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Abstract. A class 4 of compacta which contains all triangulable spaces and 0-di-
mensional compacta is introduced and it is shown that for every compactum X there
i8 o compactum ¥ belonging to 4 such that Sh(X)= Sh(¥) and Fd(X)=dimY, -
where I'd (X) is the fundamental dimension of X in the sense of Borsuk. Let X be a finite
dimensional compactum which is approximatively k-connected for k=0, 1, .., 2+ 1.
Tt is proved that if A is a closed subset of X with dim 4 < n then Fd(X) < Td(X/4).

§ 1. Introduction. In this paper we introduce a class 4 of compacta
which ig called A-spaces. The clags 4 contains all triangunlable spaces
and 0-dimensional compacta. Bvery 4-space is dimensionally fullvalued
for paracompact spaces (see [7, p. 367)). In [2] and [3] K. Borsuk has
defined shapes of compacta. The shape of a compactum X is denoted
by Sh(X). By K. Borsuk [3, p. 31] the fundamental dimensional Fd(X)
of X is defined ag Min{dim¥: Yisa compactum such that Sh(X) < Sh(X)}.
Weo shall show that if Fd(X)=n then there is a 4-space Y such that
Sh(X) = Sh(Y) and dimY = n. In particular, for each compactum X we
can find a compactum Y such that Sh(X) = Sh(Y) and dimY = Fd(X).
Tot A be o closed subset of X which is contractible in X and let X/4 be
the compactum obtained from X by contracting 4 to a point. Then it
is ghown that Fd(X/A) = Fd(X), i.e. the quotient map: X+ X/[A raises
the fundamental dimension. ‘ ]

Throughout the paper we ABSUME that all spaces are metric and all
maps are continuous.

§ 2. 4 -spaces.
DEFINITION 1. A compactum X is called a A-space if there is an
inverse sequence {Pi,#iT'} whose limit space lim Py is X such that

(2.1) each P; is a gimplicial complex,

(2.2) each bonding map n:ﬁ'“:n,‘.ﬁ?_lal?i is a simplicial map.
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By 4 we mean the class of all 4-spaces. ‘

ExsvpLe 1. Let 8, ¢=1,2,..., be a 1-sphere considered as the
set of all complex numbers z with |¢| = 1 and let #*': §,,,— 8§, be a map
defined by the formula =}*(2) = #¥, where p; is & positive integer. The
inverse limit 8(p)=1Um{8:, aj*'} is called the solenoid gemerated by

D = (D1, Pe, -.). Obviously we can subdivide each §; such that xf*! i
simplicial. Thus S(p) is a 4-space.

Exauprm 2. Leb p = (P, pa, -..) be & sequence of positive integers

such that p>1 for each 4. In [6; II, p. 106] we constructed a 2-di-

mensional continuum E(p). Also, in case p; iy a divisor of p,,, for each 4,

~ a 2-dimensional continuum @ (p) was defined in [6; T, p. 390]. If each Py 18

equal to a fixed prime p, then Q(p) is a Pontrjagin’s surface modp. It ig

easy show that no continua R(p) and Q(p) ave in 4 (see Theorem 2).

THEOREM 1. (1) Al polyhedra and 0- dimensional compactn belong to 4.

(2) There s a 1-dimensional compact AR X such that X is not a 4-space
and X does not have any singularities of Peano, Alexandroff, Mazurkiewics
and Brouwer of type (n, k) in the sense of Borsuk [1, Chap. VI.

Proof. Sinee (1) is obvious, it is enough to find an AR X satisfying (2).
Let M be a set in the plane defined as follows: M = {(a, Y 0<e<l
and y=0; 2=14% and 0 <y <}}. We consider M as a 1-dimengional
simplicial complex with 4-vertices: (0, 0), (4, 0), (1, 0) and (%}, %). A sub-
set N ={(z,9): 0<2<1 and y = 0} which is a subcomplex of M is
a base of M, (§,0) is the middle vertew, the 1-simplex {(#,y): »= % and
0<y<3} is the middle simplex. By n: M—>N denote the simplicial
map such that 7| is the identity and = maps the middle simplex to the
middle vertex. Let X; be a simplicial complex consisting of only one
1-simplex and its vertices. For each j, j <k, suppose that a 1-di-
mensional simplicial complex X; and a bonding map s X;—~X,_, are
constructed. In order to construct X, ., let us replace each 1- simplex s;
of X3 by a copy M; of M such that the base N; of M; coincides 8. The
projection @il X, Xy is defined by putting mt+|M; = x: My N,
(=si) on each M;. We obtain an inverse sequence { Xy, 7™ Set X
= lim X;. It is easy to show that X is a 1-dimensional compact AR and

