Applications of a mismatch theorem
to decomposition spaces ™

by
W. T. Eaton (Austin, Tex.)

Abstract. We apply the mismatch theorem [12] to several upper semi-continuous:
decompositions of 8% In addition to unifying these results we establish a conjecture
of R. H. Bing by showing that his straight line interval decomposition [7] is not B? —
a simpler example of the same phenomenon iz also given.

1. Introduction. The purpose of this paper is to apply Theorem 1,
gtated below and proved in [11] and [12], to certain upper semi-continu-
ous decompositions of ¢ to determine whether or not the associated
decomposition space iy topologieally ES. The decomposition spaces for
which Theorem. 1 is applicable are those equivalent to E%/G where ¢ is
a monotone upper semi-continuous decomposition of F* situated properly
with respect to the x,y — coordinate plane @. More precisely, it U,
and T, are the components of B* — @ then we require that each element
of @ intevsects @ in a connected set so that G(Q)={g~ Q| ge &}, and
Gi= {g~OlT}| ¢ e G} v U,_,; represent monotone upper semi-continuous
decompositions of Q and F?, respectively. We also require that @/G (@) ~ Q
(by a theorem of R. L. Moore [16], it is sufficient to require that g ~ @
fails to ‘separate @ for all ge @) and BYG* ~ E* so that (B%@G)+ oo re-
presents the sum of the two crumpled cubes (£3/G°)— U, co and (B3/G*)—
—U,+ oo sewn together by the identity homeomorphism on their common
boundary (Q/G(@))+ oo

Turorem 1. If K, and K, are crumpled cubes and h: BdK,~B4dK,
is « homeomorphism, then the sum Ko vy Ky (the disjoint union of Ko and K,
with @ identified with h(z) for each x e BAK,) is topologically 82 if and only
if there exist disjoint 0-dimensional T, sets Ty and Fy in B4 K, such that
Iyo Int K, and h(F,) v IntK; are 1-ULOC.

* This paper was supported in part by the Alired P. Sloan Foundation and NSF
Grant GP-29400X.
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The specific decompositions & of E* that we include in this paper
have many additional properties. In the remainder of this section we
discuss some of these properties and introduce notation that will be used
in Sections 2 and 3.

We use H to stand for the collection of non-degenerate elementS
in @, H* for the union of the elements in H, and P for the natural pro-
jection map from F* to B¥G. For our decompositions P (H*) is always
compact 0-dimensional; thus, ¢ is definable by cubes-with-handles [13],
[15] in the sense that there exists a sequence {3} such that 1, C Int M, ‘
H* =\ My, and each component of each M iz a PL Gllb(hWith-h‘cl:lldl(‘:&i
We use the following notation for the defining sequence {}.

The components of M; are denoted by 4, A, ..., the components
of M, that lie in IntA; are denoted by A, Ay, ..., and, induectively,
A 1nymy...my den0bES & component of M; that lies in the component 4., . "
of M;_,. Thus, for each non-degenerate element g e H C @ there1 gx::{;
& sequence my, My, ... of positive integers such that g is the intersection
of the nest 4,, D A4,,,, D ... To avoid unnecessary subscripts we use
Greek letters to denote juxtaposition of subseripts. For example, when a
ijresents My My ... My We write 4, to denote A, ., ., and 4, to denote

MAM.IYL *

. 1'For tﬁle .decompositions G _of this paper it is easy‘to establish that
B¢ = B® (i =0 or 1). Let A?= A, ~ C1U;. The cubes-with-handles A
have the property that for <= 0 or 1 there exist a finite collection i),

XY2), ... of disjoint 3-cells, and a compact 3-manifold with boundary
Y:C U, such that

1) Af=Tio X))o X2y U ... ,
(2) A4,n Q_ig the union of a finite collection {D,(j)} of disjoint dixks
and XX(j) A Q = @ A BAXY(j) = D,(j), and

(8)  Xij) ~ ¥i=BAXi(j) ~BAT! is a disk 7).

Fur‘uher_more, if £>0 then there exists a positive ' integer j such
that DiamYj, ., <e The 3 -manifolds-with-boundary M? == U‘A'i
= M;n ClU; form a defining sequence for the non—deg'enemtle olemen%g"}}n i
<.Jf the upper semi-continuous decomposition G* of F*. Tf V is an opéll seb
in Ea'conta.im‘ng H#* and &> 0 then there exists an isotopy of 2 onto E“
tl.lad: is the identity on B*—7V and takes each clement of'}I " to a set of
diameter Ie.ss than s. We construct the isotopy by first taking j large
enough to. Insure that each A;',ummj lies in ¥V and Diam Y7} <, and
then pushing each 3-cell an,...m, into & thin shell neighborhc;?(l)liimgf Z,"',

Mreemy*

It now follows from the shrinking argument in'[4] that %G ~ B°. Thus,
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K= (B*)G)—U,_;+ o0 iy a crumpled cube and Theorem 1 is applicable
to the sum (H3/G)+- co.

Since 4, is a cube-with-handles and 4, ~ @ is a union of disjoint
disk D(1), D(2), ..., it follows that 4f= A4, ~ ClU; is also a cube-with-
handles. For the decompositions of this paper, we also have that A%, is
embedded in A? inessentially in the sense that each loop in .47 is null-
homotopic in Af. These facts are used in Sections 2 and 3 to lift loops
in B3/G¢ to IR :

2. Decompositions that yield 7% In this section we specialize Theo-
rem 1 to the decomposition spaces of Section 1. We then apply the theorem
to several decompositions from, the literature to show that the associated
decompogition spaces arc topologically E°.

NorarioN. If D is a disk and J is a simple closed curve in D then
D(J) stands for the subdisk of D that J bounds. Also, if {J,}7; is a col-
lection of disjoint simple closed curves in IntD(J) such that D(J%)
ADI) =@ if 4 #j, then D(J;dy, .ydn) or D(J; {Js}) represent the
disk-with-holes in D whose boundary in  u J; v ... v dy. By a loop % in
the space X is meant a map u: J—X, where J is a simple closed curve.
For a map F, by |F| is meant the image of the map F.

DeFnITion. If G and D are collections of loops in a space [ (we

"always assume that the preimage simple closed curves are disjoint) then C

carvies D null-homotopically in M if for each loop u e D there exists a map r
from a disk-with-holes D{(J;Jy, ...,Ju) into M such that F|J = v and
FlJieC (i=1,..,n).

