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TrEOREM 7. Let X be a T, space, and let § = {F(a)| a ¢ A} be a closure-
preserving cover of X such that for each ae A, F(a) is finite. Then X is
o -metacompact.

Proof. For each =, let X(n)= U{F ) [ (a)] < n}. Since § is
closur e-preserving, each set X (n) is closed. By Theorem 7, cach X (n) is
metacompact, hence X is o-metacompact.

COROLLARY 8. Let X be collectionwise-normal and T5. Suppose X has
a closure-preserving cover consisting of finite sets. Then X is paracompact,

Proof. By Theorem 7, X is ¢-metacompact. By Corollary 3, X is
f-refinable. By Theorem. (iii) of [10], X is paracompact.
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Proper shape retracts

by
B.J. Ball (Athens, Ga.)

Abstract. Absolute shape retracts, introduced by K. Borsuk, have been studied by
a number of authors. The present paper is concerned with an analogous notion in the
“proper shapo” theory of the author and R. B. Sher, with particular attention being given
1o the relationship between these spaces and the absolute proper retracts recently con-
gidered by Sher.

The notion of a fundamental absolute retract (FAR) was introduced
by K. Borsuk [6] for compact metric spaces, and extended to compact
Hausdorff spaces by 8. Marde¥ié, who used the term absolute shape
retract (ASR) for the extended notion. These spaces are the natural

. analogs of compact absolute retracts in the shape theory of compacta.

In [3], the author and R. B. Sher began a study of a theory of shape
for locally compact metric spaces based on proper mappings, and in [25],
Sher introduced the notion of absolute proper retract. In the present paper,
absolute proper shape retracts are defined in a manner entirely analogous —
in the frame-work of proper shape theory — to Borsuk’s definition of funda-~
mental absolute retracts, and it is shown that these spaces are related, in
proper shapo theory, to absolute proper retracts in a way quite parallel to
the relationship, in compact shape theory, between absolute shape retracts
and abgolute retracts.

§ 1. Definitions and notations. A familiarity with the basic termi-
nology and notations of Borsul’s shape theory for compacta [4, 5] and
of proper ghape theory for local compacta [3] is assumed. A number of
other technical or specialized definitions are given in the text, but the
remaining terminology is largely standard.

The term absolute retract, and the notation AR, will be used to mean.
absolute retract for metrizable spaces, zmd S1m11ar1y for absolute neighbor-
hood retract and ANR.
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By an embedding of a space X into a space ¥, we always understand
a closed embedding; i.e., a map f: X — ¥ such that f induces a homeo-
morphism of X onto f(X), and such that f(X) is closed in ¥.

A compactification of a space X is a compact Iausdorff space ¥
containing X as a dense subset. Two compactifications of X are equivalent
if there is a hdmeomorphism of one onto the other which reducey to the
identity on X.

A map f: X-7Y is said to be proper it f~Y0) is compact for every
compact subset ¢ of Y. A proper homotopy of X into I i8 a proper map
@: Xx[0,1]~Y. The symbols ~, ~, and ~ denobe, respectively, the

D
relations of homotopy, proper homotopy, and homeomorphism.

If ACX, then Cly4d and Bdrd will denote the closure and the
(point set) boundary of A relative to 2X. The identity map on a set X will
be denoted by ix. '

§ 2. The Freudenthal compactification. A space X is said to be rim
compact if each point of X has a neighborhood base consisting of open
sets with compact boundaries. It was shown by H. Freudenthal [0, 11]
and K. Morita [18] that every rim compact Hausdorff space X has & com-
pactification FX, obtained as the disjoint union of X and & set KX of
“ends” of X, which is maximal among all compactifications ¥ of X with
small inductive dimension ind(¥—X) = 0. The following useful charac-
terization of FX iy proved in [10] for the cage in which F.X is metrizable,
and follows in the general case from [18, Theorem 2].

2.1. TuroREM. If FX = X v BX is the Freudenthal compactification
of a rim compact Hausdorff space X, then

(a) each point of BX has a neighborhood basis of open sets in BX whose
boundaries (in FX) are compact subsets of X, and

(b) mo open neighborhood of a point ¢ e BX is separated by HX into
two disjoint sets, each open in X and each having ¢ as o limit Point,

Moreover, if I'X = X © B'X s a compactification of X satisfying ()
and (b), then F'X is equivalent to F'X.

