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Curves which are continuous images
of tree-like continua are movable

by
J. Krasinkiewicz (Warszawa)

Abstract. This paper contains several results about continuous images of continua
whielh are contractible with respect to graphs. The main result shows that 1-dimensional
continuous images of {ree-like continua are movable (in the sense of Borsuk’s shape
theory). Wo present certain characterizations of continua with trivial shape. These
vegults extend gome facts concerned confluent images of continua that was recently
obtained.

1. Introduction. Using the notion of movability belonging to shape
theory we obtain in this paper some new results concerning curves. The
main result of this paper is stated in the title. '

; In 1968 XK. Borsuk [5] began the development of a new theory which
compare compacta, i.e., compact metric spaces, from the point of view
of their global topological properties. This theory has come to be known
as shape theory. Let us recall some basic notions of this theory. Let X
and Y be two compacta lying in the Hilbert cube . A sequence of maps
f;g @->Q is said to be a fundamenial sequence from X to Y (in symbols

= {fg, X, ¥}) if for every neighborhood V of ¥ there exists a mneighbor-
hood U of X such that fi|U is homotopic to fr iU, fulU = fre,|U in ¥
for almost all k. If X = ¥ and fx is the identity map lg: @@ for every
positive integer k, then the fundamental sequence J is said to be the
Fundamental identity sequence for X, and is denoted by 1x. The composi-
tion gf of fundamental sequences I zmd g = {gx, Y, Z} is the fundamental
sequence gf = {gufr, X, Z}. Two fundamental qequences f and g from X
to ¥ are said to be hofmotopv,c [~ g, if for every nelghborhood ¥ of X there
exists a neighborhood U of X “such that x| U = ¢i| U in V for almost all k.
Tf there exist two fundamental sequences f from X to ¥ and ¢ from ¥
to X such that ¢f~1x, then we say that ¥ fundamentally dominates X,
X = ¥. If, in addition, we have fg ~1y then X and Y are said to be

jwnda'rrwntalla/ equivalent — notation.: X ~ ¥. It is known that the re-
lation = is a true equivalence relation, ‘md the set of all compacta lying

ni ¢ is therefore partitioned into equivalence classes. The equivalence
class containing a compactum X is called the shape of X and is denoted
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by ShX. We say that X is of trivial shape, briefly ShX = 1, if the clags
ShX contains a one-point space. If X is an arbitrary compactuin (not.
necessarily lying in @) then all homeomorphic copies of X in @ lie in the
same class with respect to =, and therefore the shape is well defined
for every compactum.

If X = {Xu, ps} is an inverse sequence of compacta, then as wsual
we assume that: p, is a mapping, i.e., a continuous function, from X, ,
into X, which is called a bonding map, Pus denotes the identity map of X
onto itself, and for » < m the map Pwm is the composition puy
== P 0Pty © oon © Py, Where n=1,2,.. By the inverse limit of this
sequence, denoted by X = invlimX, we understand the subset of the
caresian product [] X consisting of points # = {,} such that for every
positive integer n we have p,(2,,,) = . The projection sm,: X—»X, is
defined by mn(w) = #y. The reader is referred to [15], Chap. VIII, for
the properties of inverse limits.

S. Mardésié and J. Segal presented in [27] an alternative approach,.
based on ANR-systems, to the theory of shapes of compacta. We now
recall the basic notions of their theory, which will be used in this paper.
For our purposes it suffices to consider only ANR-sequences. By an
ANR-sequence is meant an inverse sequence {X, ps}, where each X, is
a‘(eompact) ANR-set. An ANR-gequence X is said to he associated
with a compactum X if X is homeomorphic to invlim X. In such a case
we sometimes identify X with invlim X. A map of . ANR -sequences.
I ggg, where X = {Xn,pn} and ¥ = {¥,, ¢}, consists of an in-
creasing function f: N—N, N being the set of natural numbers, and
a collection of mappings f,: X 1y Yn such that for n < m we have

fﬂpf(ﬂ)f(m) = Qnmfm .

Such a map we denot-e‘ py F=(f,fa). Two maps fr9: X=X, where ¢
= (g, gn), are homotopic, in symbols f=g, it for every n ¢ N there is an
- meN, mzf(n), g(n), such that

fn,pj(n)m :‘gn.'po(n)m .

_If]_‘ = (£ fa): X>Y and g = (g, gu): Y~>Z, then the composition gf: X%
Is defined by 9f = (f9, ¢nfym)- The identity map of a sequence X is tho
map 1lx = (1w, 1x,). Two compacta X and Y are said to be of the same
shape, briefly [X]=[Y] (in the sense of ANR-systems), if there exist.
two ANR-sequences ¥ and Y, associated with X and Y, respectively,
a.n.d two maps f: XY, ¢g: ¥Y-X such that gf~1x and fog1y. Tl'n;
ex1stgnce of 'such maps is independent of the choice of ANﬁ-s&fﬁencos-
assgcwfced with X and ¥ (see [27], Corollary 1). The following theorem

‘which was proved in [28], shows that the two approaches to the theor;
of shapes of compacta are equivalent. Namely,
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THROREM 1. ShX = 8hY « [X]==[Y].
Tor the Uech (or Vietoris) homology and for the Cech cohomology

groups we have the following results.