The following theorem gives a necessary and sufficient condition
for the special decompositions of Section 1 to have a decomposition space
equivalent to B%. We use the notation of Section 1, and for i = 0 or 1 and
each a, we let £f e the collection of loops in (Bd A%— UDa(j) null-

o7 o
homotopic in Af, and let A0} be any subcollection of £; which carries £,
noll-homotopically in (BdAi)— (J D(j)-

i

TarorREM 2. For the upper semi-continuous decompositions G of Sec-

Cdion 1, TG = B* if and only if for each o there exist an infeger j and- eol-

lections L°C \J Ll m, (6= 0,1) such that
Miraen My )
(1) if uge £9 and uy € £ then |ug| and | are not subsets of the same
Aum;‘...mﬂ and ) .
{2)  fori= 0,1, £ carries A} null-homotopically tn AL— ) Inb AL, -
M1y .
Proof. We first show that the condition is necessary for BG = B5.
Suppose BYG = F* and o ig given. For i = 0,1, sinee AGEC £i, we may
assume without loss of generality that Fg is a map from the disjoint
4
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union Df v D} v ... of disks Df intio 47— D,(j) such that Jf = {F|DH

7"'7' .-
The images |PFQ| and |PFj| may intersect in P(H* ~ 4,); however, by
Theorem 1 there exist disjoint 0- dimensional I, sets I, and F, in P(Q ~ H*)
such that F; v Int P(C1U;) is 1-ULC (4 = 0, 1). Since F; is 0 - dimensional,
and F; v Int P(ClU;) is 1-ULC, there exists a finite collection {0}} of
disjoint subdisk of Int(D! v Dfw...) such that (PEH)™(P(H™)) C Int 0}
and PF{BAC} is null-homotopie in Iy w Int P(4%). Thus, we may extend
PF|((Df v DEw ...)-—%J Int0f) to Diw Di ... to obtain a map I from

Div D} ... into By v (P(A) ~ IntP(CLUY)). Since ¥y ~ I, == &, wo now

have |F9| ~ [Fj| = . Since |F7|  |F}] = @, there exists an integer j such

that if [Ff] N P(App,. m) # O then |F1 AP () = . 'We may

agsume that |Fi| and P(‘BdAaml_._mjme) are in general position so

that .there' exists o finite collection {E;'} of disjoint subdisks of

Int(D;w Dy w...) such that (Ff)™P(H") C | IntBi, FiBAH; is a loop
7

in U P(BdA’

avm...mjmjﬂ): and

MienMytr f
FY{(D} v Df )= U Int B C P(Aim U Inbdl,, . )—P(JDY).
7 M eee Mgty 7
Since P is a homeomorphism on Al— () Intdf and

‘ . ‘ ‘ . P e ANMY 00 T+
each Aam;...'m,.,.; is inessentially embedded in flmm...mj , we may extend

PRy (D Do L)~ ij IntBj) to DioDi.. to obtain a map FE

from Dfw DE o ... into Ai— U Dy(j) such that FiH) lies in the same
i . . 3 ! i . : ;

Amy..m, that containg .Fz(Bd'Ej). Since Az, C Aimy.myy  andj

was chosen so that |F?| "‘P(Aaml...m,) # @ implies |Fi™Y ~ P (A,

=@, it follows that if |F3) ~ Ay, # @ then I3~ 4
Some of the loops :

aml..‘m,)‘

ﬂ’”Lln-WI]

FJCDioDlu...: J>BLAL

aMyeaty
may not be null-homotopic in Ajml_"mj, but since 4%, . is a cube-
with-handles there exists a 1-dimensional spine - of A;:n in in general
position with respect to |Fi. Let A° be a llolilczomo;i;]‘tji.ﬂm. of B
onto F° that pushes the boundary of a small regular hoig‘hbnr'lmud

of these 1-spines in the Agmy..m8  radially onto ( |J BaA! )

Mgy
ot i ri i i1y - e :
Let Fy=h'F; and let D= Di—(FH)=Y | Int AL, n). It follows.
) Mene M,
that we imay Fake the collection of loopsj £8 of the conclusion
to be {(F5lJ)|J is a eomponent of Bd((J D—Bd(|J D).
; -

We next show that the condition is sufficient to in,sure that B%/G¢ ~ IP.

We will find disjoint 0-dimensional T, sets I, and F, that satisfy the
® ) s
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hypothesis of Theorem 1 for the erumpled eubes K,= P(01U,)+ oo and
K, = P(ClU,)+oo. To assist us in the description of these F, sets we
use our hypothesis to obtain a new defining sequencefor the non-degenerate
elements H C G by deleting some of the A.)s. Let B, = 4, , and let
N, = My =\ B,,. Inductively, assume that B, has been defined equal

N1 .
o some A,. By hypothesis there exist an integer j and collection £° and £*

satisfying (1) and (2). Let By, By, ... be a relabeling of the elements

of the collection {A.m,.m} and let J5= {k| |u|C By, for some e L’}

Let Ny= U By, and i By= 4, let £ff = ¢f, Mf* = A, Bj= 4],
vaeTl

W .
and D%(j) = Dy(j). Note that by (1) J5~J3= 0 for all f, and in terms

. of the new defining sequence {I¥;} for H and the notation just introduced,

the condition in Theorem 2 becomes the following.

(3) TFor each o there exist disjoint collections J% and J} of integers
such that for ¢ = 0, 1 and for each loop u e 46" there exists a map F
from a disk-with-holes D(Jo; Jy, ...y Jn) into Bi—UJ IntBj such
that F|J,= u and F|J;e £

Since for = 0,1, and for each a i* carries £i* null-homotopically

in (BdBY)—|J D¥(j), the existence of the map F in the following state-

7
for some k; edl (j=1, .., n).

i
~ment is established by induction using (3). For i = 0, 1, for each o, and

each loop u e £2* there exist (a) a disk D, (b) a collection v Tt v~

O S mma) - of digjoint simple closed curves in D such that D (J1; T imi})s

D(Jymyy imyma}y - ave disk-with-holes and DY) D D 1my) 2 D 1yigma)

D... is a null-sequence or a finite sequence, and (¢) a map F from

DWy; Famd) < (U D yms Fomuma})) © - into Bi— |JD;(j) such that
m;

: ? .
F[Jl = u7 FIJIM..;’U € BdB:m..-n; Where q“’ € J;nl---'nrb-l (k = 17 st -7)7 and
‘F(D ('Jiml...'m]i {J1m1...m.1+1})) C (B:m...n,—' LkJ D:'r(&,f)m)'— U Int’Bum...mﬂ' )

anyngh

Tt is clear that we may extend the map PF to D(Jy) by defining
PF(D(J1) A DT ymy) N D (T myma) ...} = P(Bi ~ Bly, © Blyny © )

for each infinite sequence mi, My, ... Thus,

(4) for i= 0,1, each a, and each loop ue £ Pu is null-homotopie

in |Pu| v IntP(B) v O where O is the compact 0-dimensional
S6b {P(Byn, ™ Bungns ™ )| M5 € Tampumgas § =152, .