It is shown in [10] that if X is a vim compact separablo metrie space,
then FX is metrizable if and only if the space QX of quasicomponents
of X is compact, and that compactness of QX is equivalent to the coun-
dition that every decreasing sequence of non-empty open and closed
subsets of X have a non-emply intersection. We will he concerned here
primarily with those locally compact (not just rim compact) separable
metric spaces X for which FX is metrizable, and for convenience, we
let X denote the class of all such spaces; thus X ¢ 3 if and only if X is
a locally compact separable metric space and QX is compact. For spaces
in X it is possible, and sometimes convenient, to identify their Freudenthal
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“ends” with certain equivalence classes of sequences of points of the
space, as deseribed below. ‘

Suppose X e X. A sequence o of points of X will be said to be
admissible in X provided that (1) no subsequence of a converges to a point
of X and (2) no eompact subset of X geparates (in X) two infinite sub-
sequences of a. Lot Ay denote the set of all admissible sequences in X,
and for a, f e sy, let « ~f mean that no compact subset of X separates
an infinite subsequence of « from an infinite subsequence of 8. Clearly,
a~f holdy if and only if there is an admissible sequence y such that each
of o and f# is a subsequence of y. The relation ~ is an equivalence
relation. on. sy, and for aeAx, [¢] will denote the equivalence class
containing a.

2.2, TmmmA. If X e X and a is a sequence of points of X, then a e Ax
if and only if « converges in TX to o point of BX.

Proof. Suppose first that o is admissible in X. Since FX is compact
and metric, some subsequence o, of o converges in FX to a point a,, and
since a € Ay, a, e X, If o does not converge to a,, there is a subsequence
ay 0f o which converges in FX to a point a, # ay, and a, ¢ BX. By Theo-
rem 2.1 (a), there exist disjoint open neighborhoods U,, U, of a,, a,

respectively, in FX whose boundaries ¢, C, are compact subsets of X.

Then U, ~nX and Uy~ X are disjoint open and closed subsets of
X— (0w 0y), 80 0w O, separates U; nX and U, ~ X in X; bub this
ig impossible since a is admissible in X and each of U; ~ X, U, ~ X con-
taing an infinite subsequence of a. Hence o converges in FX to the point
oy € HX. ,

Now suppose that a converges in FX to a point e e BX. If « is not
admissible in X, there exist a compact subset ¢ of X and infinite sub-
sequences oy, ay of a such that X— ¢ is the union of two separated sets
X, X, with CX,, aCXp. If U=FX—0, then U—BEX=UnX
= XN (= Xy v X,; but this is impossible by Theorem 2.1 (b) since U is
an open neighborhood in I'X of the point ¢ ¢ BX and X, and X, are open
gubsoty of X cach having e as a limit point. Hence a e #Ax.

2.3, LimvMA. Jf X ¢ X and a, f € £x, then a~f if and only if a and B
converge in BX to the same point of HX.

9.4. TmMa. Suppose X e X and G is an open subset of X with compact
bowndary. If aand f are equivalent admissible sequences in X and ais eventually
in @, then B is eventually in G.

Tor X e, let B'X = {[a]] aey}, and let § denote the collection
of all open subsets of X with compact boundary. For eibch GeQ, lt%t

* == G U {[a] € B'X| a is eventually in G}, and let §" = {G| Cj €@l It i
ovident that for Gy, Gy e §, (G4 N Gy)* = Gf ~ 67, and hence §* is a basis
for a topology on the set X v H'X. Let ¥'X =X v B'X with the
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topology generated by §*; clearly, F'X is a Hausdorff space and X, as
a subspace of F'X, retains its original topology.

2.5, TueoreM. If X € X, there is a homeomorphism p: X -1 X with
@(@) =z for every z ¢ X.

Proof. For ¢ ¢ BX, let p(e) = [a], where a is any sequence of points
of X converging in FX to e. By Lemmas 2.2 and 2.3, ¢ is a well defined
1-1 function on BX and ¢(BX)= E'X. Extend ¢ o o function from X
onto F'X by setting ¢(x)= 2 for z¢X.

