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Substructures of reduced powers
by

B. Weglorz (Nijmegen)

Abstract. THEOREM If D and & are filters on sets I and J respectively then for every
structure W we have (‘llg))g = (‘l{g)

In this paper we prove the following theorem due to ¥. Galvin:
THEOREM. For any filters D and & on I and J respectively, and for any

structure W, we have:
UHY = (ADD -

This theorem has been announced without proof by Galvin [1].
In his subsequent paper [2], Galvin omits the proof of this and some other
theorems, but promises: if they are still true, their proofs will appear else-
where. The double omission of the proof of this theorem inspired the
author to find his own. Galvin’s proof, as privately communicated to the
author, is longer and also our Theorem 4, § 3, is stronger than the theorem
above.

‘We shall also apply our technique to prove that free products of
Boolean algebras preserve the elementary equivalence (see § 4). The
author believes that this result is known, but he is unable to find it in the
literature. ‘

In § 1, we recall some basic definitions and theorems concerning
limit reduced powers. Then, in § 2, we introduce some product operations
on filters, which correspond to iteration of limit powers. Applications
of the results from § 2 to Model Theory (with the proof of Galvin’s Theorem
mentioned above) are contained in § 3. Finally, § 4 contains applications
of our technique to Boolean algebras.

§ 1. Limit reduced powers. We shall use standard model-theoretical
notations and terminology, but for the readers’ convenience we recall
some definitions and facts concerning limit reduced powers.
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192 B. Weglorz

Let fe Al Then by eq(f) we denote the following equivalence re- -

lation over I: {{i,j> e I*: f(4) = f(j)}. Suppose & is a filter on Ix I. By
9|5 we denote the limit power of ¥, i.e., the substructure of the direct
power ¥ with the universe

ANF = {fe AT eq(f) e F}.

Tt moreover D is a filter on I, then by UL|F we denote the limit
reduced power of U, i.e., the substructure of the reduced power A, with
the universe A%|F which is the corresponding quotient of Af|F.

Finally, if T is a topological space, then AT denotes the substructure
of AT, the universe of which consists of all continuous functions from T
into the universe of A regarded as a discrete space (7' denotes the carrier
of 7). Tt is easy to see that AT = AT|F, where F is the filter over T° gener-
ated by all closed-and-open decompositions of T (here we congider de-
compositions as equivalence relations). For more information see [3],
[4] and [5]. 2 always denotes the two-element Boolean algebra.

We shall use the following fact:

TrroreM. (2) If 24|7 = 2|8 then AL\TF = AL|S.

(b) If 2% ]d‘ {2 IS and & CG then AL|F {QI f

This fact is an easy refinement of a theorem of Galvin ([2], Theo-
rem 4.4), see also [4].

§ 2. Products of filters. By a partition of a given set J s 0 we mean
a funetion G: 1—P(J) (where 1 is a cardinal) which satisfies the following
three conditions:
(i) For each §< A, G(&) £ 0.

(i) U G(&) =

(iii) Fw any E< <<l G(&) NGy )
Let D(J) denote the set of all partitions of a-get J. With any ¢ ¢ D (J)
we correlate the family

[G]= {G(&): &edom(G)},

and we call it a decomposition of J. The family [G] will also be called the
type of the partition G. The set of all decompositions of J (i.e., the set of
all types of partitions of J) will be denoted by [D(J)].

Now, let us suppose that two non-void sets I and J are given. Usmg
D(I) and D(J) we shall define some special types of partitions of I xJ.

Let & ¢ D(J), dom (&) = 2, and F: 2—>D(I). Let (F, &) = |(F(£))(n) x
X G(&): E< ) and 7 e dom(F(&))}. It is easy to see that (F, &) is a de-
composition of IxdJ. If F e D(I), dom(F)= 1, and G: A—D(J), we pub
(7, G)= {F(£)x (G(&))(n): £< A and 7« dom(G(£))). (F,G) is also a de-
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composition of IxJ. Finally, let F be a constant function; say F(&)
= F e D(I), for £ ¢ dom (F), then (¥, @) = (F, &).

DeriNizioN. Let H be a partition of the set IxJ. Then H is called:

(1) regular if there are G e D(J) and F: dom(@)—D(I) such that
[H]= (F, &)

(2) transposed if there are F ¢ D(I) and G: dom(F)—D(J) such that
[H]=(F,G);

(3) symmetric if there are FeD(I) and & eD(J) such that [H]
= (F, &)

PrOPOSITION 1. A partition H of I X J is symmetric iff it is regular
and transposed. .

Let £#C D(I) and $C . D(J). The set Reg(st, $) of all regular par-
titions of IxJ determined by £ and $ is defined as follows:

H ¢ Reg(#, 35)‘ iff [H]= (F,@) for some G e%$ and F: dom(G)—s%.

