded quantification is not listed as an hypothesis.

(3)
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A principal condition which ought to be satisfied is that inductive
definitions with W-recursive clauses always lead to U-semi-recursive sets.
We formulate this rather strictly. By a rule on 4 we mean a relation
BC A? such that each aeDom(R) is a function a: Dom(a)—»4 with
Dom(a) # 0. Whenever R(<as), q,-b) we write

ooe g wis (’L GI)

() .

A collection (R,)eeq OF rules is said to be A-recursive it we have B eR
where R(a, b, ¢) < Fea, b) &ce 0. Given any X C A there is a least set

~ Derp(X) of objects derivable from X by the rules—ZRc)cec. Then we take

2 eF-Derp(X) « Ad{d «F & d i§ a derivation of x from X by means
of the rules (R,)ycoly

where the notion of derivation is explained as usual. We should then
require:

If X iy UA-finite and (B,),.o 18 an A-recursive collection of rules
then F-Derp(X) is %-semi-recursive.

Roemark. More generally, one should formulate a notion of wniform
A-recursive (or U-semi-recursive) monotone operator I'(X) and require
that (N X[1(X) C X]is always % - semi-recursive. This will not be done here.

4.3. Some good properties (cont.). We now turn to properties which
explicitly concern I. These are given in groups which seem to me t0 corre-
spond to some degree of reasonableness for demands on L, with those
of group I being in. the nature of minimum requirements. The later groups
contain additional or stronger properties. (This ranking is to be considered
ag tentative.)

I (i) SterC A. .
(ii) Stor e R and Step(v) e R for each 7 e Typz.

(ili) 8ter CF, Le, overy L-sentence considered as a set is Qt-fini.te.
(iv) I ig regular, has the join property and the sort-reduction
property. _ _

(v) Stey,(v) C Stor(r) for each veTypz and satisfaction for La
agroes with that for L on admitted L structures. _
(vi) The function m: a+rmg i3 A-recursive where mq(@) is the de-
finition of o in L4 given in § 2.2(3). '
(vii) Vdr(v) e sR for cach v e Typr; i.e. the valid sentences form an
A-semi-recursive seb. ' ‘
(viii) It (LC({a}); e) is L-categorical (as defined below) then @ eF.
3 — Fundamenta Mathematicae, T. LXXXIX .
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II. (i) L is La-closed. .
(i) SesR and S C Ster(v)=>8—Vdi(r) e sR; i.e. the set of con-
sequences of an 9 -semi-recursive set iy again U -semi-recursive.
(iif) Tf § ¢F then § is aid in L (as defined below).
(iv) I S eR then § is iid in L.
(v) If 8 esR then § is siid in L.
(vi) L is adequate to truth in itself, i.e, Try I8 #:-uiid, in L.
(vil) L is truth-maximal; i.e. if Trp, is 4t-uiidy in L then I* crL.

TIT.
collection. .B of rules (completeness).
(ii) The local L-8 property holds down to card(4).
(iii) L,, is adequate to truth in L.

Iv. () (F, sR) forms a compactness property, as defined in [F2], § 1.5;
in particular if § is an ¥ -semi-recarsive set of L-sentences and
every U-finite subset of S has a model then & has a model

V. (i) F= A.
(ii) For any 8 e sR, §— Vd(r) = F—Derg(8), for some A-recursive
collection R of rules (strong completencss).

With reference to I(viii), M is said to be L-categorical it for some
(]ﬁ e Ste Ly :

(i) M kg and

(i) W = M’ whenever M’ k ¢ (%). .

The definition of aid (absolutely implicitly definable) used in II (iii)
is given exactly like that for siid above (Definition 1, § 2.3) except that
we replace SC S8’ by §= 8’ in the conclusion of (ili). More gencrally,

icm

(i) Vdi(r) = F—Derp(X) for some 9-finite X and A-recursive

in the same way we define: § is aid in L. Being aid in the sense of [Ku] .

is then the same as being aid in Ly e :
Under the hypotheses of Corollary & of § 2.5, we also get:

8 is aid in T < 8 is aid in L,
These hypotheses are certainly met if all the properties T-ITI are satistiod.
4.4. The problem of choosing L, %,F,R,sR. This iy tho difficult
part, if the aim is to satisty a substantial bortion of I-V in a language

stronger than I, , or L,.(@g,)- The following is a seabtered collection
of proposals, remarks, examples, and questions.

