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It we let @ = CxR where C is the complex line (considered as
a complex manifold) and R ig a Lie group with trivial J-structure and
D= {(n+in,n)| n is en integer} then @D is an f-Lie group which is
not the product of a complex Lie group and an f-Lie group with trivial
f-structure. (/D is of course diffeomorphic to Cx §* but the f-structure
on G/D is not the product f-structure of Cx 8'). This is the example
mentioned in the introduction.
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Reducing hyperarithmetic sequences
by
Hans Georg Carstens (Hannover)

Abstract. Every a’-sequence is iaommj;hia to an a*-sequence. This impliecs: Kvery
o'-theory T with an o-language has an a*-model. If 7' has an infinite normal-model
then 7 has an normal a*-model.

§ 1. Introduction. If you analyse a mathematical construction to
evaluate its complexity e.g. in terms of the hyperarithmetic hierarchy,
it i not difficult to get &'-bounds (a e O, O Kleene’s system of ordinal
notations, o’ = 2%, for you can employ recursive. processes to describe
the congtruction. I you try to get a*-bounds (o predicate is a*-bounded
if it is a Boolean combination of X%a)-predicates) you must analyse
some tricky constructions often related to wait and see methods.

Tn this paper we prove a theorem on hyperarithmetic sequences
by which in some cases we can avoid this analysis and get an ¢*-bound
by means of ¢’-bound. In §'5 examples regarding models and structures
will be discussed.

A model is called normal it its universe is the set of natural numbers
and the first predicate is the identity. In [3] Hensel and Putnam have
shown that every axiomatized consistent theory based on a finite number
of predicates which has an infinite model with “=" interpreted as identity,
has a normal model in B*(1), i.e. all predicates are 1*-bounded. Among
its consequences the theorem has an analogue to the Hensel-Putnam
result for arbitrary byperarithmetic theories with a recursive language.
Wo can drop the assumption that the theory must be based on a finite
number of predicates, and different to Putnam [5] and Hengel-Putna. [3]
the result yields a method which solves Mostowski’s problem [4, p. 39]
simultaneously for theories with and without identity.

§ 2. The hyperarithmetic hierarchy. Let O be Kleene’s system of ordinal
potations with the ordering <, @’ = 2% the sueccessor of ¢ in O, A’ the
recursive jump of A; we write A < B if 4 iy recursive in B. Hy := @,
Hy 5= I, for a in O, Hyge 1= {2,401 y< 3 D" &ae H,}, where 3-5% iy
a notation of a limit ordinal.
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B(a) ;= {4: A < Hy}, H: = {B(a): a e O}, Z)(a) := {P: P recursively
enumerable in Hg}, [1%a) is defined analogouesly. B*(a) := {4: 4 built
up from Z¥(a)-sets by ~, w, —}. It is well known that “C” is an w, (least
non-constructive ordinal) well-ordering of H. Obviously {(B(a), 9, », N,
v, —> and <(B%a),d,»,n,w, —> are Boolean algebras with B*(a)
& B(a') [6, p. 317]. Let (P) be the contraction of the predicate P,
f a function, P’(®y, ..., @a) 1< P(f(#:), vov) f(@n)). In the following a bi-
jeetion f: w-—>w will be constructed.s.t. for some sequences (Pi);,, Of
predicates ¢Pi> e B(a') and (P ¢ B*(a).

§ 3. .a—trial and error predicates. A function f iy called a-(partial)
recursive iff f is (partial) recursive in H,. By the enumeration theorem
such a function has an a-index (denoted by {f, a)). We choose an, index-
ing coding recursively the schemas of definition for «-partial recursive
functions. An a-index is called recursive iff it is an index of a total func-
‘tion. If (e, a) is the a-index of the a-partial recursive function f we
write [¢, a]=~ f,

W f(@, y) := (3, wy: (Vo = y: f(3,4) = f(@, )]}

Y00
Let o ¢ O, P is called an a-trial and error predicate iff there exists an
a-recursive funetion f such that P(#) « limf(#,y)=1 and P(@)
< lim f(#, y) = 0. "

Y-

LemuMA. (1) HF recursive function: VaeQ: Ve recursive:

le, @'1(@) = lim [F(e), a)(Z, y) -
Y00

(2) E@G recursive function: Va e O: Ve recursive s.1.V: lim [e, a](%, y)
Y00

exists: :
" [G(e),a’](i):lim[e, a](EJQ)'
Y—+00
I.’roo'f. (1) By induction on the definition of the class of o'-recursive
functions. If ¢ is the index of the characteristic function Ky . of H,, let
F(e) be a fixed index of f with ‘ Co