We now define F, and F,. For 4= 0,1, let O} = {P(Bp, » By, 0

~B A g el ., if §> K} Note that for i=20,1, and k

=1,2, .., 0L is a compact 0-dimensional subset of P(HY), CLCOL, ., '

Nninang
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and 0% ~ 0} = O since J) ~ J% = 0 for all a. For i = 0,1, let Fy = (J 0. |
Foe=1 ]
It is clear that ¥, and F, are disjoint 0-dimensional F, sets in P(H*)
CP(Q).
We next show that 7; v Int P(CIT;) is 1-ULC (¢ = 0, 1). Let ¢> 0
be given. Since P(CLU;) is 1-ULC and P(Q) is locally tame in P(CLU;)
modulo P(H™), there exist a 6> 0 such that §-loops in IntP(CLU;) are
null-homotopic in an e-subset of P(H™) v IntP(C1T;). Lebt f be a map
of a disk D into an e-subset of P(H*) v IntP(CLU;) such that f|Bd D is
a d-loop in Int P(C1U;). There exists aninteger j such that

Diam(f(D) v U {P(B},.n,)| £(D) ~ P(Bj, _.0) # B} <&

and .

fBAD) ~( U P(B;,..) =0

n1...n, N -

Since P(H™) is compact and 0-dimensional, there exists a finite collection v - =5 Q S S 3
{B;} of disjoint subdisk of IntD such that f(D—\J IntE)) C Int P(CLT,) 55 ds 4 = 0 P j :—Jguy

; q —t Y= 2
and f(B)C U P(B, ). Since each B . is inessentially em- wppr ; F

e - ig. 1. R. H. Bing’s Al ig. 2. E. H. And g dification of

bedded in By, ., and P~* is defined on TntP(CTy), it follows that Fig-1. B. H. Bing’s Aloxander homed  Fig. 2. £ erson's modification o

sphere decomposition [4] the dog.bone decomposition [1]
P71 D— ) IntH; may be extended to a map fi: D— U such that f,(Ey) :
C B,‘“.__,,J fojr some 7y, ..., ny. We may assume that |f;| is in general po-
sition with the 1-spine of any B,, ,, such that |f,| ~ By,..n, # - Let i be
a homeomorphism of 7 onto B® that takes the boundary of a small regular
neighborhood of these 1-spines onto U'BdBju__.nj and let fy= hf;. It
follows that there exists a finite collection {D;} of disjoint subdisks of
IntD such that fy(D— (J.D;)C Ui— U B};lu_m,f,,leD = P7Yf|BdD, and
Bl BADy e 7, for some ny, ..., ns. Since CjummCF“ it follows by (4)
that there exists an extension of Pfy|D— (J Int.D; to a gnap f,: D—>F;u
wIntP(ClU;) such that f(Uy)C P(BL ) By our restrictions on

; m...n,
DiamP (B, ), we have that Diam|f,| < e. Thus, for each &> 0 there 0 ‘
exists & 6> 0 such that 4-loops in IntP(Cl U;) are null-homotopic in _.__M [l];’ 1]
an g-gubset of Fy v IntP(CLT;). It now follows that Fy o IntP(ClU,) ol o=z} !

is 1-ULC by the argument in [9; Theorem 4.2].

We now apply Theorem 2 to several decompositions in the literature
to show that the associated decomposition spaces are ecquivalent to I®,
Note that we may take JG: to be representatives of a set of generators
for the kernel of the natural homomorphism ju: m(BdAi~ D, (%))

P

—m,(A4}) induced by injéction j: BdAi— | D (k)->AL.
k

Figures 1-5 represent the iterative step for the defining sequences
of decompositions & of B* whose decomposition spaces E?/GF have been
established to be #® by other methods in [4], [1], [10], [14], and [7], re-

Tig. 3. L. O. Cannon’s 3-horned sphere decomposition [10]
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Fig. 3a

spectively. Our proof that B¥@ ~ E° is indicated by the hieroglyphics
accompanying each figure. The loops in A} are indicated in both the
figure and Line 1 of the proof. The collection of loops shown above (below)
‘the plane @ in the ({+1)-th line carries the collection of loops shown above
(below) @ in the 4th line null-homotopically in

A)— | Int A% (AL— | IntA%) .
i i .
"The last line of the proof shows the loops in £ required to apply Theorem 2.

Each line is intended to be a schematic representation of the A8
in A4, with the horizontal line representing the plane @. No linking of

icm
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Fig. 4. L. F. McAuley’s straight line interval decomposition [14]
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Fig. 5. R. H. Bing’s three fingered decomposition M
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the 4,,'s is shown, because we only need to indicate the location of relevant
loops. The reader should translate the information given in the hiero-
glyphics into the figure upon reading adjacent lines of the proof. For
the reader’s convenience, in most cases only one singular disk-with-holes
is required to proceed from the top (bottom) of line ¢ to the top (bottom)
of line 44-1, For example, in Figure 3 to proceed from the loops below @ in
Line 2 to the loops below @ in Line 3 only the singular disk-with-holes
in Figure 3a is required. For the other steps we leave the construction
of the appropriate singular disks-with-holes to the reader; however, in
all steps this is essentially easy since the location of the boundary com-
ponents can be determined by the information in the hieroglyphics.
The word “stage” is used in the proof to indicate that the loops in the
next line are in the 4,’s as well as 4,. Since, for the decompositions of
this paper, the embedding of the 4,’s in A4, is independent of a, the
reader may also visualize these loops in the accompanying figure with
an appropriate adjustment of notation.

3.0. Decompositions that fail to yield Z2. In this section we apply
Theorem 2 to several decompositions in the literature to establish that
the associated decomposition spaces are not topologically E3. For each
decomposition we find an « (since the embeddings of the 4,’s in 4, are
independent of «, any o will suffice for the decompositions in this paper)
and loops in £ and £! for which there exists no j and colleetions £° and £*
satisfying (1) and (2) of Theorem 2. To accomplish this, we find a “pattern”
of loops in £2 and ¢! for which the hieroglyphic methods of Section 2
fail to produce a mismatch. To prove that a mismatch is impossible and
we are not just poor players of the loop trading game, we use the
concept of a regular map and reduce each decomposition to a combinato-
rial selection problem by using the following lemma.