Suppose G e§ and let U= *(G¢*). If U is not open in KX, there
is a point ¢ ¢ U which is a limit point of FX—U; since U ~ X == ¢ and
G is open in X, ¢ ¢ BX. Since X is dense in FX, there is a sequence § of
points of X—T which converges to ¢ in FX. By Lemma 2.3, f~a and
hence by Lemma 2.4, 8 is eventually in @ But this is a contradiction
gince X—U =X—@ and fCX—U. Hence ¢ is continuous and since
FX is compact and ¢ is 1-1, ¢ is a homeomorphism.

Thus for X ¢ X, the Freudenthal compactification FX may be identi-
fied with the space F'X described above, so that an “end” of X’ may he
considered to be an equivalence class of admissible sequences in X, Note
that a necessary and sufficient condition for a sequence [ay] of ends of X
to converge to an end [a] of X is that if ¢ ¢ § and «a is eventually in ,
then for almost all 4, oy iy eventually in 6.

An important relation between proper maps and Freudenthal coni-
pactifications is stated in the mext theorem. The general form given.
here follows from a theorem of Skljarenko [26]; a weaker version appears
in [3 (Lemma 4.2)], and some related theorems in [19 (Theorem B)] and
[20 (Theorem 4)].

2.6. THEOREM. If X and Y are locally compact Hausdorff spaces,
then every proper map f: X - Y has a unique extension to a map Ff: BX 1Y,
Moreover, Ff(EX)C HY, and if f(X) = ¥, then Ff(BX)= BY.

The following lemma, the proof of which iy immediate from, the
definitions, is stated here for later reference, (It might also be noted that
this lemma, together with the criterion mentioned above for CONVOrgence
of a sequence of ends of X, yields an easy proof of Theorem 2.6 for X,

Yell)

2.7. Levma. Suppose. X, Y e X and f: X =T is a proper map. If
a={wiL, is an admissible sequence in X, then fla) == {f(e)}2, 45 an
admissible sequence in Y.

A proper map f: X—¥, X and ¥ rim compact Hausdorft spaces,
is end preserving [25] if Ff|BX ig injective; if, in addition, Ff(HX) = By,
then f will be said to be stromgly end Preserving. If X iy a closed subset
of ¥, then X will be said to be (strongly) properly embedded in Y it tho
inclusion j: X Y is (strongly) end preserving.
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Tor any space X, let 8x denote the set of all sequences of points of X.

2.8, TosoruM. If X is o closed subset of o space Y ¢ X, then X 4s
properly embedded in X if and only if Ax = #y ~ Sg.

Prool. Suppose fivgt that sx o 4y ~ Sx. Since clearly #xC #y,
there i o Requence a e dx ~ 8x such that a ¢ #x, and hence there are
subsequences ag, gy 0f @ which converge in F.X to distinet ends e,, e, of X.
It j: X=X is the inclusion, the sequences Fj(a,) and Fj(a,) converge
in JY o ey == B (ey) and ey = I (¢,), and since a e Sy, Fj(ay) = @, and
T () = g, Xlenee ay~re; and ay—e,, and since a e sy, it follows that
¢p == ¢y, Honeoe F§|HAT i not injective, so X is not properly embedded in Y.

Conversely, if A7 iy not properly embedded in ¥, there exist distinet
ends e, ¢, of X" and an end ¢ of Y such that Fj(e,) = Fj(e,) = e. If oy, 0y
are sequences of pointy of X converging in FX to e, e,, respectively,
then the sequences 1 (o) and 7 (ay) each converge in FY to the point e.
Sinee 7 (ay) == o, and Fj{oy) = 0y, it follows that the sequence a obtained
by alternating termy of a; and g, iy admissible in Y. Hence a € &y n 8x,
but a e sy, 80 dy % Sy ~ Sx.