TueoreM 2. If ShX =8hY, then Hu(X; G) = Ha(Y; &) (see [5],
11.6), and H"X; ¢) = HYY; @) (see [27], Theorem 16), for an arbitrary
Abelian group @.

TaroreM 3. If ¥ s a retract of X, then the homology and cohomology
groups of X are isomorphic to certain direct divisors of the corresponding
groups of the compactum X (see [4], D. 42).

For plane continua, Le., connected compacta, K. Borsuk proved
the following theorem ([5], 9.1).

TueorEM 4. Two continua X, ¥ C B2 decomposing the plane into the
same number of componenis are of the same shape.

Tn [8] K. Borsuk observed that some continua lying in @ have very
singular neighborhoods in @. In order to distinguish compacta without
this si}lg‘ularity e introduced the notion of movable compacta. A com-
pactum X C @ is said to be movable if for every neighborhood U of X in @
there exists a neighborhood U, C U of X which is deformable inside U into
any neighborhood of X. It ig known. that this notion is a shape invariant
and that all ANR-sets and all plane compacta are movable [8]. In the
quoted paper it is also proved that no solenoid of Van Dantzig {13] is
movable. Replacing in the definition of movability the compactum X by
the pointed compactum (X,) and also the neighborhoods U, U, by
the pointed neighborhoods (U, ) and ( U,, %), we obtain the notion of
a pointed movable compactum. In [34] A. Trybulec proved a theorem
which says that every movable curve has a plane shape. It seems to me
that the proof contains a gap. However, ib is valid fvor the following
theorem (compare our proof in section 5).

TreorEM 5. If X is a pointed movable curve, then there s a plane
continuwum Y such that ShX =Sh¥Y ().

We now recall an alternative description of movability given by
§. Mardedié and J. Segal [26]. This definition of movability is equivalent
to that of Borsuk and will be used in this paper.

An inverse sequence {Xn, pa} is said to be movable provided for each
integer n 3z 1 there exists an integer m, 3= n such that for every m = %
there existy a mapping g: Xu,—Xm such that Pamf = Pane If we replace
the compacta by pointed compacta and we assume that the maps and
homotopies preserve the given points, then we obtain the notion of
a pointed movable sequence. ‘

Tollowing Mardekié and Segal, we say that a compactuin X is pointed

(") Added in p‘ro of. A. Trybulec hag recently proved that this theorem is true
for movable curves (not published yet).
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movable if there exists a pointed movable ANR-sequence  associated
with X. It is known that the (pointed) movability of X is independent
of the choice of an ANR-sequence associated with X [26]. Since with
every compactum we can agsociate an ANR-sequence (see [18], p. 183),
this definition of movability makes sense for any compactum. In the
same paper the authors also proved that the curve which has been con-
structed by Case and Chamberlin in [9] provides an example of an acyclic
nonmovable curve. The Case-Chamberlin curve € possesses many other
interesting properties. For instance, being acyclie, each map fron. ¢ into
the ‘unit circle § is nullhomotopie, i.e., homotopic to a constant map,
however, there is an essential map of ¢ onto the one-point union of two
copies of §. In this paper we shall show that ¢ ean not be continuously
mapped onto any solenoid.

By a graph we understand a curve which is homeomorphic to
a polyhedron. The family of all graphs is denoted by &. An acyclic graph
is called a tree. We say that a space X is contractible with respect to space Y,
briefly: X is er ¥ (comp. [22], p. 370), if each mapping f from X into ¥ ig
nullhomotopie, notation f~0. If F is a collection of spaces, then we say
that X is contractible with respect to F if X is contractible with Tespect
to each Y ¢#. In such a case we write: X is er¥. For example, “X is
cr ANR” means that X is contractible with respect to each ANR-sot.

We are now ready to state the main result which will be proved in
this paper (for the proof see section 7).

MarN THEOREM. If a curve X cam be représented as a continuous image
of a continuum which is cr@, then X is pointed movable (2).

Observe, however, that not all movable curves can he reprosented
as continuous images of continua cr@.

Examprr 1. There is a pointed movable curve X such that no con-
tinuum er§ can be continuously mapped onto X.

Let X be the curve K described by Fort in [17], p. 542. That is:
X is the set of points of the plane having polar coordinates (r, 0), where
r=1, =2 0r ¥ = (2-4")/(1+¢).

(*) Added in proof. The collection @ can be replaced by the “figure eight”.
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Since & is a plane continuum, X is pointed movable by a result of
Borsuk [8]. Fort has proved that no plane continuum ¥ which does not
geparate the plane can be continuously mapped onto X. However the
only property of ¥ which is used. in the Fort proof is that ¥ is er 8, which
proves our assertion.

The next example shows that the Main Theorem need not be true
if we omit the assumption that X is a curve.

BxaMpLi 2. There is a 2-dimengional continuum which is not
movable but can be obtained as a continuous image of the unit interval -
I ==[0,1]. Actually, the locally connected continuum constructed by
K. Borsuk [7] is such an example, because, by the classical result of
Hahn—~-Mazurkiewicz, every locally connected continuum is a continuous
image of I.

2. Certain characterizations of compacta of trivial shape. Given a positivver
real number &> 0, a compactum X and & mapping f: X—¥ onto. Y, fis
said to be an e-mapping provided, .for each ye Y, the cllamgter-
diamf(y) < e. A curve X is said to be tree-like (snake-like, circle-like)
provided for each s> 0 there exists an ¢-mapping of X onto a tree (onto I,
onto &, respectively), see [2]. '

The following theorem connects some ideas of shape theory with
some claggical notions of topology. .