0 i THe<y: Tz, %),
1  otherwise

flayy) =

'where ’TH“ is Kleene’s T for H,. It is now trivial to prove the base of the
induction. If e is an index of a function defined by substitution, i.e.

e, @')() = (e, a'1(ler, @'1(E), ..., [en, ¢'1(7) ,
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take F'(¢) as an index of
[ (e), a](aa y) =[F(e), ”‘]([F(e1); “](é: Y) s -y [F(en), “](571 Y), y) .
If ¢ is an index of a function defined by u-recursion, i.e.
Le, “I](Zc) = U ([307 a'l(w, 2) = 0) ’
take I(¢) as an index of

[F(e), a1(®, y) = pe < y: ([F(e0), al(,2,y) = 0).
(2) We will give an explicite a'-definition of f (@) = lim [e, a](Z, ¥):

Y—+00

£(8) = lim[e, a)(@, y) = (un: Vy > (n);: [e;a](,y) = (n)h

Y0
= (/”": “Hy > (n): [e, “](%’ y) #* ('n’)o)o
= (,Ll/f’b: e THa(fo(")y By Y, z))o
= (un: [fulfule); o] (B, ) = 0,

where fy,f, are recursive functions 8.%. [file), al(@, n) ~ uy: (y =(n), &
&[e, a](®,y) # (n)), and [fi(e),a’] is the characteristic function of
Me: THe(e, ¢ Y, 2). Let G(e) be the index of (;m: [Alfule), @] (@, m) = O)(,.
@ is recursive and [G(e), a'](®) = lim [e, a](®, ¥).

Y00

COROLLARY. P a-trial and error predicate iff (P)eB(a').
Proof. “=" By the definition of a-trial and error predicate and
the theorem of Post [7, p. 167]. “<«=” By (1) of the lemma.

§ 4. The main theorem. A sequence f i8 called an a(a’)-sequence iff
f is a(a’)-recursive and for all n f(n) is @ recursive a(a’)-index. Pe(z)
1> ¢, a](#) = 0. Clearly (Ps) ¢ B(a). It is easy to show that all predi-
cates P with (P> ¢ B(a) are equal to a P, with a suitable recursive a-in-
dex ¢. For any a'-sequence f we will construct a bijection g: w—>w 8.6,
for all n {(Phny> € B*(a). That is: if you can get a sequence of hyper-
arithmetic predicates in B(a’) from’ an o-sequence you also can getb
a sequence of predicates in B*(«) which is “jgomorphic” to the original one.
Call an a'-sequence f an a*-sequenco iff for all n (P ¢ B*(a). Two
a-sequences f and g are isomorphic iff there is a bijective function k 8.6,
for all m Py = Phy.

TuworEM. For all @ €O and all o-sequences f there is a rECUTSIVE
function g s.t. g of is an a*-sequence isomorphic to f. ’ ‘

Proof. Let f be an a’-sequence. By the lemma there is a recursive
function I s.%. the following function is an o'-sequence of a-indices

ho(m) = <E((f(n))), @
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“Let p be a recursive function s.t. [(e), (¢)s] i & p(e)-place function. () 1= (2MP—1) - 2MOH (1), @) ,
Now define

1 i y=0 or y=2,
hn,z,y):=30 i y=1,
[(ho(.”'))m “]((”)07 veey (@)pep s y) Hy=3,

Vo) i=py: h(y) =y & Vn, 0 <n < a=1: Ve, 22 (Y)n: VO cor Ty »
Byy ey Tp(py < B2 (h(’”r@n e Ty s ?) -“—;Hh(”;<m1; <3 Tp(yn? 5 (?7)77,)) )
5 <y o (o) = Ih(y) & Vj, 0 <j < Ih(o)=1: (a) < (¥))

0 if sLy,
vz, y): = |pe (E[mo, ey B2 (m(,< < .<2,&Vi,0<i<e
(o=<o<y& Bu: (0 < u <y & o< u< a,,))))  otherwise.

We can easily verify that the set of numbers & such that I(lk(2)) < @
is not true, is recursively enumerable in H,. Let s be an a-recursive
function which enumerates this set without repetitions. Now define

»

« {(2""“)—l)+2lh(”)+1w(l£llb(w)), @) it @ > 1lh(e)),
= 2(uz: s(2)=x) otherwise.