2.9, TuroreM. If X 4s a closed subset of a rim compact Hausdorff
space Y, then X is properly embedded in ¥ if and only if Clpy X 48 equi-
palent to B

Proof, Let j: X—=Y and k: Clpy X »FY be the inclusions. Suppose
first that Olpy Al is equivalent to FX, and let h: X — Clgy X be a homeo-
morphism such that h(2) = » for @ ¢ X. Since kh: FX - FY is an extension
of j: X =¥, kh== 1§ and hence Jj|HX is injective. '

Conversely, suppose X is properly embedded in Y and let Fj _(FX )= K.
Sinee FX iy a compact Hausdorif space and Fj is injective, Fj maps X
homeomorphically onto K. Sinee X is dense in FX, Fj(X) = X is dense
in X and hence J = OlpyX. Since Fj(x) = » for z ¢ X, it follows that.
X i equivalent to Clppy X

§ 3. Embedding in subsets of (. The following facts are 1.1sed to some
advantage in |8]: Hvery space X ¢ X can be’ embedded in _E)x [0,1'),.
where ¢ s the Iilbert cube, in such a way phzut the closure, X, o_f‘X in.
Q0 % [0, L] is oquivalent tio 21X, and if X iy so embedded, then every neighbdr-
hood of A in Q% [0, 1) contains a closed neighborhood U of X such that
the closure, U, of U in @x[0,1] is cquivalgn'b to FU, fand §uch t_hat-
U = ¥~ X, Those results will be amplified somewhat in this section.

A tree i n connected, simply connected, locally flnlf.}e 1- congplex.
A dendron is a locally connected continuum wlﬁeh contains no mmplle
closed curve. An endpoint of a dendron D is 2 point p of D such that P és
an endpoint of every are in D thab containg it. The set & of all endpoin I(s};
of a dendron D is totally disconnected and does not separate D. (But F
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need not be closed, and hence D—F may not belong to X; however,
D—F is rim compact and if X = D— E, it follows from. the character-
ization given in Theorem 2.1 that X is homeomorphic to D under a homeo-
morphism which is the identity on X.)

A subset 4 of a space X is said to be unstable in X [14] if there is
a homotopy ¢: X x[0,1]—>X such that ¢,(2) =« for every x X, and
for 0 <<t <1, (X)) A =0.

If T is a tree, then FT ¢ AR and FT is an unstable subset of F'T
([23, Lemma 2.2]; no proof is given in [23], but Professor Sher has in-
dicated to the author an elementary argument based wpon a particular
realization of 7' in #?). The next two lemmas establish somewhat more
than the above result for trees. The firgt of these lemmas is essentially
known (cf. [28, Theorem 5], [22, Theorem 3] and [21]), and the proof
of the second resembles Sher’s argument but makes use of & convex
metric instead of a geometric construction.

3.1. LmmmA. For X e X, FX is o dendron if and only if X 4s connected,
locally connecied, and coniains no simple curve.

Proof. If FX is a dendron, then XX contains no simple closed curve
since FX does not, X is connected since F.X is, and X is locally connectad
since X = FX—EX and EX is closed and totally disconnected.

Suppose then that X is connected, locally connected and containg
no gimple closed curve. Since X is locally connected and locally corpact,
FX is locally connected and for every comnected open subset U of rx,
U ~ X is connected [9, 30]. It follows that if U is a connected open sub-
set of F.X and e is a limit point of U, there is an arc pe from p to ¢ in 11X
such that pe—{e} C U.

Suppose J is a simple closed curve in FX and eed ~ BX. There
-exist two disjoint connected open subsets of FX each having e as a limit
point, and hence there exist arcs pe, ge in FX such that pe— {¢} and
ge—{e} are disjoint subsets of X. Liet pq be an arc from p to ¢ in X, let U
be a connected open neighborhood of ¢ in FX such that U ~ pgs==@,
and let rs be an arc in I ~ X from a point » ¢ pe t0 a point s « ge. Thon,
Pe v ge — pg v rs contains a simple closed curve in X, contrary to hypo-
thesis. Hence FX is a dendron.

3.2. LumMA. If D is « dendron and H is the set of all endpoints of D,
then B is unstable in D.

Proof. There exists a convex metric ¢ for D [17, p. 965 15, p. 3247;
since D is unique arvcwise connected, every arc in D iy isometrie (with,
respect t0 ¢) to a real number interval. Let p be a point of D— K and
for each # e D let px denote the are from p to  in D. For (w, 1) e X xT0, 1],
let ¢(z, ¢) be the unique point z e px guch that o(p,2)="1t-o(p,n).