2.1. (A) If X is a compactum, then all the conditions (1)-(6) are equi-
valent. - : ’

(1) $hX = 1. o

(2) If X = invlim{Xy, pa}, Xu ¢ ANR, then for every positive inteder n
there exists an m = n such that Pam = 0.

(3) X is homeomorphic to the limit of an inverse sequence of AR-sets.

(4) X is the intersection of a decreasing sequence of AR-sets.

() X 4s ecx ANR. . o

(6) If X = invlim{Xn, pn}, Xn ¢ ANR, then each projection wn: XXy
is nulthomotopic.

(7) X is an FAR-set [6]. ‘ ,

(B) If X 48 @ curve, then all the conditions (1)-(10) are equivalent..

(8) X 48 cr@.

(9) X s tree-like. '

(10) X can be represented as the limit of an inverse sequence of trees
with bonding mappings onto. N .

(C) If X is a pointed movable curve, then all the conditions (1)-(13)
are equivalent.

(11) X 4s erS. : .

(12) H(X; G) = 0 for some nontrivial Abelian group Q.

(13) HYX; &)= 0 for some nontrivial Abelian group G-
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Proof. (1)=(2). Let P be a one-point space and let P, = P, for
-every positive integer m. Then P = invlim{Ps, ga}. Let X = {X,, p,}
and let P = {P,, ¢} By (1) and Theorem 1 there exist two maps
_Iz.(f,fn): X—P and g=(¢,¢s): P—X such that gf~1yx. Let »n be
a given positive integer. Since gf = (fg, gnfyyy), it follows that there
-exists an integer m > f o g(n), n such that

Gn ° fa('n) ° P poginym = 1x,, © Pom = Dam .

-.f?ﬁizhjgé")éhexg‘{f&zp"‘"’: P and therefore Wwe sce thab pum 0. Thiy

(2)= (3). By the quoted result of Freudenthal [18] X c: ) 1o~
'prgsented as the limit X = invlim {X}, p,}, where each. LXn]is z‘mbjﬁﬂ}%ci sf;?;
Using (2) we can construct an increasing sequence of positive integers;
: ;:1 _< e < ... such. that i = Dpnyy,t Xy >X,, 15 nullhomotopie, for
k m_l, 2,.. Tt is known that X is homeomorphic to the limit
invlim{X,,, q,}. So, without logs of generality, we can assume that for
-each 7 we have p, ~ 0. Let ¥, be the cone over X, where we llegzlvrd Xy ag
'ﬁhebpase of; this cone. §ince Pn>0 we can extend p, to a nmp;irtw
Pat and—ﬂz:‘n, vvh¢=,r<3A117,('Xﬂ 1) C Xn. Tt i easy to check that X is ]’10111(50%‘
J];;;rf%llc to invlim{X,, p,}. Since X, ¢ ANR, it follows that X, is a con-
.»catgo; ;O lﬁ Lse.nset, and therefore an AR-set (see [4], p. 96). The imypli-

(3)= (1). This implication can be obtained by combining Theorem 6

-of [27] with Theorem 1, because an AR -set is of the same homotopy type

a8 a one-point space.
(3) = (4). See for insta.nce [20], Theorem 1.4,
(4) = (5). This follows from [22], p. 373, Theorem 9.
(8) = (6). The proof is trivial.
In order to show that (6) implies (2) we-need the following

_ in:m If {Xn, pu} is an inverse sequence of compacta and n,, X
?actﬁm o t;: (; tp?f}—;Xn c?enotes thef pv’oje‘ﬁtion, then there exists o com-
pachn L 1 8 the union of copies of the sets X, and X (which will be
| by the same symbols) and the following conditions are fulfilled:
(1) for eachn > L the set My, = X w U X v a neighborhood of ) ZU’,

»s . . m2n
i) 4 ighbor i
(i) 4f T is a neighborhood of X in M, then U contains Xy for almost

ol w,
(iii) for each positive integer n the map fo: My~ X, defined by
fn(-’ﬂ) — pnm(w) fO’I" Xe Xm, m=mn , ‘
7on () for 2eX

48 continuous.
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Proof of Lemma. First of all we can regard X, X;, X,,.. a8
digjoint sets (otherwise take the disjoint union of these sets). Let M’
=X v U X, and let B, be a countable base for open sets of Xy, for
n=1,2,.. The collection of subsets of M’ given by

B=U (Ba v {m (V) v U 23(7): V e Bal)

constitute a countable base for a topology v on M’. Now put M = (M, 7).
By a standard calculation we can verify that M is a compaetum satisfying
all conditions (i)-(iii) (see [18], pp. 153-156).

Remark. A compactum topologically equivalent to M can also be
constructed by using the star construction explicitly defined by Overton
and Segal in [31], Définition 2, and first mentioned by H. Freudenthal [18],
p. 153.

(6) = (2). Let X be the limit of an inverse ANR-sequence {X,., Pa}
and let n be a positive integer. By our hypothesis there is & homotopy
F: X xI-X, joining the projection m,: X—X, with a constant map;
thus for # ¢ X we have

Iz, 0) = ;z?(’m) and F(z,1)=2,.

