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Abstract. The study of spaces which admit a closure-preserving cover of compact
sots was initiated soparately by Tamano and Telgirsky, and a number of interesting
vesults and examples now appear in the literature. In this article, we extend the known
resudts, It has boon shown that if a collectionwise-normal T, space admits a closure-
preserving cover of eompact sets, then it is paracompact. The unfortunate aspect of this
result i8 that it depends so heavily on the collectionwise-normality of the space. We
provide a partial vemedy for this situation by applying heavy restrietions on the nature
of the membors of the cover, while requiring nothing more than the 7'y axiom on the entire
gpuee fo obtain the following result. If X is T; and admits a closure-preserving eover of
finite sols, then it is 0-refinable. If it should happen that the number of points in each
covering momber is bounded by a fixed integer, then X is metacompact.

Introduction. The study of spaces which admit a closure-preserving
cover of compact sets was initiated separately by Tamano, in [5], and
TelgArsky in [6], and o number of results and examples now appear in
the literature (soe [2], [3], [4], [7], [8] and [9]. It is the purpose of this
paper to give some results concerning spaces which admit a closure-
proserving cover of finite sets. If X is T, and admits a closure-preserving
cover of finite sets, then X is o-metacompact, hence 0-refinable. If it
should happen that the number of points in each covering member is
hounded by o fixed integer, then X is metacompact.

Telgfirgky has shown in [7], that any space which admits a closure-
preserving cover of finite soty has a countable closed cover, each member
of which is seattered and is the union of discrete subsets. These results,
together with tho o-metacompactness of such spaces, serve to give a good
deseription of such spaces. '

DusINTToN [10]. A topological space X .is 0-refinable it and only
it for every covering H of X whose elements are open, there is a count-
able family ¢ such that each F in ¢ is a collection of open sets which
is u refinement of H covering X and for every point p of A" there exists
on F in ¢ such that p is a member of only finitely many members of F.
§ - Fundamenta Mathematicae, T, LXXXIX
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DEFINTTION. A topological space X is o-metacompact if it iy the
countable union of closed metacompact subspaces.

TrmorEM 1. Let K be o closed 0-refinable subspace of o space X. Let
U = {V(a)| acA} be an open cover of X. Then there is a sequence, U (n),
of open refinements of U, each covering X, such that for each point @ < IC,
there is an integer n(x) such that & appears in only fimdtely many members
of U(n(w)). .

Proof. The family {¥(a) ~ K| ae A} is a cover of I by sets opoen
in K. Hence there is a sequence of refinements W(n), cach consisting of
open subsets of K such that for each n, W(n) covers I and such that
for each z ¢ I, there is an integer n(x) such that @ is an element of only
a finite number of members of W(n). It may be assumed that each W(n)
is indexed on 4, that is, W(n) = {W(n, a)| « ¢ A} and that for each a e 4,
W(n, a) CV(a) ~ K.

Now fix an integer n. For each a ¢ 4, let I'(n, «) be an open subset
of X such that W(n, a) = T(n, a) » K. Let U(n) = {I'(n, a) n V(a)] aed}.
Then U (n) consists of open subsets of X, and refines Y. Moreover, if
a point of K appears in only a finite number of members of W(n), then
it appears in only a finite number of members of U (n).

If, to the family U(n), we add all sets of the form. V(a) ~ (X'~ K),
then the resulting U(n) is & cover of X, refines U and has the property
that if a point of K meets only finitely many members of W(n), then it
meets only finitely many members of U (n). The colleation V' (n) satisties
the conclusion of the theorem.

CoRrOLLARY 2. Let X be a space and {I ()| ¢« Z¥} a family of closed,

0-refinable subspaces of X such that X = |J F'(4). Then X is 0-vefinable.

t=1

Proof. Let U be an open cover of X. For each i, let U (4, ) be a so-
quence of refinements of U, of the type guaranteed by the previous
theorem. Then the family of refinements {VU(i,n)| i, n ¢ Z*} sabisfios
the requirements of §-refinability.

COROLLARY 3. Hach a-metacompact space is 0-refinable,

Proof. A metacompact space is 0-refinable.

LevmA 4. Let X be a Ty space and let @ € X such that X {i} is meta-
compact. Then X is metacompact.

Proof. The proof is obvious.

Levma 5. Let X be a space and let § = {'(a)] ae A} be a dosed,
closure-preserving cover of X. For each p e X, lot

KE(p)={zeX| if 2 cF(a)eT, then p e P'(a)}.
Then K(p) is open: ’
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— :Prpof. For each 2 ¢ X— K (p), there is an index a(z) e A such that
# e F(a(x)) and p ¢ F(a(®)). Then

X—IK(p)= U {Fla(@)] ©c X—K(p)}

and since § is closure-preserving, X— K (p) is closed.