Since D is locally connected and unique arcwise connected, it easily

e ©
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follows that if {#:} is o sequence of points of D converging to a point

e D, then the sequence {pe of arcs converges to the arc px. Hence

i (a1, b)) = (w0, 1) in D [0,1] and ¢ (a, t) >z e D, then 2 ¢ pw and since
o(p,s)==1to(p,n), it follows that 2 = ¢(z, t). Hence p: D x[0,1]—D is
conbinuous.

I8 0«2 b= 1 and == gz, 1), then zepz and 0 < o(p, 2) < o(p, @).
1ence & e pe-—{p, a}, 80 2 ¢ K. Therefore ¢,(D)C D—F for 0 <t <1, and
henee 1) iy anstable in D, ‘

A subset A ol a space X iy said to he a Z-set in X if A is closed and
for each non-empty homotopically trivial open subset U of X, U—A i
nonemply and homotopically trivial [1]. A useful summary of some
of the basic properties of Z-sets may be found in [27] along with additional
results; in particulur, we need the fact [27, Theorem 2] that a closed sub-
set A of Q 4 a Z-set in Q if and only if 4 is unstable in @ (cf. also [29,
Lienuna 2.27),

3.3, "uworeM. If 1 is o tree and 0 is a Z-set in Q homeomorphic to BT,
then T Q = Q0.

Proof. Sinee F7 is a dendron, it follows [29, Theorem 6.3] thatb
FPxQ ~ Q. Lot h: FI'X@-Q be a homeomorphism and let A
s W(HT % Q). Sineo BT is unstable in FT, BT X @ is unstable in FTxQ;
henee A is unstable in @ and therefore, by the result of Torudezyk men-
tloned above, A i8 & Z-set in Q. Since BT is a deformation retract of
By ShA = Sh(BT X Q) = Sh(BT) = ShC; hence 4 and O are Z-sets
in () having the ssme shape, and this implies [8, Theorem 2] that @— 4

~ (0. Since h(T'x Q)= Q—4, it follows that I'XQ =~ @— C.

3.4, QOROLLARY. If T' is @ tree, then F(T'X Q) ~ Q.

Lot ¢, be a Cantor set embedded as & Z-set in @ anq let Q, = Q— Cy-
The sot ¢, will play an important role in the next gsection. We give one
preliminary result here. ‘

8.5, Mooy Hoery space X e X has an end preserving embaddmg
onto @ Z-get in Qy, and if 0 s o closed subset of 0Oy homeom_orphw to BX,
then X has a strong end preserving embedding onto a Z-set in Q—0.

Proot, Tt h: JX —Q bo an embedding such that h (FX) is a Z -geb
in @ and, lot ¢ == h (LX), Since there is a Lomeomorphism. of @ onto itself
wking ¢ onto ¢, it may be assumed that ¢’ = (, and h(?nce h(X) C. Qo
C (- 0. Tdentitying 7¢, and @, wo have h: FX -1Q,, and 1sr an e:ftens;on
of the map ¢ X =@, detined by ¢(@) = h(z) for o ¢ X. By Theorem 2.1,
B By amd bhence Fg|BX iy injective, 80 ¢ X —Q, is ap'end preservmg;
embodding. Similarly, identifying F'(Q— 0) and @ and defining f: X ;Q“ c
by f() = h(w) for @ e X, it follows that b = If and hence EﬂtE is m(i
joetive and Ff(HX) = ¢ = B(@Q—0), so [: X->Q—0 is a strong en
preserving embedding.
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§ 4. Proper shape retracts. Throughout this section, it is to e undep-
stood that all spaces considered are in the class Y. We firgt give somo
properties of SUV™ spaces [12, 23, 24] and of absolute proper retracts [2n].