Keeping the notation of the Lemma, let us regard X x I as a subset of
Max I. Tiet & be an extension of F to the set 4 = MaX {0} XXTIv
o My x {1} defined by the formula

Gz, 0)=falz) and G(z,1)=2

Such an extension exists by (iii). Since X, ¢ ANR and A is a closed subset
of My x I, the map G can be extended to H:V—X,, where V is a neighbor-
hood: of A in MyxI. By (i), the set ¥ is a neighbourhood of XxIin
M I. It follows that there exists a neighborhood U of X in M such
that Ux I C7V. By (ii) we infer that there is an m = n such that X, C U.
Hence H|Xnmx I is a homotopy joining pam with a constant map, i.e.,
Pam = 0. Thus for each integer n > 1 there exists an m =% such that
Prm =2 0, which proves the implication.

(4) = (7). This follows from [6], 9.4, because every AR-seb i3 an
FAR-set. ‘

(7) = (6). Consider X as a subset of the Hilbert space H. Since
X, ¢ ANR, there is an open neighborhood T of X in H and an extension
@l U—Xy of m,. According to [6], 9.5, X is contractible in U. Let
. X % I-T be a contraction of X to a point. Then G¢: XX I—+X,, where
G = m,- T, defines a homotopy joining s with a constant map.

K. Borsuk pointed out to the author that D. M. Hyman [19] has
proved some of the above results and other equivalences.

4 — Fundamenta Mathematicae TLXXXIX

for every = e My .
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‘We now pass to part (B). The equivalence (8) < (9) has been proved
by Case and Chamberlin in [9]. The equivalence (9) «> (10) follows from
[25], p. 147, Lemma 1 and p. 148, Theorem 1. Obviously (10) = (3)
= (5) = (8), which proves part (B).

It remains to prove part (C). Let X be a peinted movable curve. For
n=1,2, .. let B, C E® be the n-bouquet of circles and let B3, be a single
point. We assume that B, C B,,, C B, where B, is a plane continuum
consisting of an infinite number of circles, having exactly one point in
common, and whose diameters converge to zero. From Theorems 4 and 5
we infer ShX = S8hB, for some % = o0, 0,1, ... It follows from. a result
of Borsuk [3] that condition (11) i equivalent to Hy(X; R) = 0, R being
the group of rationals. Condition (11) is also equivalent to HYX; Z) = R
Z being the group of integers (see [14], p. 226). For each Abelian group &
we have Hy(By; G) =~ G ~ HY(B,, @). Since for n > 1 the set B, is a re-
tract of B,, by combining these results with Theorems 2 and 3 wo see that
each of the conditions (11), (12) and (13) implies that # == 0. This means
that ShX = 1, which is exactly (1). Since the converse implications are
obvious, the proof of 2.1 is finished.

Let us note that by the quoted results of Borsuk and Dowker and
by Theorems 2 and 3 we obtain the following corollary:

2.2. Contractibility with respect to 8 is & shape invarian. Moreover,
if X fundamentally dominates X and Y 4s cx8, then so is X.

3. Continuous images of tree-like curves. Combining the Main Theoren
with 2.1 we obtain the following result:

3.1. If X is a curve which can be vepresenied as a continuwous wmage
of a tree-like curve, then each of the following conditions implies that X is
tree-like: '

(i) X 4s erS,
(ii) H(X, &) =0 for some nontrivial Abelian group @,
(i) HY(X, G) =0 for some nontrivial Abelian group Q.

In [10] J. J. Charatonik introduced and studied the notion, of con-
fluent mappings. Let X and ¥ be continua. A map f: X->¥ onto Y is
called confluent if each component of f~*(0) is mapped by f onto 0, for
every_continuum 0 C Y. Hence this class contains the clags of monotone
mappings. Moreover, by a result of G. T. Whyburn [35], p. 148, if follows
that each open mapping onto is confluent, In this way the class of con-
ﬂuent mappings comprises all monotone and open mappings onto, and
SlI.‘flple examples show that there exist confluent map‘pmg's which are
neither monotone nor open. It has been proved by A. Lelek [24] that
the property erS is an invariant of confluent mappings, L.e., if X iy cr S

and f is confluent, then f(X) is crS. Observe that a confluent image of’

i
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a curve need .not be a curve. Actually, R. D. Anderson construeted
a monotone and open mapping, hence a fortiori a confluent mapping,
of the universal Menger curve onto the Hilbert cube [1] (comp. also [36]).
Nevertheless, we find that a confluent image of a crS curve is a curve
(or @ single point) (see [29], p. 472). Combining these results with 3.1
and 2.1, we obtain an alternative proof of the following theorem, which
was recently proved by McLean [29].

3.2. A confluent image of « tree-like curve is a tree-like curve (or a single
point).

The MeLean theorem generalizes a result of Rosen [32], who proved
that monotone images of tree-like continua are tree-like (comp. also [21]).
In [23] A. Lelek defined a class of continua which he calls weakly chain-
able continua. According to the main result of [23], X is weakly chain-
able iff the pseudoare can be continuously mapped onto X (see also [16]).
In particular, each locally comnnected continuum is weakly chainable.
Hence the Main Theorem and 3.1 imply:

3.3. Bach weakly chainable curve is movable; if, in addition, it is er 8,
then @t is tree-like. :

3.4, Bach locally connected curve is movable.

The last result was first proved by 8. Nowak. A plane continuum
which does not separate the plane has trivial shape (Th. 4). Hence by 2.1
and the Main Theorem we have.