(The sets Trans (4, B) of all transposed partitions of I x J and Sym (£, B)
of all symmetric partitions of IXJ are defined in a similar way).
Let 5 be a filter on I x I. Let us define

= {X ¢ : there is an equivalence Y ¢&F such that ¥ C X} .

It is easy to see that:

(1) F is a filter on IxI;

(2) FCF and F=7;

(8) for any set A, we have Al|F = 4!|F..

By those facts, in investigations of limit powers we can assume
(without loss of generality) that all filters under consideration have the
property F = F. Consequently a filter & is characterized by all equi-
valence relations in F.

‘With any filter & on I X I we sha]l correlate a set & C D(I) of parti-
tions such that H e ¥ iff H ¢ D(I) and there is an eqmva.lenee relation
o€ such that [H]= I/o. On the other hand, if #C D(I), then the
smallest filter 7 on I x I with the property £ C & will be called the Silter
generated by 4.

Tf f ¢ AT*7 then by fr we denote a function from J x I into A defined
by fr(j, 1) = f(i,4) for all (j,4) eJ x I. Obviously frr=f. If ZC AT/
then we put Zg = {fr: f ¢ Z}. We also identify the set (A%)” with AT

DrriNimioN. Let & be a filter on I x I and § a filter on J XJ. Then:

(1) F®8 denotes the filter on (IxJ) ><(I yJ) generated by

‘ Reg (5, Q)

(2) ¥ ®r S denotes the filter on (I xJ)x(IXJ) generated by
Trans (5, @) : ;
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(8) ¥ ®s8 denotes the filter on (IxJ)Xx
Sym (%, 8).

Of course F ®s8CF 9 and F ®SCF @r ¢

Immediately from the definition we have.

(IxJ) generated by

ProposITION 2. If & s a filter on IXI and S
for any set A we have:

(i) (ANFY|8 = ATV|F ® 6,

(i) (4719)F)r = APV|F @r S.

A filter ¥ on Ix I is finitary iff for each equivalence: relation ¢ e F,
the set I/ is finite. Let 8§y be the greatest finitary filter on I x I. For any
filter ¥ on I X I, we pub Fy, = F ~ 8. We call Fy, the finitary part of
F. Of course Fy, CF, also Fy, = F iff & is finitary.

CorROLLARY 3. For any structure W we have

U | T < W\ -

Proof. Indeed, since 2 is finite, we have 25|Fy, = 24|, also Fy, C F;
thus Theorem (b) from § 1 yields the corollary.

Lievma 4. (i) If 8 is a findtary filter on J X J then
for any filter & on IxI.

(i) If & ds a finitary filter on IX I, then §F @S = F RS, for any
filter 8 on J X J.

(ili) If both & and S are finitary then F @ S=F Qr 8= F Qs 8

i) (FR®YYN(FRr8) =% ®:s8

Proof. (i) The inclusion ¥ ®sSCF ® 9 always holds. We shall
‘prove that F ® SC F ®s 8.

Let us take an equivalence relation ¢ € ¥ ® . Then there is a par-
tition H ¢ Reg(§,8) and an equivalence relation " on IxXdJ such that
[H]= (IxJ)o and o Cp. Since H eReg(F,§), there are G <& and
F: dom (@)~ such that [H]= (F, &. Now, since @ is finitary, F
= <F(0), ..., F(n—1)), where n = dom (&) and F(0), ..., F(n—1) ¢ §. Let
for each i<<m, greF be an equivalence relation over I such that
[F(i)]= Ifg:. We have o= gy ... g, ;eF. Let FeD(I) be such
that [#] = I/o"’; then F ¢ §. Let o* be an equwalence relation over I xJ
with the property that (I x J)/e* = (¥, ¢). Then o* Co'Coandg*eF ®s G,
and thus ¢ ¢ ¥ ®s§. Consequently ¥ ® 8 C F ®s 6.  QE.D.

(ii) The proof of (ii) proceeds in the same way as the proof of (i).

(iii) It is an immediate corollary from (i) and (ii).

(iv) The inclusion ¥ ®s8C(F ® 8) ~ (¥ ®r §) is always true, and
80 we shall prove that the converse inclusion holds. Let o e (F ®G) n
N (F @1 §). Take any o, ¢ (F ®9) and g, ¢ (F @rS) such that aCo

a filter on J X dJ, then

‘?®g:$®$gy

icm

- Moreover (W'|F)’|8 =

Substructures of reduced powers 195

and g, C o. Without loss of generality, we can assume that there are parti-
tmm H, e Reg (5, &) and H, « Trzms(EF 8) such that [H,]= (I xJ) )/ e, and

= (IXJ) e, Since H, ¢ Reg(§, §), there are @, ¢ § and F,: dom(G1)~>d‘
such that [H,]= (F,, Gl) Similarly, [H,]= (¥, G,) for some F,e§
and some G,: dom (F,)->8. Take H e Sym (%, 8) such that [H]= (F,, &)
and let o* ¢ ¥ ®s 9 be an equivalence relation with the property that
(I xJ)]o* = [H]. Now, it is easy to see that for any equivalence relation o’
over Ixd, if o, Co and ¢,C ¢’ then o*C o. (Let us remark that this

does not mean that g, C ¢* or o, C o*!). Gonsequently ¢* C ¢ and therefore
0eF ®s9 QE.D.