A closed subset X of a space ¥ is said to have property UV™ in 1 it
for every neighborhood U of X in ¥, theve is a ncighborhood V of X
in ¥ sueh that VC U and V is contractible in U to a point. TE X liag
property UV® in some ANR, then X hag property UV®™ in aevery ANR in
which it is embedded as a closed subset; in this case, X is said to bo g UV
space, or to have property UV®™. It is well known. that a compact; §pace X
has property UV if and only if Sh.X is trivial; i.e., X has the shape of
& point. (This follows explicitly from. [6, Theovem 9.1] and |7, Theorem 7. L],
and is implicit in [13].) ;

Property UV® has been most useful in studying compact spaces.
A related property, SUV™, which agrees with UV*™ for compact Kpaces
but seems to have some advantages in the noncompact case, was intro-
duced by Hartley [12] and developed further by Sher [23, 24]. 'We will
not repeat the definition of property SUV®™, but will rely on the charactoeri-
zation given below.

Let us say that o space X has trivial proper shape if there is a tree 7'
such that Sh,X = Sh,T (since every compact tree hag the shape of
a point, this agrees with the notion of trivial shape for compacta). Then,
by Corollary 3.5 of [23], a space X has property SUV if and only if Shy X
48 trivial. It should be remarked that it is also a consequence of Corollary
3.5 of [23] that ¢f Shy, X < 8h,¥ and Sh,Y is trivial, then Shy X is trivial.
Thus any space which is proper shape dominated by an SUV®™ gpace is
itself an SUV™ space.

A space X is a proper retract of Y if there is a proper map r: ¥ X
such that r|X =iy, and X is an absoluie proper relract (APR) if X is
a proper retract of every space ¥ in which X ig properly embedded (i.c.,
the inclusion of X into ¥ is end preserving; see Section 8). These notions
were introduced in [25], where it is shown, among other rosults, that
X ¢ APR if and only if X ¢ AR and X is unstable in FX, and that
X ¢ APR if and only if X is a noncompact ANR and X ¢ SUV®, The

second characterization readily implies that any proper retract of an
APR is an APR. ‘ '

o0
Let the Hilbert eube, ¢, be regarded as Il Iy In == [—1, 1] for all n.
n==l

(—1,1) for all #. Hvery
Ty

compact subset of s is a Z-get in @ and in s [1, Theorem 3.3 and Thoo-
rem 9.1].

Let O, be a Cantor set in s and let Qo =
having €, as its set of endpoints,

o
The pseudo-interior, s, of @ is then [] f,, I =
1

Q— 0, Let .D be a dendron
and let Iy = D— (,. Then Ty is a tree,
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BTy ~ 0y and, by Theorem 3.3 and Corollary 3.4, TyxQ =~ @, and
F(Ty Q) = @; in fact, of course, the paivs (F(T,x @), B(T,xQ)) and
(@, C) axe homeomorphic. These facts, together with the results from [25]
given above, yield the following characterization of absolute proper
retrachy.

4.1 TinoruM. A space X is an APR if and only if X is homeomorphic
t0 a proper retract of Q.

Proof. To show that every proper retract of Qo is an APR, it is only
necessary to show that @y ¢ APR, and for this it suffices [25, Theorem 3.1]
to show that 7', e AR and HQ, is unstable in FQ,. But this is immediate
from the fact that (1'Q,, BQ,) ~ (@, C,) and that ¢y, being a Z-set in Q,
is unstable in Q. :

Conversely, suppose X e APR. Then by Theorem 3.5, there is an
end preserving embedding ¢: X ~@,, and since X ¢ APR, ¢(X) is a proper
rotract of ¢, by definition,

Suppose M is a loeally compact AR, ¥ is a closed subset of 3 and X
is o closed subset of Y. A proper fundamental vetraction of ¥ to X in (M, M)
is - proper fundamental net (see [3]) r: ¥ =X in (M, M), r = {r,| a e 4},
such that v () = @ for every @ e X, a e A. A closed subset X of a space
Y ois called o proper shape retract of Y it there exist a locally compact
absolute retract M, an embedding h: ¥ —M and a proper fundamental
retvaction 3 A(Y)—h(X) in (M, M). That this property is independent
of AL and of % iy a consequence of the following theorem, which can be
proved by a trivial modification of the argument for Theorem 2.10 of [6].