3.5. A curve which can be represented as a continuous image of a plane
continuum which does not separate the plane is pointed movable.

Since no solenoid of Van Dantzig (see [13] for definition) is movable,
the latter result implies one of the principal results of [17]: no plane
continuum which does not separate the plane can be continuously mapped
onto a solenoid.

4. Inverse limits and covering spaces. For the definitions of the un-
defined terms used in this section the reader is referred to [33].

4.1. Let X be a continuum cr{¥,, Y.}, where Yy and ¥, are graphs,
and let pi: Yi— Yy, i = 1,2, be the universal covering projection. Suppose
that commutativity holds in the following diagram, where all maps are con-
Tnuwous.

Y, Y.
'& '
Yo\ X \ 02
L2} (&l
¥ / N
Y,

49
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Then there ewist continuous mappings Py: X->T, and g1 ¥,~F, such

that the following diagram commutes:

~

o &
Y1,

X

n / \ 02
21, 72
’s pN
Ve By,

Proof. By our assumption we have @,~0. Since each congtant map

can be lifted to ¥, and p, is a covering projection, and therefore a fibration
([33], p. 67), ¢, can be lifted to ¥,. Let @, bo a lifting of ¢,. Hence

Fl

(1 Pr= Py P .
Let @, be a point of X. Remark that by (1) and by the hypothesis

. Gr° Pe(az(%)) == y(%,) .
Consider the following diagram:

f17~1(wo)
/( ik )

/ m
7 v
(%2, Palaro)) =2 (X, ()

We sh.all show thz'wt ‘ghe dotted arrow in this diagram corresponds to
20003113111:;111(3).115 mapping,: which willee denoted by g, making this diagram
th:;t:n a.(g;.} The76ex1stenee ofmgl., however, follows from the lifting‘
e | » P. 76), because Y, is a connectod locally path-connected

d simply connected space ([33], p. 83), and Py 18 a fibration with unique
path ]1ft1ng ([33], p. 68, 67). Hence we have a mapping F: Ty-s T ‘1 il
the following conditions ave satisfied: § 7 B

(2)_ : GhoPo=py o7,
and
(3) ‘ Pu(my) = Gao Pa(y) .

By (1) and (2) it remains to show that

4 ~ e

(4) Pr== g1 o@Pa.

It-follows from our agsumptions and from (1) and (2) that

2-71“(7’1:*"‘7’1:91"‘)72:91°?2°$2:P1°31°a2-
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Hence ¢, and g, o g, are two liftings of the same map and by (3) they
agree on o, ¢ X. Finally, since X is connected, it follows from [33], p. 67,
Theorem 2, that the equality (4) is satisfied, which completes the proof.

4.2. Let Y be a curve represented as the limit of an inverse sequence
of graphs Y = {¥n, gn} with bonding mappings onto, and let mn: Y—->¥, be
the projection. For each positive integer n let Pa: Yo~ Y be the universal
projection. Let f: XY be a mapping onto, where X is a continvum er {¥n}yz, -
Then for each integer m = 1 there ewist continuous mappings n: Yn+1->f?n,
and pu: X—Tn such that for pn = m, o f commutativity holds in the following
diagram: '

o

Y'n+ 1

Proof. It follows from our assuinptio_n that s, is onto. Since
== oft X=>Vy,
each p, is & mapping onto. By the definition of 7, we have
(1) Pn = Gn ° Ppi1- ‘

Since ¢, ~0, by the same argument as in the proof of 4.1 there exists
5 continmous mapping ¢: X—7¥, such that

(2) ‘ 4’1=P1°7¢’1- '

Now, using (1), (2) and 4.1, we can construct step by step all the mappings
with the required properties. This finishes the proof.

" 4.8, CoronLARY. Let Y be a curve represented as the limit of an inverse
sequence of graphs ¥ = {¥n, gu} with bonding maps onto. Let pat 377;—3: Yn
be @ universal covering projection, i.6., Pu s & covering projection and Yo is
simply conniected. Then there ewist maps Ga: Y i1 Yu such that pno Gn
= g o Ppyy for every m=1. Suppose that f: XY is a continuous map
onto ¥, where X is a cx{¥,} continuum. Then for every n = 1 there ewists
a continuum Xn C Vo such that Fo(Xpq) = Xa. Hence if the map ka: Xy
— X, 4s defined by the formula kn(z) = Tnlw), then Z = {Xn, kn} is & well-
defined inverse sequence. Moreover, if Z = invlimZ, then there exist continu-
ous maps g: X—~Z onto Z, and h: Z—7Y onto Y such that f=hog. The
map b is indiced by the restrictions hy = Pl Xn: Xn—> Yy and by is onto Y.
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Proof. Keeping the notation of 4.2, let us set Xy, = Pn(X). Then
the spaces X, are continua because X is a continuum. The maps % induce
amap g: X—Z onto Z. Let i: Z— Y be the map induced by the restrietions
Pl Xn. Since the restrictions are onto, h is onto. Since gn == mw, o f, it is
evident that the maps p, induce tlie map f. The equality f= % o ¢ easily
follows from the constructions of these maps and from 4.2 (for the detaily
gee [15], Chap. VIII). This completes the proof.