(1) Kreisel’s scheme [Kr2]. The following identification was propoged:
(i) A-finite = aid in L,,,,

(*) We might call 3 rigidly L- calegorical if whenever i’

k ¢ then there is‘'a uniquo
H: M = P
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(i) A-recursive = iid in L, ,,

(iil) A-semi-recursive = giid in Ly

In addition, Kreigel assumed that 4 satisfies elementary closure
conditions guaranteeing at least representation of L, in 4, and formal
derivations, if used at all, are to be 9-finite. The following problem was
stated (loc. cit.) p. 145: “What further conditions must A4 satisfy in order
that the basic properties of PC generalize to L4 for the translation given
[above]? For what extensions of I, do these properties persist?”?

This problem has been studied with reference principally to the
properties of completeness in the form I(vii) and II(ii) and compactness,
IV(i). The main results of § 3 of this paper are of interest with respect
to the first of these. These and the stability result of § 2.5, Corollary b
show that IT(ii) is & consequence of the proposed definition of sR and,
basically, the properties that local L-8 holds down to card(4) and that
L, is adequate to truth in L. But the results do not seem to yield, for
example, completeness of an A-recursive collection of rules (TII()).

The problem of [Kr2] with reference to the compactness property
IV (i) has been studied only for the L. Here the examples of Gregory [G]
show that the above scheme definitely fails to give compactness on some.
(necessarily) uncountable admissible 4. (In addition, it is consistent
with ZFC to assume F = 4.) Thus stronger closure conditions on A than
admissibility would certainly be neeessary.to insure IV(i). Kunen [Ku]

. and Barwise [B2] only found strong conditions which guarantee some

partial compactness regults, - :

Remark. Variants may be worth congidering in place of the above
scheme. For examples, one may restrict to those siid where the auxiliary
relations are themselves already siid. Another notion intermediate between
siid and + -siid was suggested near the end of § 2.4, to correspond to the
idea that if « « § then this fact can be verified using only an A-finite
part of N. One simple way to interpret this is that there exists b ¢ 4 such
that whenever [, 87k 3¢ and A’k wa(a') Amp(b’) then (aeS=a'e 8.
Another would use the proposed definition of F itself.

(2) Generalized-finiteness from the L-calegovical sets. The preceding
scheme gives a general explanation of ¥, R, sR which depends only on U;
they may then bo used in the search for good I. Bub one can well imagine
alternative schemes where these notions depend essentially on L. As an
example, the following is immediately suggested by I(viii). For any L,
define .L-Cat = {a: (TC({a}); &) is L-categorical}, and then take

" (i) F=I-Cat and 4 = TO(F).

This leaves open the choice of R and sR. A natural companion choice by
4.2(3) would be

3%
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(i) sR = all sets of the form F—Derg(X) where X ¢F and B is an
U -finite collection of rules,
and
R=sRn~sR.

‘But one could also consider taking siid or the L-representable sets as
defined in (3) below, for sR. ‘

The problem here is how to choose new L 8o that if-we take F, 4. as
in (i) then we have some good properties; at the very least we should
want Stez C A and La CL. The following is an imprecise conjecture: for
any given reasonable L we can build up a least L-closed language with

Lygrcy CL  and  Stez C TO(L-Oatb) .
Then we could start with any L° whose properties are not satisfactory
and try to obtain a good I from it in this way. '

Exaweres. It may be of interest to compare the definitions of F
proposed in (1), (2) on familiar languages. In the case of Ly, A countable
admissible, it can be shown under (1) that A =F and that the same
holds under (2) when 4 is also locally countable. (I do not know whether

that hypothesis is essential.) For L, , = Lyg, Kunen [Ku] pointed out
that

'HC v {HO} CF
on the definition F = aid in L, But definition (2) gives
HC=F,

simply by applying local L-S down to 8. It should be noted with this
definition of ¥, and those just above of sR and R, that L, , has all the
properties I-IIT as well as IV (ii) and V(i).

(8) Generalized Gédel- Mostowsli recursion theory [M]. Liet Ty be the

set of sentences \/am,(w) for a € A together with Diag (¥). The work in [M]
suggests defining R, sR in terms of I hy:

(i) SesR < for some ¢, p:

Vaed{aeS < qgu Ty + N w[na(w) = (@)1}
and

(i)  SeR < for some ¢,y: we have the above and also
Yaecd{a¢S<wpo Tyt N @lma(@) = ~p(x)]} .

It is easily seen that every set which ig 8iidy (iidy) in L is sR(R) in this
sense. But one would hope to do better and show that a single ¢ could
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be used independently of § (analogous to the system @ in arithmetie).
This approach leaves completely open how to determine F. Again the
problem is how to chodse new L so that it has good properties at least
with %, R, sR.