4.2, Trrorem. Suppose M and M' are locally compact AR's, Y is
a closed subset of M and h: Y —M' is an embedding. If X is a closed sub-
set of X and theve is a proper fundamental retraction of ¥ to X in (I, M),
then theve is a proper fundamental retraction of h(Y) to h(X) in (M, IL').

A space X will be called an absolute proper shape retract (APSR)
ity proper shape retract of every space Y in which X is properly
ambedded,

Tt is casily shown (ef. [6, Proposition 2.6]) that every proper repmct
of w space Vi o proper shapoe retract of 17, and hence every APR is an
APPSR,

B30 Teowem, A4 space X is an APSR 4f and only if X is homeomorphic
to a proper shape retract of Q.

Proof, Suppose X e APSR. By Theorem 3.5, there 1s an end
preserving embodding ¢: X =@, and since X ¢ APSR, g(X) is a proper
shape reteact of @y by definition. )

Suappose, conversely, that X s home.muorph.xc to a proper shape
robract of @, and lot Y be a space in which X is ‘I)roperly embedded.
We minst show that X is a proper shape retract of Y.
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Since O, is a compact subset of s, there is a Hilbert cube ¢’ C ¢ such
that C, is contained in the pseudo-interior of @'. Let Q) = @'— C,.

Since @ ~ @, there is an embedding h: X —»@; such that h(X) = X’
is a proper shape retract of . Since X is properly embedded in T and
Qo « APR, it follows from [25, Theorem 5.2] that 7 can be extended to
& proper map f: Y~ Let j: Q5 @, bo the inclusion. Then jf: ¥ @),
Is a proper map and jf|X: X —@, is an embedding of X onto X’; sinee
X' 0, is a compact subset of ¢ and hence a Z-set in Q, X" is a Z-sob
in @,. Applying [2, Theorem 3.1], there is an embedding h: ¥ -, such
that h(z) = f(x) for @ ¢ X. Let ¥’ = A(Y).

Since €, is an APR and is properly embedded in @,, there is a proper
retraction p: @, —~Q. Since X’ is a proper shape retract of Qo and € ¢ AR,
there is a proper fundamental retraction r={r,] acd} of Q@ to X" in
(@5, Q5). Let §: @ —»0Q, be the inclusion, and let s == {jr,p| aeA}. Then
(8 @0, X') is a proper fundamental net in (Q,, Q,), and hence 50 iy (s, hig Y, A
Since jr,p(2) = » for every z e X", (s,¥’, X') is o proper fundamental
retraction. Hence X' is a proper shape retract of ¥ ‘y 80 X is a proper
shape retract of ¥. S

4.4. CororrAgY. If ¥ e APSR and X is a proper shape retract of Y,
then X ¢ APSR. ' '

Proof. If may be assumed that ¥ is properly embedded in . Since
Y ¢« APSR, there is a proper fundamental retraction 7: Qo= X in (Qy, Qy),
and since X is a proper shape retract of Y, there ig a,—proper fundamental
retraction s: ¥ —X in (@, Q,). Then sr is a proper fundamental retraction
of @, to X, so by Theorem 4.3, X < APSR.

4.5.;";THEOREM. If X is a proper shape retract of X, then Shy X <2 8h, ¥,

Proof. It may be assumed that ¥ is properly embedded in @,. Lot
7: ¥ X be a proper fundamental retraction of ¥ 4o ¥ in Qo Qo). ]J(J“t i de-
note tl‘le degenerate net {i,}. The composition of the proper fundamental
ngts (¢, X, Y) and (r, Y, X) is the proper fundamental net (r, X, X).
Since (r, X', X) is generated by iy: XX as is (i, X, X), it follows
[3, Lemma 3.5] that (r, X, X) = (i, X, X) == ix,and heneo Shp AT - Shy Y.