DerinitioN. Let 4 be a compact PL 3-manifold with boundary
in B and ¢ be a compact set in BdA. A PL map f from a disk D into E?
is reqular with respect to (4., 0) if

1. f|BdD is a non-trivial loop in (BdA4)—C,

2. f(D) and Bd(4.) are in general position,

3. there exists a collar B of BAD in D such that f(B)C 4, and

4. if K is a component (necessarily a simple closed curve by (2)) of
FH{/(Int D) ~ Bd.A4) then f|K is trivial in (Bd4)—O.

Let A be any one of the four PL 3-manifolds with boundary in
Figure 6, let A* be the indicated sub-manifold of A (A" may have more
than one component), and let ¢ and C* be the indicated compact sub-
sets of Bd.A and BdA*, respectively (C and C* are disks or unions of
digjoint digks).

ok
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Levmma 3.0. If f is a map from a disk D into E* such that f is reqular
with respect to (4, 0), and f(D) and BAA* are in general position, then
there exists a subdisk D* of D such that f|D* is regular with respect to (A%, O*).

Proof. Since for each of the manifolds in Figure 6 the techniques
of [6; Theorem 9, Theorem 11] are applicable, we only give an outline
of the main steps in a proof. Step 1. Show that there exists some simple
closed curve J in D sueh that f|J is non-trivial in (BdA*)— C* Step 2.
Let D* be the disk bounded by an inner most curve from Step 1. Show
that there exigts a collar B* of BAD* in D* such that f(B*) C 4A*.

3.1. The dog bone decomposition. Figure 7 represents the iterative
step in R. H. Bing’s [5] dog bone decomposition G of E° We use our
techniques to show that %@ is not E% The proof depends on 2 solution
to the following combinatorial selection problem.

SELECTION PROBLEM. Is it possible to select a point from each of
the eight pairs of points {af, a3}, {a,al}, {a3,al}, {al, al}, {a, a}},
{a3, ai}, {a3, 03}, and {a}, a}} without selecting both end points from one

of the four ares a, ..., a, in Figure 7a?
T T~
L 3>
il el
af adp%—>14§ ?(4)
4 a9 a3 a4
a} ah ah gy
AN - F
S~ -

——

Fig. 7a. Selection problem

As the reader may easily determine the solution is negative. That is,
there exists an arc a; such that both end points aj, aj of a; are selected.
We now give an interpretation of the selection problem in the dog bone
decomposition.

If fi (i = 0, 1) is a map from & disk .D; into U, such that f; is regular
with respect to (4%, D,) of Figure 7, and fi(D;) and L’J Bd A, are in

general position, then, by Lemma 3.0, either there exists a subdisk Dj
of D, such that f,|Dy is regular with respect to (43, D,) or there exists
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a subdisk D¥ of D, such that. f,| D} is regular with respect to (AY; Dyy).
Algo, there exist seven other linked pairs {42, 4%}, {43, 43}, ..., {45, 4}}
in Figure 7 for which Lemma 3.0 is applicable. In the selection problem
interpret the phrase “point a, is selected” to mean “there e‘mst& a sub-
disk D} of D; such that fllD* is regular with respect to (47, D) and
interpret arc a; as dog bone 4,;. The negative solution to the selection
problem may then be interpreted as a proof to the following lemma.

LmvMa 3.1 If fi (2 =0, 1) is a map from & disk Dy into Uy such that f;
is regqular with respect to (A%, D)) of Figure 7, and fi(Di) and Lf) Bd4,; are

in general position, then there ewists an integer k and subdisks D} C D, such
that f;|\ Dy is regular with respect to (AL, Dy) (i =0, 1).

Suppose F¥G ~ B We show that Theorem 2 and Lemma 3.1 can
not hold simultaneously and thus reach a contradiction. By Theorem 2,
there exist maps f; (4 = 0, 1) from a disk D; into E? such that (1) fi(Dy)
CUi, fo|BdDy=w and f,)BdD, = v of Figure 7, (2) fi is regular with
respect to Af,
there exists an integer § such that |fil ~ 4, . =0 I |fi gl o Agpy.m
# 0. But, by applying Lemma 3.1 repeatedly, we find that there also
exist nests A, D Ay D Any D - D Amaim, 80 DD D3O D DY such
that f;[D¥ is regular with respect to (A;m1 N Dm1 ) (=0, 15
E=1,..,5). Thus, |fil ~A,m,. my #@ for 4=0,1 contradicting (4).

Only the linking of the 4,'s in Figure 8a was used in the above
analysis. Thus, the “looser” dog bone decomposition G indicated in Ini-
gure 8a has a decomposition space different from P Temma 3.1 is also
true for the modifications of the dog bone decomposition given by
E. H. Anderson [1] and indicated in Figures 8b and 8¢ (use Lemma 3.0
and a different selection problem for a proof). Thus, by the argument

c)

Fig. 8

(3) frand Bd 4, are in general position for each g, and (4)

icm
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above, neither of these decompositions has a decomposition space equal
to EP.

3.2. A decomposition of C.D. Bass and R. J. Daverman. Tigure 9 re-
presents the iterative step in the Bass-Daverman [3] decomposition &
of B used to show that self-universal crumpled cubes are not necessarily
universal. We also show that E%G is not #3. The proof depends on the
following lemma concerning the embedding of 4, and 4, and 4.

Tig. 9. A C.D. Bass-R. J. Daverman decomposition [3]