Remark. If p: ¥ ¥ is a covering projection and ¥ is a polyhedron, .

then ¥ is a polyhedron (infinite) of the same dimension as ¥, and the
projection can be regarded as a simplicial map (see [33], p. 144, Thoo-
rem 3). Suppose now that X is a continuum contained in. ¥ and (113n Y=1.
Let € and € be such triangulations of ¥ and ¥ that the projection is
simplicial with respect to G and . It is easy to see that there oxist gub-
divisions G of 6 and ¥’ of T such that p is simplicial with respect to B
and %', and X is the space of a finite subcomplex K of ¥, i.0., X == | K.
Then p|X: X—¥ is a simplicial map with respect to |K| and .

Since every curve Y can be represented as the limit of an inverse
sequence of one-dimensional connected polyhedra ¥ = {¥y, ¢u} with
bonding ‘maps onto [25], by combining 4.8 with the above Romark we
obtain the following corollaries:

4.4. CoroLLARY. If a curve ¥ can be oblained as o conbinwous Jimage
of a cr@ contmzmm, then there emist two inverse sequences of pomtrd poly-
hedra, X = {(Xn, on), ln} and ¥ = {(¥u, 1), gu}, with bonding maps onto
such that:

(1) X s a tree and there exists o JSinite complex Ky such that Xy = |1
and xn is a vertew of Ky,

(2) there ewists a finite complow Ly such that Yn = |Ly| and vy 18 o vertew
of Ln,

(3) ¥ = invlim Y,

(4) for every nm =1 there emists a simplicial )

bt (X y #0)— (T, yu)

onto Yo such that T o k= guhy, ;.

Proof. Let X, be the spaces considered in 4.3. To prove the above
result we need only to note that X, is a treo. Since tho spuces ¥y con-
sidered in 4.3 are simply connected one-dimengional polybodra and X
is a subpolyhedron of ¥, X, is a simply connected conipuct commcteg{
polyhedron, and therefore a tree.

Since the spaces X, are trees, combining 2.1 with 4.3 wo have:

4.5, OOROLLARY, If f is & map from o cr @ continuum X onto o eurve ¥,
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then there exist. a tree- lilke curve Z and two maps §: X—Z onto Z and h Z-Y
onto ¥ such that f="5hog.

If ¥ is the unit circle S, then the universal covering space of ¥ is
the real line. Hence the sets X, in 4.3 are cloged intervals (or single points).
If Y is a cirele-like continumm, then it is the limit of an inverse sequence
of circles. Hence by 4.3 (and [23]) we obtain:

4.6. COROLLARY. If a circle-like continuum is a continuous image of
a orS continuum, then it is o continuous image of a snake-like continuum
{the pseudoarc). In particular, it is movable.

By 4.6 we see that no solenoid is a continuous image of a crS con-
tinwam. The Case-Chamberlin curve ¢ is crS [9]. Therefore: no solenoid
is a continuous image of ¢. °

5. Movable sequences of gromps and graphs. If A= {4,,p.} and
B = {By, qu} are inverse sequences of groups and homomorphisms, then
by & map f=(f,f.): A—B we mean an increasing function f: N—XN
and a collection of homomorphisms fr: A;,—Bn such that for n < m
we have fu o Pyuysm = @um © fm. The identity map of 4 is the map 1la

= (1y,14,). Two maps f,g: A->B, where g= (g, gu), are homotopic,
notation: f =g, if for every = ¢ N there exists an meN such that
m iz f(n), g(n) and fu o Dymm = gn o Dotmm- " The composition of these
maps we define in the same manner as in the case of ANR-sequences.
‘We say that two inverse sequences of group 4 and B are equivalent if
there exist two maps f: 4—B and g: B—»A such that gof =14 and
fog =1s.

One eagily shows that .

5.1. The equivalence of sequences is o true equivalence relation.

It ny < my<< ... is an increasing sequence of positive integers, then
{A s Prgmprny 18 called a subsequence of the sequence A. The proof of the
following lemma is straightforward.

5.2. A subsequence of a given sequence A is equivalent to A.

A sequence {4, pn} is sald to be movadle if for every positive in-
teger n there exists an m, = n such that for every m = n there exists
a homomorphism p: 4,,—A4m such that pum o P = Pun,.

5.3. Bquivalent sequences are either both wmovable or both non-movable.

We say that a sequence {4, ps} is simply movable if for each
integer # 3> 1 there exists a homomorphism fu: A,.,—+4,.. such that
P == Dune o Jn. It isian easy exercise to prove that

5.4. Bach movable sequence of groups contains o simply movable
subsequence.

In the subsequent theorems we study sequences of free non-Abelian
groups. Some of them are generalizations of the results contained in [34].
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For the definition and discussion of free groups ithe reader is veferred
to Crowell and Fox [12]. Now we recall the notion of the frec product,

Let A and B be two subgroups of a given group ¢. We say that ¢ jg
the free product of A and B, notation: ¢ = A x B, if every eloment of @,

. different from the identity element 1, is uniquely expressible in the form
€°Cy ..o “0ny Where ¢; # 1, cre d v B, and no two consecutive oloments
01, ¢;; belong to A or B. The subgroups are called free factors of (. Tt
follows from the definition that the assignment b1, for b ¢ B, and - @,
for a € 4, yields an r-homomorphism of & onto A. This homomorphism
will be referred to as the retraction of ¢ onto A. Heneo cach free fuctop
of & is a retract of @. The following theovem, proved by IT. Fedorer nud
B. Jénsson (Trans. Amer. Math. Soc. 68.(1950), pp. 1-27), is an important

fact in the theory of free groups.