(4) Strengthening the Qy, languages. These would have been _examples
of good new languages if one had interpolation. The counter-example
to this (due to Keisler) suggests introducing a certain quantifier with
stronger expressive power, which directly gives the missing interpolant.

We add to any L o new operator QF which is a quantifier binding
pairs @,y of variables (¥ for Equivalence relation). Consider formulag
built up using the operations of L, and @z, yp for any ¢. Satisfaction
is defined as follows:

M EQ¥n, yp(w, ¥) < (= o) has at least &, distinet equivalence classes,
where (=,) is the equivalence relation:

@y =, 0, ME Aylos, y)o o, y)].

(We may read @, =, @, as: @, s, are ¢-indistinguishable).

Then for ¢ in L, , {M: Mk ¥z, yp(z, y)} is in PC ~ PC but is not
in general in BC for L, ,(Qy,); this is the counter-example to (even Souslin-
Kleene) interpolation. Note that Qg xp(e) is definable using Q.

Congmorurn. L, ,(@%) has a complete axiomatization by recursive
rules of inference, go its valid sentences are recursively enumerable.

QuEsTION. What are the good properties of I,,(@") and of the
L4(Q%) more generally?

Subsequent to the writing of this paper, I learned that the conjecture
above for L, (@¥) is correct. This was establithed independently by
J. A. Makowsky and J. Stavi; they have also obtained axiomatization
and - compactness results for a number of related stronger languages.
Their work is to appear in a paper jointly with S. Shelah. '

Corxection to [1"1]. J. Stavi has brought to my attention that the argument for the
Corollaxy (*) in [I"L] § 8.4 i8 incovreet at one point. For, it follows from work of Cohen
that thore exist uncountable well-founded transitive models of ZF with only countab}y
many ordinals; of, Keislor, Ann. Math Logic 1 (1970), p. 42. Certainly then ‘?];u?re O.X'IS)G
admissible .4 f/. I (w,) for which w, ¢ 4. Thus only the “if” part of the Corollary is ;Justlhfa(’%
by the proof. Howoever, Stavi hag observed that if CH is agsumed then the.‘ o;lly if
part is also correct, He shows that in this case for each 4 _¢_I{ (0,) there exllsts a, e A
with card (a,) = %,. Such a, may be used to produce a counter-example to Souslin-Kleene
interpolation (I);{A, It is of inlerest to consider the status of both card(a) for a < 4
and (I)ﬂ 4 iu the case that CH is false.

B U

(*) This reads: For 4 admissible, L, is truth-complete if and only if A C H(w,).
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On some functional equations with
a restricted domain
by

Roman Ger (Katowice)

Abstract. Tho functional equations considered are of the form (1) and (2) )
where f, g, b map ap. sbolian group & into the other abelian group H. We assun‘xe thfaxi
validity for almost all (x,y) « X @ and investigate the que‘st.lon whether yhew exis
fanctions I, , H almost equal to f, g, b respectively and ‘Eul‘fxlhng our equat}ons overy-
where. The notion. “almost all” (“almost everywhere”) has been introduced in an axio-
matic way.

§ 1. Recently there has been an incrgased i;n‘nerest“ in functional
equations and inequalities whose validity is po-stulateq almost every-
where” (abbreviated to a.e. in the sequel). This a.e. is unde.rstoodlm
various wans (see for instance [8], [7], [9], [8] and [6]). We shall be in-
terested here in two functional equations,

(1) Ty (f (@)~ Fl)—f(y) =0  (of Mikusitski)
and ,
) S(@-ly) == g(@)+-h(y)  (of Pexider),

related to the well-known Cauchy equation (ef. [4] and [1]), assumnllzg
their w.e. validity in the sense deseribed explicf:tly below. Biou‘gl}lz spfe;;e:
ing, we are going to answer the following qstpmn: (100513]10-1'(1 cmz gesu(l)
tion B (or: do theve exist functions Iy, By, Fy) suchl tha't. i ;a ig e

{or: they satisfy (2)) overywhere and f=F a.e. (or: f=F, g= I,

with Cauchy’s funetional equation. l’osi.tivgly golved by N. G. de Bl;;il]];t[gé
and independently by W. B. Jurkat [8], this problexp was then uge rge e
by M. Kuczma [9] in connection with eonivex fUI?.C.thnS and Py ep:
author for polynomial functions (also with positive answers).
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