LemwmaA 3.2 I:f fo 8 @ map from @ disk D, into Uy, f; is a map from the
union of a pair of disk Dy(1) and Dy(2) into U, such that fy, fi|Dy(1), and
FolDi(2) are regular with respect to (AL, D (1) v D(2)), (A%(1), D(1)), and
(4%(2), Dy(2)), respectively, and \)Bdd, and [fo| v [fil are in general

position, then there exists an fmteg;er ke{l,2} and subdisks Dy of D, and
DY(L), Di(2) of D(1) v Dy(®) such that fol D3, HIDI(L), and fIDY(2) are
iegulm with respect t0 (A, Dy (1) v Doy(2))y (A2k(1), Dar(1)); and (A;k(z),
(2)), respectively.
Proof By Lermma 3.0 applied to A% v A%, there exists an mtmel
% e{1,2} and subdisk D} of D, such that f,|Dy is regular with respect
10 (A%, Dyl(1) v Dyf2)). By Lemma, 3.0 applied twice (omee to Al (1)
and onee to A%,(2)) using regular map fy|Di(k), there exists subdisks D*(l)
and D}(2) of D, (%) such that fllD*( and f;|D}(2) are regular w1th 1espeet
0 (AL(1), Dy(1)) and (AZ(2 a,c(z)) respectively.
The proof that F*/G is dlfferent from E® ig similar to our proof that
the dog bone space is different from IS That is, we suppose B¢ = B
and show that Theorem 2 and Lemma 3.2 can not hold simultaneotisly.
By Theorem 2, there exist maps f, and f; satisfying the hypothesis of
 Lemma 3.2 with the additional requirements that |fy| v |f,| and Bd4,
are in general position for all 8y f)|BdD, = u, filBADy(1) = vy, -and
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il BdD,y(2) = v, of Figure 9, and there exists an integer j such that 1fe ~
N Ay # 9 I fi | Ag, oy # 9. But, by applying Lemma 3.2
repeatedly, we find there also exist nests

‘A‘a:) Auml 3 'AEM'[mz :) b D Aamnna...mﬂ 'DO :) ‘Dé D 'Dg :) b :) “Dg ?
and

Dy(1) © Dy(2) D Di(1) © DH2) D DAL) w DX2) D ... D Di(1) w Di(2)
such that f|DE, fID¥1), and f,|D¥(2) are regular with respect to

»

0
(Aaml...mw Dam‘l”...myg hd Drxm‘l”...mk )s

1 1
(Aum(l”... mx 7D amg’-)...mk) and (A'am:(l’)... my? D am... mk) ’

respectively (k=1,..,5). Thus, [fi] ~ Aam,...m, #@ for i=0,1 which RHY A242) A3(3) “ HEY
i i j 2. .
contradicts the property of the integer j from Theorem Fig.il]. R. H. Bing’s straight line interval decomposition [7], [8]

four A4,s is symmetrical to the ones shown. In fact, the decomposition.
may be viewed as the four-fingered version of Bing’s three-fingered de-
composition indicated in Figure 5. If for j =1, ..,8 and %, ¥ =1, ..., 4,
a(j, k, k') represents an arc in A9, from D, (k) to D,;(¥k') then the table
in Figure 12a describes all the linking of the A%,’s in A2, that is, a(j, &, ki)
links a(j', ks, %y) if there exists an “+” in the (j, &, ki) row and the (§', k,, i)
column.

The proof that E%/@ is not E® depends on a solution to the following'
combinatorial seleetion problem.

VAT ATAYAYA
SRS S

Fig. 10 WAYAVAYATE
e . . G,1,2) | * * *
Note that only the linking in Figure 10 was used in our analysis; ' -
hence, the decomposition indicated in Figure 10 has a decomposition (.1,8) B I B
space different from 2.
. . * * *
3.3. R. H. Bing’s straight line intervals decomposition. In [7] and [8], oy »
Bing describes an upper semi-continuous decomposition & of Z® into G,2,8) | * R
points and straight line intervals and conjectures that the decomposition :
space is not E'. We use our techniques to show that BE|G is not 1®* and Uit 1t
thus establish his conjecture. i o, * *
The topological embeddings (see [7], [8] for the geometrical embed- va i

dings) of the A,;'s in A_ are indicated in Figure 11. Since in our analysis i=1,3,5 and ' =j+2, j+38,..,8
we only use an appropriate four of the eight 4 ’sin 4 and all eight 4,/s ' or

is somewhat difficult to sketch in 4., Figure 11 shows only 4., 4., 4., j=2,4,6, and ' = j+1, j-+2,..,8
and A, among Ay, ..., 4. The linking and embeddings of the pther ‘ Fig: 12a
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SELECTTON PROBLEM. Is ig possible to select an are from each of the
eighty pairs of ares {{a (], &y, k), a(§’; ks, k3)}|j = 1, 2, §' = B, 6 and there
exists an “*” in the (j, ky, k1) vrow and (§',k,, k) column of the table in
Figure 12a} and to select a point from each of eight pairs of points
{{au(®), ao(B)}| k=1, ..., 4} U {{ag(k), ag(B)}| k=1, ..., 4} so that no are
in Figure 12b is selected if both of its end points are also selected?
a(l,1,4)

a(5,1,4)———

a(l,1,3) PIE D —

a(l,2,4) a(5,1,3)

a(1,3,4) . .

a(1,2,3) 'ZEE L’f-) a5(2) a5(4)

2(2,1,2) a(6,3,4)
a(2,2,8) a(6,2,8) e
a(2,3,4) a((’;,l,ﬁ)/“m""
a(2,2,4) a(G,1,3)
a(2,1,3) a(6,2,4)
a(6,1,4)

ag(2) ag(4)

———n(2,1,4) BB

Fig. 12b. Selection problem

By arguing cases it is étraight forward to check that the solution, is
negative. That is, an arc a(j, &, &) must be selected so that both of
its end points a;(%,) and ay(ky) are also selected. The selection problem
we've isolated is just one of six equivalent problems asgociated with the
table in Figure 12a. For example, to obtain an equivalent selection problem
take j= 3,4 and j'= 17, 8. .

Drrinirion. The pair.(f,, f;) of maps satisfies property P with respect
to 4, if there exist distinet integers % and %' in 11,2,3, 4} such that

(1) fo is a PL map from a disk D, into U, such that f; is regular with
respect to (A2, Dy(k) v D (%)), and

(2) fiis a PL map from the union of a pair of disks Dy(1) and D,(2)
into U, such that f,|Dy(1) and filDy(2) are regular with respect to
(44(%), Dy(k)) and (43(%"), D), respectively.