5.5. If h is a homomorphism of a free non-Abelion group @ into a free
non-Abelian group H, then G can be represenied as the Jree product ¢
= A * B in such a way that B is mapped by h onto the identity clement of H
and h restricted to A is a monomorphism. In particular, if b ds an epi-
morphism, then the restriction is an isomorphism between A and H.

An inverse sequence of groups A = {An, pu} i3 s2id to be an r-ge-
quence if each bonding homomorphism Pu 18 an r-homomorphism. Thoe
sequence 4 is finitely generated (free) if each group 4, is finitely genorated
(free, respectively). It is clear that each r-sequence i movable, and the
following theorem states, in some sense, the converse result (comyp. [34]).

5.6. Hach movable. free sequence is equivalent o a free P = SCQUENCC.

Proof. Let & = {Gy, u}. be a movable frec sequence. By 5.1, 5.2
and 5.4 we can assume that it is simply movable. Hence for each
integer > 1 there exists a homomorphism f,: Gr1—> Gy such . that

1) T = oy s @ fu -

According to 5.5 each group G, %= 1, can be ropresented as the freo
product G,,, = @, * G, such that

(2)  halG4, is & monomorphism, and Gty C ke by,

For %> 2 let 1,: th—G,, be the retraction and for s ot G =e @
and let 7, be the identity homomorphism of G. Denoto by 4, the inclusion
map of G into G,. Then by (2) we obtain

(3) nzl.

Observe that by (1) and (3) we have J, o Tns © Pt © Mg © oy == iy © Py o

= h,.'= P © g © 7y Sinee g oty I8 8 mwonomorphism (see (2)), this
implies that

4) .,,

Py in+1 © Py = Iz,n’

nt1 © Ppgq 0 ffy = Frp1 o
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For cach positive integer » we now define two homomorphisms,

7! I U
i Gy =Gy

by the following formula:

and f;n G;H-l_:’ G;z+2 H

h;p =y ol oty ANd fr=r 0, 00

It follows from (3) that

(5) h;b O Py = T 0 Jiy
By using (3) and (4) it is easy to check that
(6} Ty o fy 18 the identity map of G, .

We now show that the sequence G = {@G,, .} is equivallent to G.

It follows from (5) that p = (Ly, ") is & mzupiof G into @. For (.each
neN lot g(n) = n-+1 and let gu: G, —G, be dpfm_ed by ¢n=h,° int1-
Since by (3) we have h, o @uyq= iy © fippy o IL”TZ = iy © g1 © Ty © 7},,1&1 ° 'an-;
= ¢, ¢ My, We infer that q= (¢, qn) constlltutes a lhnz?p fm;n G mt'o a.
Sineo g op = (g, ba) = L and p o ¢ = (¢, by) = 1&, @ is equivalent to &.
Setiting G = {Gpiys Ppiady n 21, We conclyde by 5.2, 5.1, (6) and by
the 131'ee~c;ding remark that @' is the required 7-sequence, beca.use, by
the Nielsen—Schreier theorem, a subgroup of a free group is free (see [12],
p. 36). . ,
5.7. If {G,, hu} is a finitely geo?,‘emted*free r-sequence, then for eaCch, e
positive integer n there ewists a finite subset G, = {gm 3 ene3 Jrgs 2 gmn}- oj. ,{i
(where 8; = 1) freely gemerating Gy, and the following conditions are satisfied:

(l)n Tn-}-l == 8n 4
(2)n Ten(Gn,7) = Gng for  J=1,2, 0,7,
(3)n T 1,9) = 1 Jor  §> i

Proof. According to 5.5 each group G,.; can be represented as.
a free product G, = A, * B, ., such that B, C ker fin and h,|4, +J15 12
an isomorphism between .4,,, and Gy. The basis wﬂl_ be construe et
successively. We define G = {fu, .., f1s,; t0 De an arbitrary f'ree basm‘
of &,. Now we define @,. Put 7, == s;. The elements gy for j < r, are
defined by
Gor = (Pl da) " (ghs) - ‘
Since B, is a retract of G, and @, is finitely generated, B, is a ﬁnitely
genera.téd free group. Let the elements go, 1y -y fog, 10Tm & free basis.

. It is eagy to see that:
of B, and put: G; = {a1 -3 Jary) Gorat1s - g%g}. - 5y
this 2set constitutes a free basis2 of G, and satisfies conditions (1);-(8)1
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Tn the same way we define all the other sets G, satisfying the re-
-quired conditions.

The next notion will play an essential role in the proof of the Main
Theorem. We say that a sequence of groups G = {Gx, hn} has a regular
system of generators if for each integer m > 1 there cxists a finite set
@} C @, generating G, and satisfying the following condition:

(@) Tin(@hy) C G

5.8. Bach free sequence having o regular system of generators s movable.

‘To prove 5.8 we need the following simple lemma.

Luvma. Let A be o free group, let A* be a set generaling A and lot B
and C be arbitrary groups. If f: A—~B and h: C—B are homomorphisms
such that . : :
1) 4" Ch(0),
then there 48 o homomorphism f': A—C such that

(2) hef =1

Proof. Sinee h(C) is a group and A* generates 4, it follows from
(1) that

(3)

Let F = {g} be a free basis of A. By (3) there is an element ¢y ¢ ¢ such
that h(cs) = f(g). Let p: F—C be' defined by p(g) = ¢y. Then for g el
we have ko p(g) = f(g). Since F is a free basis, we can extend p to & homo-
morphism f’: A-C. Hence f and } - f are two homomorphisms from 4
into B which agree on ¥. Hence these homomorphisms are equal, be-
cause F' generates A. This proves (2).