Turorem 6. Let X be o T, space. Let n be a positive integer and let
== {,Z«’{a)| wed} be o closure-preserving cover of X such that for each
aed, |F(a)| =in. Then X is metacompact,

Proof. The proof iy by induction. Leb P(n) be the proposition:
Bach T space X which admibts a closure-preserving cover, no member
of the cover having more than n points, is metacompact.

©P(1) is true for if a 7; space has the property that its family of
singletons is closure-preserving, then the space is discrete, hence surely
metacompact. ‘ .

Assume now that P(n) is true, and let § = {F(a)| a « 4} be a closure-
preserving cover of the I, space X such that for each a e 4, [F(a)| < n-+1.
For each p X, lob K(p)= {meX| if cF(a)eF, then p ¢ F(a)}. By
Lemma 8, each set K (p) is open. Moreover, the family {K(p)| p ¢ X}
is point finite; in faet a point of X can appear in at most n-+1 of these
sels, for i we M {K(p)] 1=1,2,...,4}, then let « e A such that 2 e F(a).
Then each point pe, for i==1,2, ..., 4, is also in F(a). If j > n+1, then
[ (a)| =>n--1, which is contradictory.

To show that X is metacompact then, it is enough to show that
each seb K (p) is metacompact.

To see this, consider the family {K (p) ~ F(a)| a € 4}. This is a closed,
closure-preserving cover of K (p). Moreover, p is an element of every
non-void member of this collection, for if # ¢ K (p) » F(a), then x ¢ F(a),
and since @ ¢ K (p) as well, we have by definition of K (p) that p ¢ F(a).
Hence p e K (p) ~nF(a). ,

Tinally, then, consider the collection {(E(p) T (a))—{p}| aecdl}
This is @ closed, closure-preserving cover of the space K(p)—{p}. More-
ovar, ginee p is an element of each non-void member of {K (p) ~ F(a)| a € 4},
then thoe cardinality of each non-void member of this family is actually
reduced by 1 when p is removed. Thus the collection

{(E(p) " F(a)—{p}| aed}

is u closed, closure-preserving cover of the T space K (p)—{p}, and no
membez of this family has more than » points. By the induction hypo-
theses, I (p)-— {p} is metacompact. By Lemma 4, K(p) is metacompact.
Since X is now exhibited as the point-finite union of a family of open,
metacompact subspaces, we have that X is metacompact.
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TrEOREM 7. Let X be a T, space, and let § = {F(a)| a ¢ A} be a closure-
preserving cover of X such that for each ae A, F(a) is finite. Then X is
o -metacompact.

Proof. For each =, let X(n)= U{F ) [ (a)] < n}. Since § is
closur e-preserving, each set X (n) is closed. By Theorem 7, cach X (n) is
metacompact, hence X is o-metacompact.

COROLLARY 8. Let X be collectionwise-normal and T5. Suppose X has
a closure-preserving cover consisting of finite sets. Then X is paracompact,

Proof. By Theorem 7, X is ¢-metacompact. By Corollary 3, X is
f-refinable. By Theorem. (iii) of [10], X is paracompact.
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Proper shape retracts

by
B.J. Ball (Athens, Ga.)

Abstract. Absolute shape retracts, introduced by K. Borsuk, have been studied by
a number of authors. The present paper is concerned with an analogous notion in the
“proper shapo” theory of the author and R. B. Sher, with particular attention being given
1o the relationship between these spaces and the absolute proper retracts recently con-
gidered by Sher.

The notion of a fundamental absolute retract (FAR) was introduced
by K. Borsuk [6] for compact metric spaces, and extended to compact
Hausdorff spaces by 8. Marde¥ié, who used the term absolute shape
retract (ASR) for the extended notion. These spaces are the natural

. analogs of compact absolute retracts in the shape theory of compacta.

In [3], the author and R. B. Sher began a study of a theory of shape
for locally compact metric spaces based on proper mappings, and in [25],
Sher introduced the notion of absolute proper retract. In the present paper,
absolute proper shape retracts are defined in a manner entirely analogous —
in the frame-work of proper shape theory — to Borsuk’s definition of funda-~
mental absolute retracts, and it is shown that these spaces are related, in
proper shapo theory, to absolute proper retracts in a way quite parallel to
the relationship, in compact shape theory, between absolute shape retracts
and abgolute retracts.

§ 1. Definitions and notations. A familiarity with the basic termi-
nology and notations of Borsul’s shape theory for compacta [4, 5] and
of proper ghape theory for local compacta [3] is assumed. A number of
other technical or specialized definitions are given in the text, but the
remaining terminology is largely standard.

The term absolute retract, and the notation AR, will be used to mean.
absolute retract for metrizable spaces, zmd S1m11ar1y for absolute neighbor-
hood retract and ANR.
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