LevMA 3.3. If the paisr (for f1) of maps satisfies property P with respect
to A, and |fol v |fi| and | Bd A4, are in gencral position then there ewists

j=1 .
an integer j e{1,2,...,8} and subdisks DY and D, and Di(1), DX2) of
Dy(1) v Dy(2) such that (f,)D}, il D¥(L) u Di(2)) satisfies property P with
respect to A, '
Proof. Asin the dog bone decomposition, the proof is just an interpre-
tation of the selection problem using Lemma 3.0. Without logs of gener-
ality we assume that the pair of integers (k, %') in the definition of property
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P is (1, 3). The required integer j is then one of the four integers {1, 2, 5, 6}.
By Lemma 3.0 (push D, (1), D,(3), D,4(1), and D(2) very slightly into
Int.A?), either there exists a subdisk Dy of D, such that f,|D} is regular
with respect to (A, Dy(2) w D,y(4)) or there exists a subdisk D} of D,
such that f,|D§ is regular with respect to (A%, D, (3) w Dy(4)). Also,
there exist seventy-nine other linked pairs in Figure 11 and indicated
in the table in Figure 12a for which Lemma 3.0 is applicable. In the
selection problem interpret the phrase “arc a(j, ki, ky) is selected “to
mean” there exists a subdisk Dj of D, such that f,|D¥ is regular with
respect to (A3, Dy(k;) w Dyy(ky)).” By Lemma 3.0, either there exists
a subdisk Dj(1) of Dy(1) such that f,|D¥(1) is regular with respect to
(A%5(2), Dys(2)) or there exists a subdisk DJ(1) of D,(1) such that f,|D¥(1)
is regular with respect to (4l(2), D,(2)). Also, there exist seven other
pairs {A%(1), A%(1)}, ..., {Ad%(4), AL(4)} for which Lemma 3.0 is applic-
able. In the selection problem interpret the phrase “point a,(%k) is selected”
to mean “there exists a subdisk Df of Dy(1) w Dy(2) such that f,|D¥ is
regular with respect to ( vi(k), Dy(k))”. The negative solution to the
selection problem may then be interpreted to mean that exists an integer §
and subdisks Dy of D, and D¥1), DX2) of D,(1) v Dy(2) such that
(folDF, fil D5 (1) © Dy(2)) satisfies property P with respect to A.;.

The proof that B3¢ is different from E°® is similar to the proofs in
(3.1) and (3.2). That is, we suppose E*/G =~ X? and show that Theorem 2
and Lemma 3.3 can not hold simultaneously. By Theorem 2, there exist
a pair (f,, fi1) of maps satisfying property P with respect to A, such that
[fol v |fi] and BAdA, are in general position for all B, fo|BdD, = u,
fi]BADy(1) = »,, and f,|BdDy(2) = v, of Figure 11, and there exists an
integer j such that |fi] ~ ‘A'am;...m; =0 i |fi_ Auml...mj # . But, by

applying Lemma 3.3 repeatedly, we find that there also exist nests

A, A D A D D Ay DD DD DD .. DD,

amsy,

and
Dy(1) v Dy(2)D _D}(l) v _D}(Z) ] Di(l) v D§(2) D..D _D{'("l) v DI’(‘Z)

such that f,|DF, f,|DE1), and f,|D¥(2) are regular with respect to

0 N
<‘Aam1...mr.:’ Dam(lik)...mz; hd Dam(f")... mk)’

('A :clnm(likz»--mk’ D and (Aamg")...mzﬂ Damg_i’“)...mk)7

um(l”‘)... mlc)

respectively (k= 1, ...,J). Thus, |fi f\f_lgml_‘_m,‘ # @ for 1= 0,1 which
contradicts the property of the integer j from Theorem 2. .

Steve Armentrout [2] was the first-to show that there exists an upper
semi-continuous decomposition & of E? into points and straight line inter-
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vals such that E®/@¢ is not topologically EP. Since his decomposition is
like Bing’s except for many more fingers in the 4.’s, the above analysis
also shows that E*/¢ is not B* for Armentrout’s decomposition by ignoring
redundant fingers.

3.4. A simpler straight line interval example. We give another example
of an upper semi-continuous decomposition @ of E' into straight line
intervals and singletons such that the associated decomposition. space

Fig. 18

is topologically different from %% The example is simple compared with
the first examples given by Armentrout (2] and Bing [1]. Unlike thege
exaxaples, our intervals are describable by cubes-with-two-handles and
we require only six of these dog bones in the iterative step (see Fig. 13).
R. B. Sher has shown [17, Theorem 6] that each toroidal decomposition
of B into intervals has a decomposition space equal to K5 Thus, ow
example shows that Sher’s vesult is best possible in the sense that nc
theorem like his exists for double toroidal decompositions.
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34.1. A description of @. Let 6, and 6, be two horizontal planes
in E? with 6, below 6,. As in the examples of Armentrout and Bing, each
non-degenerate element of & is a straight segment with one end in 6,
and the other in 6, and each horizontal plane that intersects one of the
segments will intersect the union of the segments in a topological Cantor set.
The union H* of the collection H of nondegenerate elements of G is
the intersection of a mnested sequence of open sets U, D U,D U;D ...
Each U; is a thin tubular neighborhood of a finite graph @;. Figure 14
shows G, and we deseribe it as follows.

\\ N7/

S

y NV
oM QM o)

Pl4) P

Fig. 14.

When 4 and B are two points in E®, we use [4, B] to denote the
straight segment from A to B. Let Q(0), @(1), @(2) be three colinear
points in 6, with @ (1) between ¢ (0) and @ (2). Let b be a line in 6, parallel
to the line containing @(0), @(1), and §(2) and let P(1) and P(4) be
points in 0, on opposite sides of b. Let P(0), P(2), P(3), P(5) be four
points in 6, such that P(1l) and P(4) are interior points of [P(0), P(2)]
and [P(3), P(b)], respectively, and [P(0), P(2)] and [P(3), P(5)] lie on
opposite sides of b. We choose [P(0), P(2)] and [P (3), P(5)] to be parallel
and each to be approximately parallel (but not parallel) to b. [P(3), P(5)]
to be parallel and cach to be approximately parallel to b. The finite
graph @, is the union of the twelve segments {{P (i), @(§)l] ¢= 10,1, 2,
3,4,5;§=0,1,2 and j # imod3} as shown in Figure 14. U, is a thin
tubular neighborhood of G;. We refer to the segment [ (0), @ (2)] as the
bend in Gy, and to [P (3), @ (¢ +1mod3)] v [P(i), @ (i—1mod3)] (¢= 0, ..., 5)
as the hair-pin with bend at P(7). Then ¢ is the union of six hair-ping
with bends in 0,.
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We obtain @, by replacing each of the six hair-pins of G4 by a copy
of ¢,. Each of the six copies of G, in @, will have its bend in 6, and near
the bend of the hair-pin it replaces. The four copies of &, in @, that are
near Q(i) (1==0,1,2) entwine in a manner to be deseribed presently.
Before describing the six copies of @; in @, in detail, we remark that
their union lies in U,. We obtain G by replacing each of the 36 hair-pins.
of G, by a copy of & with the bend of the copy near the bend of the hair-
-pin it replaces. Continwing in this fashion we get a sequence of finite graphs.
Gy, Gy Gy, ... and a sequence of tubular neighborhoods Uy, U,, Uy, ...
of these graphs such that &, C U,,, CClU,,, C U;. Since for j = 0 or 1
the bends of the hair-pins of @,,, lie in 0,_, if the bends of the hair-ping
of G; lie in 0;, and since the tubular neighborhoods U, get progressively
thinner as 4 increases, the intersection of the U;’s is the union of a Cantor
set of segments each with one end on 6, and the other on 6,. These
segments are the nondegenerate elements of the decomposition &.