The following 1'esulju 15 given in [23]; the statement theve requires
juha‘u Y Dbe a tree, but this is needed only to insure that FY ¢ AT and BY
is unstable in F'Y, so the argument applies equally well to any Y e APR,

4.6. LEMMA. If ¥ ¢ APR and f 190 X =Y are proper maps, then f ~ ¢
if and only if FfIBX = Fg|EX. - !

4.7. THEOREM. A noncompact s ; R i ) F—y
bospace X ds an APSR if and only i
X e SUV™. SR 4f and only if

iom”
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Proof. Suppose X ¢ APSR, and assume that X is properly embedded
in Q. Then X is a proper shape retract of @, and hence Shy,X << Sh,Q,
= Shp(Ty) X @) = ShyT,, s0 X e SUV™,

Conversely, suppose X ¢ SUV® and let T be a tree such that Sh, X
== $h,T. By Theorem 3.5, it may be assumed that X is a Z-set in M
= I'x ( and that the inclusion j: X —»M is strongly end preserving. It
follows from [24, Theorem 2] that there is a cofinal system {U,| ae.4}
of cloged neighborhoods of X in M such that for each a, there is a homeo-
morphism. &, M —U, which leaves X pointwise fixed. Let A be dirécted
by the relation a <« Uy C U,. For each acd, let r,=j,h,, where
Jui Ug—M is the inclusion, and let r= {r,| ae A}

Suppose «a, fe A and o< f. Let j: Upy—T, be the inclusion. Then
hy: MU, and jhg: M —T, are proper maps and since X = BM and
by jhy leave X pointwise fixed, I'h, and F(jhs) leave B pointwise fixed.
Henee by Lemma 4.6, h, i Jjhg and therefore 7, % 75 in U,. It follows
that » is a proper fundamental net from M to X in (M, M), and since
ry(®) = @ for every zeX, r is a proper fundamental retraction. Since
M e« APSR, it follows from Corollary 4.4 that X ¢ APSR.

The definitions given above for “proper fundamental retraction”,
“proper shape retract” and “absolute proper shape refract” are obviously
modeled on Borsuk’s definitions [6] of the corresponding notions for
compacta, although the terminology used here is an adaptation of Maz-
delid’s usage [16]. A connection between the notion of APSR, for local
compacta, and that of absolute shape retract (ASR), or, equivalently,
fundamental absolute retract (FAR), for compacta is given in the next
theorem and its corollary.

4.8. THEOREM. If X is o proper shape retract of Y, then FX is o shape
retract of FY. .

Proof. Suppose Y is properly cmbedded in @, and let 7 = {r,| a e A}
be a proper fundamental retraction from ¥ to X in (€, ). It follows
from the proof of [3, Theorem 4.5] that there is a fundamental sequence
Jeo {fa] k==1,2,8,..} from FX to FY in FQ, = ¢ such that for each k,
there is an ay € A such that fx|X == 7, |X. Since X is dense in F.X and for
each meX and for ke=1,2, .., fol@)= re(a) ==, it follows that also
for each e ¢ WX and cach k, fi(e) = e. Hence f is a fundamental retraction
from 1Y to FX.

4.9, CoroOLLARY. If X ¢ APSR, then I'X ¢ ASR.

Proof. It X is properly embedded in @, then X is a proper shape
retract of @, and hence FX is a shape retract of 7@, = Q. It follows
{6, Theorem 6.2] that X ¢ ASR.

4.10. Bxamern. The converse of Corollary 4.9 does not hold.
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Proof. Observe first that every SUV™ space, and therefore cvery

APSR, which hag exactly one end must have the proper shape of the
half-open interval [0,1). If X is a “sin(1/w)-curve” minus one endpoint
of the limit interval, then X has exactly one end but [3, Txample 4.14]
Shy X + Sh,[0,1), so X ¢ APSR.

We conclude by pointing out some parallel equivalences, the last

few of which have been established above, the remaining ones being
well known.

411, If X is compact, the following are equivalent:
(i) X € AR,

(i) X 4s o retract of @,

(iii) X e UV® and X ¢« ANR,

 iv) X has trivial shape and X ¢ ANR,

and

and

(1}
(2]
{31

[4]
{5]
(6]

so are:

(a) X ¢ ASR,

(b) X is a shape retract of Q,
(¢) X eUV™,

(d) X has trivial shape.

4.12. If X is noncompact, the following are equivalent:
(i) X ¢ APR,

(i') X ds @ proper retract of @Q,,

(iii") X eSUV™ and X ¢ ANR,

(iv') X has trivial proper shape and X e ANR,

80 are:

X is a proper shape retract of @,
X eSUV™,
X has trivial proper shape.
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