Proof of 5.8. Let ¢ = {G, s} be a free sequence and lot {G}} be
@ regular system of generators for @.

Since G is finite, it follows from (i) that there is an integer n, = n
such that
@)

Now we show that for a given integer m = n there is w homomorphism b
from G, into @ such that

(2) T © o == hnno )

and this will finish the proof.

We can assume that m >n, (otherwise we put 7 =l ). Flonco
by (1) we have i (Gr) C hum(Gm). Applying the lemma, ‘Vﬁ;(h obtain
a4 homomorphism : &, —~Gn satisfying (2).

The above results imply following theorem.

FATR(O).

P () = hum(G,)  for each m >, .

e _®
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5.9. A finitely generated free sequence is movable if and only if it is
equivalent to a finitely generated free sequence having o regular system of

generators.

Now we introduce the concept of the realization of a sequence of
groups. Lot G = {6, hn} be a finitely generated free sequence. We say
that a pointed inverse sequence of graphs (X, @)= {(Xn,®n),fa} I8
a realization of @ if for each positive integer n we have Gn = 7w (Xn, Zn),
the fundamental group, and hn == (fa)y, the induced homomorphism.

5.10. A finitely generated free sequence is movable iff amy its reali-
zation 4s pointed movable. ;

Proof. Let @, X and @ = (¥, %, ...) be as in the definition. Suppose
first that ¢ is movable and let » be a given positive integer. To prove
that (X, ) is movable it suffices to find an integer no>n such that
for m > n there is a mapping f: (X, @) —>(Xm, om) such that

{1) fumof =~ f'”"o rel:cnn .

But by the movability of & there is an integer 2, = n such that for m = »n
there is 2 homomorphism Ji: @, —Gn such that hum o b= b, By [33],
p. 141, Theorem 8, there is & mapping f: (X, @pe) = (X @) such thab
Sy = h. Again applying the quoted theorem, we see that the map f satis-
fies (1), which proves the movability of (X, 2).

Suppose next that (X, @) is movable and let # be a positive integer.
Tt follows that there is an integer m, 2> n such that for each m = n there
is & mapping f from (X, ; @,,) into (X, @m) such that fam o f = fun,rele,.
Setting h = fy, we conclude that fm o b= han, (see [33], p. 141, Theo-
vem 8). This proves the movability of G-

Tn a similar manner one shows that

5.11. The realizations of equivalent sequences are equivalent.

Using the above results, we may simply prove the Trybulee theorem
(Theorem 5 from the Introduction). This proof is similar to that of Trybulec.
‘ Proof of Theorem 5. Let By= {#} C B, C ... C B, be the bouquets
congidered in § 2. Let p» be a retraction of B,., onto By, n =1, under
which the set B, \Bn is mapped onto By, and let pum have the same
meaning as in the case of ANR-sequences.

Let (X', ') be a movable curve. Represent it ag the limit of an in-
verse sequence of graphs, X' = invlim{X,, f;}, and let @' = (2, @3, ...).
Now pub (:le @) = {(X;n n;;)rf;»b G’:’Lz ”(X;w wa/z) and h‘vla = (f;z):ﬁ:: for
n=1,2,.. By a result of Mardeti¢ and Segal [28] the ANR-sequence
>'(X ', o'} is movable. Bach @G, is a finitely generated free group (rsee'[33.],
pu.‘lfll, Corollary B5). Since (X';2') is a realization of G’ = {G,, h,}, it
Tollows from 5.10 that G is movable. By 5.6 there is a finitely generated
free r-sequence G = {Gn, ha} equivalent to G'. Applying 5.7, we obtain
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the free basis G = {gp1s Tnay s Gurns -+ s Gnsar Satisfying conditions (L)n~(3)a
for n =1, 2, ... From the definition of p, it follows that the ANR-se-

Dgysp Dyzgg . . . i
quence (X, #) = (By,, #)<—(B,,, #)<—... is a realization of &. Hence,

by 5.11, (X, 2) is equivalent to (X, #). Since invlimX is a continuum

equivalent to B, or B, according as Limsy =« or limsy = o0, the shape

of X' is planar by Theorem 1.

6. Torn loops. Let X be & topological space and let @, be a point of X,
If o and o' are mappings from the unit interval I into X such that

@(0) = @y = wi(1),

then we say that the pair (v, o) form a forn loop in X based ab @y, briefly:
t-loop. In such a case we write (w® o'): I->(X 5 &),

Let f: (X, w)—(¥, 5,) be a continuous map of pointed spaces and
let o be a loop in ¥ (in the usual sense) based at . Wo say that a t-1loop
(0% w'): I—+(X, x5) is a 1,-lifting of w (and o is generated by (o, wl)
by means of f) iff the following conditions are fulfilled:

(i) Fle'(@)) = fler(0)),
flew®(21)) for 0 tsy,
fle*(@—1)) for 41,

Throughout this seetion by a polyhedron we mean the space |I7] of
a finite (simplicial) complex K. If x, is a vertex of 