The copy of &; in &, replacing the hair-pin [P(3), @ (¢-+-1mod3)] v
v [P(?), Q(i—1mod3)] (i=0,1,2,3, 4, 5) is denoted by G’('é). It is the
union of the twelve segments {[P(i,}),Q(, k)] j=0,1,2,8,4,5;
k=0,1,2 and %k # jmod3} where the Q (i, k)’s are points in 00 near .P(’z,
and Lhe _P(z,g)’s are points in 6, with P (4, 0), P(s, 1), and P (¢, 2) near
@(i—1mod3) and P(i,3), P(i,4), and P(i, 5) near Q(i41mod3). W
let Q(¢,1) = P(¢) and require that @(i, 0) and Q(¢, 2) lie on opposltu
sides of @ (7, 1) on the line containing P(0), P(1), and P(2) if 4 = 0,1,2
or on the line containing P(3), P(4), and P(5) if i = 3, 4, 5. Before we
describe in detail the location of the P(i,j)’s, i.e., the location of the
bends of the 36 hair-pins of &,, we remark that a pair of hair- -ping of @,
will link if and only if both “endpoints” of one lie on one side of the line b,
and both “endpoints” of the other lic on the other side of b, and theu*'
bends are near the same Q(4).

Let @'(4) ({=10,1,2) be a point slightly above Q%) and eonsider
the pair of planes no(’q',) and m (i) (¢ = 0,1,2) determined by

{Q'(4), P(i—1mod3), P(i+1mod3)}

and’

{0/ (), P((i—1m0a8)+38), P((i-+1mod3)+3)}

respectively, as shown in Figure15. The first approximations to the twelve
hair-pins of &, with bends near Q(¢) are shown in Figure 15 and are de-
seribed as follows,

Let m = i—1mod3 or i4+1mod3. Let P'(m, 0) be the point of inter-
section of the line through the points @ (m, 1) and Q'(: (%) and the plane 0,,
and let P'(m, 1) = P'(m, 2) be the point of intersection of the ling through
Q(m,0) and @'(i), and 6,. The points P'(m, 0), P'(m,1), P'(m,2) are
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first approximations to P{m,0), P(m, 1), P(m, 2) (or P(m, 3), P(m, 4),
P(m,5) depending on the value of i and m). Let n = (i—1lmod3)+3
or (4+1mod3)4-3. Let P’(n,2) be the point of intersection of the line
through the points @ (n, 1) and @'(s) and the plane 6;, and let P'(n, 0)
= P'(n, 1) be the point of intersection of the line through @(»n,2) and

Plj=3)=Q(j+3,1) Pli+3)=Qtk+ 3,1
QG300 QG+3,2) Q+3,0) | Olh-3,2)
A\ : 3

- QG Py - Qik 1
) i
QU0 QG 0 | Q)

PG = PGL2)
. PG00
P D = PR, 2)
Pj0)
Pk 3,1 =PI+, u)// \P(; 3,0)= Pr(j+3,1)
PUE+3,2)7 P(j+3,2)
i=0,1,2

" Fig. 15. j is the smaller of +—1mod3, ¢+1mod3 and % is the larger

@'(@), and 6;. The points P'(n, 0), P'(n, 1), P'(n, 2) are first approximations

to P(n, 0), P(n,1), P(n,2) (or P(n,38), P(n, 4), P(n,5) depending on
the value of 4 and »). As we have indicated in Figure 15, it is convenient
to let § be the smaller of i—1mod3, i+1mod3 and k be the larger.

The purpose of the next adjustment is to insure that each of the
six relevant hair-ping in s,(¢) link each of the six hair-pins in = (4). We
do thig by pushing each of P'(%, 0), P'(k, 1) = P'(k,2), P'(j,0), P'(j, 1)
= P'(§, 2) slightly to the left, (as in Figure 15) along the line 0; m 7,(4)
or by pushing each of P'(k+3, 0) = P'(k+3,1), P'(k+3,2), P'(j43, 0)
= P'(j+3,1), P'(j-+3,2) slightly to the right along the line 0; n (4}
or both. We denote the adjusted P”’s with P’’s respectively. The re-
mainder of the adjustments move the P'”’s so little that the linking of
the hair-ping we’ve established is unaltered.
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We next push P“(k+3,0)= P"(k+3,1) and P"(k-3,2) slightly
in front (as in Figure 15) of =,(4). Now, the hair-ping with bends at
P"(k+3,r) do not intersect the hair-pins with bends at P(j4-3,s).
Similarly, we push P"(%, 0), P''(k, 1) = P"(k, 2) slightly in front of ms).
We denote the adjusted P’s by P’'"’s, respectively.

The P”"s are now moved by twisting each of the segments
[P"(k-+3, 0), PV/(k+3,2)], [P"(j+3,0), P"(j+3,2)],
[Pk, 0), P"'(%,2)], [P"(j,0), P"(4,2)]
slightly in 6,, and pughing each of the points P'""(k-+3,1), P"'(j+3, 1),
Pk, 1), P"(j, 1) from P"'(k+3,0), P"'(j+3,0), P"(k,2), P"(j,2)
respectively, to a point in the interior of [P"'(k-3,0), P"'(k--3, 2)],
[P"(+3,0), P(j+3,2)], [P"(k,0), P"(k,2)], [P"(,0),P"(,2)],
respectively. The adjusted P’’’ are the required P’s. This final adjustment
is carried out in coordination with the adjustments near the other Q(8)'s,

so that [P (4, 0), P(i, 2)] and (P(4, 8), P (4, 5)] are parallel for all 4.

3.4.2. An intermediate step. To obtain a dog bone description of the
nondegenerate elements of G we may thicken each hair-pin of the above
description and drill holes at an appropriate spot in each end. In Figure 13
we do not emphasize straightness, but the topological embedding of the
six golid double tori in a solid double torus is correctly illustrated. We
use this dog bone description in this section to show that BY/G is dif-
ferent from 7B,

The proof of the next lemma depends on a solution to the following
combinatorial selection problem. '

SELECTION PROBLEM. Is it possible to select a point from cach of
3 3 0 0 0
the twelve pairs of points {al, ag}, {a2, as}, {43, o}, {af, a3}, {ag, ag}y

Tig. 16. Selection problem
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{ag, ag}, {ag, az}y {03, ag}, {4, a;}; {2, ai}, {1, az}, and {a1, @i} without
selecting both end points from one of the six arcs ay, ..., a; in Figure 16.
. As the reader may easily determine the solution is negative, That is,

there exists an arc a; such that both end points al, a; of a; are selected.