By definitions of I, <, 7, s, and the properties of ¥ g* is a bijective
«'-recursive function. Thus there is an o'-index <e, a’> for g*. Let g be
a recursive function that computes the a'-index of the function defined by

[e, a'1{le, @'1(1), vovs [€) &) (@pie,arn))

from any o'-index ¢, a’). Clearly g o f is an '-sequence isomorphic to f.
Finally let us show that g o f is an a*-sequence. It suffices to prove
that for all n there is an a-recursive function g, s.t. for all o

Pgof(n)((”)O; sery (m)p(ﬂn))—'l) had Hm g’ﬂ((m)o: sy (m)p(ﬂn)):_u y) == 0
. Y00

and g, changes its value at most p(f(n))-times. Then P, with para-
MEeTs @y, «.oy Tpijmy 18 true if and only if there is an 4, 0 < i << p(f(n))
s.t. g» changes its value exactly ¢ times. This shows that (P> ¢ B*(a).
‘We will now describe an algorithm which defines the g,’s. First we deofine

V() = py: (@) =Th(y) & Vn, 0 < n <Th(y) = 1: Vo, (4 < 2
< (@)t gy eey Upggmpr Yas vy Ycpmy)

< Zh(y): h("7<ul7 R u@(f(ﬂ))>5 z) = h(%(“u Ras} up(fln))>ﬂ (m)n)) b

0(@) s 2(pe: 8(2) = ),
My == Y (Vz, 2t Vil ey Uiy << 00 B (0, Sty ey Uiy 2)
= B (1, y ey Uprimyds )

Now we will describe the algorithm.

In{Buy vy Bprmyy 0) 1= R{n g (@) y woey 9 (Bpisinn) s Yo)

max {(@)} iff W, 1< <p(f(n): (@n 0,
Uy == L JEp(fin)
my  otherwise .

Now test in a fixed recursive manner if
e, 0 <b<Wh(wg) =1 Buy, ooy Uprpy
< Th(w,): 7"'(70: gy ey Up(ran?s (mj)lc) #* h(kw Clhyy ooy Upgriey s (my')k_l—y);
y=1,2,3,..

The tests are numbered in this way. If the answer is negative for all tests
with numbers <# define
Gy y ey Bpganyr @) 7= Il @15 ooy Do 0) .
Tt the answer iy positive for the first time for oy, in the test with number 2,
define
Il ®Ly oov s g %) 1= o '
,"('na {g'(®1)y ooy gl(m;{o_'.l)ﬂ o(mh), g,(,mjﬁl), ey gl(‘xp(f(n))»: ?/1) »
max {(@)e} I Hj,1<j< P(f(‘")): (@) # 0
v | LTS 0) 7#7o
Yo 3= )
mp  otherwise .

Now test again as above. Clearly gn is a-vecursive and changes its value
at most p| f(n)) times. Now the following holds

”Z':)r/OI(n)(mli 0 wy)(l(n)))

e I(!] °f('n))07 “l] (@15« s Dpign) = 0

> l(f(”))ﬁ) a'l] (g’k(wl)’ ey g*(mp(fm))))‘—: 0
< limh(n, g @) s 0 @piray)s ) = 0

Y200

<> 1 g1y -5 Tpiroans ¥) =0 -

Y00
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The last equivalence holds by the properties of g* and the definition of
the g»’s. This completes the proof.

Remark. By the proof of the theorem for every a'-sequence there
is a g* with the properties mentioned there. Obviously no «’-recursive g*
fulfills these properties for all a'-sequences: Let 4 be a B(a')- B"‘( a) set.
The assumption g*a’-recursive implies the o'-recursiveness of ¢** and
AP But AP ig not B*(a).

§ 5. Applications of the theorem. The first application will be an
extension of the Hensel-Putnam result in [3]. Call a theory T an a-theory
iff Thmg, e B(a), a language L an a-language iff its arithmetization is
in B(a), and a structure an a(a*)-structure iff its universe is » and all
of its predicates and graphs of functions are in B(a) (B*(a)).

THEOREM. Eovery a'-theory with an a-language has an a*-model.

Proof. The Henkin-Hasenjaeger construction gives an a'-model
determined by an a'-sequence.

THEOREM. Hvery a'-theory with an a-language and m’mﬁmw model
for which “=" is interpreted as identity has an a*-normal-model.

Proof. Extend the language of the original theory s.t. there is
a formula which has only infinite models and is relatively consistent to
the theory. Take this formula as a new axiom. Again the Henkin-Hasen-
jaeger construction gives an &'-normal-model determined by an '-ge-
quence.

The second application is almost trivial. Call a structure finite iff
it has only a finite number of predicates and functions. Clearly the follow-
ing holds: HEvery finite o'-structure is isomorphic to an a*-structure.
This is true especially for all algebraic structures i.e. finite structures
with functions only. If such a structure has an infinite universe and
is Z¥a) then it is obviously an a-structure.
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