§ 3. Applications to iterated powers of models. Let B=— (B, ..>

CUA™7, By Br we denote the isomorphic copy of B with the universe By.

Of course By CA*! and Brr = B. .
TeBOREM. 1. If F and § are finitary filters, then for any model A

we have

W58 = (W8)1|7 .
(W19)1F)r -

Proof. By Proposition 2(i), § 2, we have (47|F)|8 = AT|(F ® 9).
Similarly ((4718)!|F)r = AT*|(F ®7 §). But, by Lemma 4(iii), § 2, we
have ¥ @6 =F ®r 8. Thus our theorem follows.

THEOREM 2. Let By = (W F)V|S and B, = (W|S)!|F. Then there is
a model € such that € < By and Cr < B,. Consequently B, = B,

Proof. By Corollary 3, § 2, we have

By &> W F )18 & (W F 1) Spim
and ’

By &> (W [Gpi) 15 > (W (S | F -

But the filters Fg, and Gy, satisfy the hypothesis of Theorem 1. Con-
sequently, putting € = (A Fyn)’|Gun We get the required model.

THEOREM 3 (Galvin). For any model A, we have (UF)§ = (A .

Proof. Let us consider the Boolean algebras $, = 2% and B, = 2§.
By the Stone Representation Theorem there are sets I, and J; and filters 5,
on I, x I and @ on JyXJy such that $, o 2|F, and B, = 271|,. Now,
by Theorem (a), § 1, we have A% = A™|F; and A = A/*|g,, for any model .
Consequently (WE)E = (W2[F)F = @F,)78, and (UHE = (U855,
Thus the result follows from Theorem 2.

It is possible to generalize Theorem 3 in the direction suggested by
Theorem 2.


Artur


196 ‘ B. Weglorz

THEOREM 4. Let B, = (UL|F)IG and By = (WLD)G|F. Then there is
a model € such that € < By and B, contains an elementary submodel which
is an isomorphic copy of €.

We shall give a proof of a weaker result. The proof of Theorem 4
can be obtained by some inessential modifications of the proof of
Theorem 4'.

THaEOREM 4. Let B, = (UL} and B, = (UL)G. Then there is o model €
such that € <3 By and B, contains an  elementary submodel which is an
isomorphic copy of €.

Proof. Let € = (UL|8,)8|S, and G, = (U[S,)h|S;. Obviously, by
Corollary 3, § 2, we have €, < B, and €, < B,. We arc going to show
that € =~ GC,.

Let K= fI and L= fJ (fX denotes the Cech-Stone compactifi-
cation of a diserete topological space X). Let us remark that for any
structure U we have U7|S; o AX and similarly U;|S; = AL Let D’ be the
filter closed-and-open subsets of K defined by X ¢ D’ iff there is ¥ ¢ D
such that X = ¥X. Let D =) D" In the same way we define § and E.
Then D and E are closed subspaces of K and L respectively. Moreover,
by the definition of reduced powers, for any structure % we have
U518y = AP and similatly AL|S; =~ AP, Consequently € = (A)* and
G, =2 (UEYP. Therefore €, =~ €,. Thus putting € = ¢, we get Theorem 4'.

§ 4. Applications to Boolean algebras.

THROREM 1. Let F be a finitary filter on IX I and § a finitary filter
on J xdJ. Then .

(21F)18 = (211F) « (2719),

where s« denotes the free product of Boolean algebras.

Proof. Let B, = 20F, B,=2"| and B=2"%|F @$. We shall
construct isomorphisms ky: By—B, gt Be—B such that B =y (By) * hao(By).

Let us define hy(X) = X xJ for each X ¢ B, and hy(X) = I x X for
each X ¢ $,. Then it is easy to see that b, and A, are isomorphisms of &,
and B, respectively into B and hy(By) v hy(B,) generates B. Moreover,
for any ¥, ely(B;) and Y, eh(By), if ¥y # 0 £ ¥, then ¥, n ¥, # 0.
Thus $ is the free product of A, (B;) and hy(B,).

COROLLARY 2. Let B be a Boolean algebra. Then for any filter F over T
we have Bk = B« 2%

4

COROLLARY 3. If B, = B, and B; = B, then By # B, = By % By
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