The iterated step in the description of the non-degenerate elements
of @ is indicated in Figure 13. The horizontal plane @ intersects the dog
bone A4, in two disks D,(0) and D,(1). The components of E—Q are U,
and U,. The six dog bones in Int4, are denoted by A, ..., 4, and in
general the six dog bones in 4, are denoted by Ay, ..., 4. The plane @
intersects each dog bones A, in two disjoint disk Dy(0) and Dy(1). If 4, is
any dog bone then 4, ~ Ol is denoted by A}, and if A has two com-
ponents then we denote these components by Ai(0) and A¥(1) so that
Af(5) ~ @ = Dy(j).

LipwA 2. If f, is a map from a disk D, into U, f, is a map from the
union of ¢ pair of disks Dy(0) and D,(1) into U, such that f,, f,|Dy(0), and
AIDi(1) are regular with respect to (A3, Dy0) v D(1)), (4%(0), D,(0)), and
(AX1), D,(1)), respectively, and U Bd4,; and fo(Dy) © f1(Dy(0) w Dy(1)) are

7
i general position, then there ewists an integer k € {0, ..., B} and subdisks DF
of Dy(0) w Dy(1), and Di(0), D}(1) of Dy such that f,|D¥(0), fo|DX1), and
DY are regular with respect to (A%(0), Dyy(0)), (A%(1), Dy(1)), and
(A% De(0) v Dyy(1)), respectively.

Proof. By Lemma 0, for each % € {0, ..., 5} there exists a subdisk D}
of Dy(0) v Dy(1) such that fy|D} is regular with respect to (A;k, D, (0) v
v D4(1)). By Lemma 0, either there exists a subdisk D} of D, such that
fol Dy is regular with respect to (A% (0), D, (0)) or there exists a subdisk
Dj of D, such that f,| Dy is regular with respect to (4%(0), D,(0)}. Also,.
there exist eleven other linked pairs {4%(0), A%(0)}, ..., {4%(1), A%(1)}
in Figure 13 for which Lemma 0 is applicable. In the selection problem
interpret the phrase “point af is selected” to mean “there exists a sub-
disk Dj(i) of D, such that fo| Dg(i) is regular with respect to (4%(i), D,;(#))”
and interpret “arc a;” as “dog bone A.”. The negative solution to the
selection problem completes the proof to the lemma.

We now use Theorem 2 to show that E3/@ is not E°. Suppose
B¢ = B*. By Teorem 2, there exist a map f, from a disk D, and a map f,,
from the union of disks Dy (0) and Dy(1) such that (1) f(D,)C Uy,
F(Dy(0) v D)) C Uy, fo|BAdDy=u, and fi[BAD(j)=mv; (j=0,1) of
Figure 13 (2) fo, f,1Dy(0), and f,]D;(1) are regular with respect to

(42) Dy(0) v D(1)),  (4(0), D,(0)) and  (45(1), D 1)),

(3

respectively, (3) fy(Dy) w fi(Dy(0) v Dy(1)) and Bd 4, are in general po-
sition for cach B, and (4) there exists an even integer j such that |fi| »
Ny =9 i fil 04 # @ where |fo|=/f,(D,) and |fy

QML e T
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=f1(_D1(0)u.D1(1)). But, by applying° Lemma 2 repeatedly, we find
there also exist nests

A, DA, 04 D..D0A4
and

amime amlm:;...'mﬂ

D, DY(0) v Di(1) D DD ...D D},

D,(0) v Dy(1) D DD DX(0) w D(1) D ... D Di(0) v Di(1)

such that f,(Dy(k)), f,/Df(0), and f|D(1) are regular with respeet to
(Ang“)...1n1;7 ‘Damg"’...m;;U'Dam(l”...mk)’ (Aflxmg“)...mm -Dum(l")...mk) and ('Aim‘i‘)...mm’Dmn{l‘)..,mk)‘
respectively, if k= 2, 4, ..., §, and f,|DE(0), £,/ D¥1), and f,]D¥ are regular

. 4L
with respect to (-Agm(lﬂ)...mkﬁ -Damg“)‘..m;c)’ (Agm;”...mw Damf}’...mk% and ('A‘amm.mnw

—Damgw...m,,. © Do) )y Tespectively, if k=1,3,.., j=—1.  Thus,
[fil Ay, # @ for i= 0,1 and we have a contradiction to (4).
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Examples of statisch and finite-statisch AC-lattices
by

M. F. Janowitz (Amherst, Mass.)

Abstract. The purpose of this paper is to introduce a clags of examples of statisch
and finite-statisch atomistic lattices having the covering property. It will follow that
any weakly modular atomistic lattice with the covering property is statisech, hence
M -symmetrie.

1. Basic terminology. Though the terminology will essentially follow
that of [2], we introduce its more salient features here. An AC-latfice
is an atomistic lattice with the covering property: ‘

®

P an atom, p £ a implies pva covers a .

An element of a lattice with 0/is called a finite element if it is either zero
or the join of a finite numbér of atoms; an infinite element is simply an
element that is not finite.

For complete atomistic lattices the notion of statisch was introduced
by Wille in [3] and extended by the author in [1] to the more general
coneept of a finite-statisch lattice. In [2], p. 65, S. Maeda shows.how
these ideas may be generalized to an arbitrary atomistic lattice, and it
ig his idea that leads us to adopt the following definition:

DrrinirToN 1. Let L be an atomistic lattice. Then I is called statisch
it p an atom, p < avb implies the existence of finite elements a, and b,
sueh that p < a,Vhy, oy < @ and by << b; it is called findte-statisch it p, ¢
atoms with p < ¢ve implies p < qva, for some finite element’ a < a.

It should be noted that any modular atomistic lattice as well as
any compactly generated atomistic lattice is statisch, and any finite-
modular AC-lattice ([2], Lemma 15.11, p. 65) is finite-statisch.

2. The examples. We now present a pair of theorems that provide
a large number of examples of statisch and finite-statisch atomistic
lattices. In connection with this we shall write [a,—] for an element @ of
3% '
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