does not have any singularities in the theorem. Let us prove that X ig
not a A-space. Consider the subset X, of X consisting of all pointsy
(#), w5 € X5, of X such that for some % each »;, j > k, is a vertex of X,
Then X;is dense in X. Suppose that there is an inverse sequence {¥;, uit}

such that X =1limY;, ¥; is a simplicial complex and b Y —>Yyis

simplicial. We may. assume that each ui*! is onto. Let wi: XY, be the
projec’_m'on. Then pi(X,) is dense in ¥ for each 4, For each point y of X,
there 18 Y; e {¥4} sueh that #s(y) is a vertex of ¥;, because dim ¥ -sl’
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for each - and y has a sufficiently small neighborhood in X whose boundary
consigts of more than 2-points. Hence ui(y), § = 1, 2, ..., has to be a vertex
of X;. This contradicts that wi(X,) is dense in X;.

For an abelian group ¢ wo define the homological dimension d(X: @),
the local homological dimension loed(X: @), the cohomological dimension
D(X: @) and tho local eohomological dimension locD(X: @) of a space X
as follows (see [6] and [7]):

A(X: G) = Max{n: Hn(X,A: &) 0 for some closed set 4 of X},

locd (X @) = Min{n: for every point @ and every neighborhood U
of w in X there is a closed neighborhood ¥ contained.
in U such that d(V: &) < n}.
Here H , 18 the Cech homology group. D(X: ¢) and looD(X: @) are defined
by using the Cech cohomology group H* in place of H, in the definition
of 4(X: @) and locd(X: @) respectively.

Let X be a A-space. There is an inverse sequence {P;, ni*'} whose
limit space iy X such that Py is a simplicial complex and #i*? iy simplicial
for each 4. Weo can agswme that each #f™ is onto. Let & be a non-negative
integer such that % <~dim X, Since lim P; = X, there is an integer m such

that dim Py = k& for § 2= m. Wor every closed %&-simplex oy 0f P, there is
a k-simplex oy of P; such that ”andﬁ 05— 0y 18 2 homeomorphism, where
iy = vt ., ). Hence X contains a homeomorph of a closed %-simplex
for every %, k = dim X. Thus the following is obvious and a consequence

-of [7, Cor. B].

THEOREM 2. Let X be a finite or an infinite dimensional compactum
belonging to 4. For every abelian group G, d(X: @) =locd(X: ¢) = D(X: &)
=loeD(X: &) = dimX. If Y s o paracompact Hausdorff space with
dimY < oo, then D(X X ¥: @) = dimX+D(Y: &). In particular, X is
dimensionally full valued for paracompact spaces.

It is not known that the cohomological dimension of an infinite
dimensional compactum is infinite. However, if X is an infinite di-
mensional 4-gpace, then D(X: @)= oco'for each abelian group G

§ 3. Fundamental dimension Fd (X). Let X be a compactum. K. Borsuk
[3, p, 31] gave the following definition.

DuprNirioN 2, Fd(X) = Min{dim ¥: Y is a compactum such that
Sh(Y) = Sh(X)}. PA(X) is called the fundamental dimension of X.

TurorEM 3. Lot X be a compactum. Then FPAUX) < n if and only if
there is a A-space Y such that AimY < n and Sh(X)= Sh(¥).

Proof. The “if” part follows from Definition 2. Let us prove the
“only if” part. Let Fd(X)< n. There iy a compactum Z such thatb
dimZ < n and Sh(X) < Sh(Z). Let {P:, ai*"} and {T:, uit'} be inverse
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sequences such that

(3.1) X =1limP; and Z=IlmTy,
(3.2) P;and T are polyhedra and ={™! and ui** are onto, = 1,2, ...,
(3.3) dmTi<n, i=1,2,..

Since Sh(X) < Sh(%), by Mardesi¢ and Segal [10] there exist sequences
of maps f={fi}: {Py—>{Ty} and g= {9:}: {T4}~>{P:} such that
f-z: Pf(i)”‘):T“ and gi: Tg(,,;)—‘*l:)i, '

<] 1)~ ol fs T
(3.4) for i<j findf= plfy Pyy—~>T, and guuie algy Top—>Py

(3.) 9iforn = mf: Puo—~Py, i=1,2,..

(See [9] and [10] for notations.) We may assume that f: ¥—N and g: NN
are increasing, where N is the set of positive integers (see [9, Lemma 5]).
Put ¢, = 1. Inductively, define a, , = fg(a) for ¢=1. The sequence
{as} is increasing. Consider the map ¢ fyq): Py, Py, Let IT,, be a triangu-

lation of P, . By (3.3) there is a triangulation K, of P, and a simplicial ,

map 7,: K,,—~K,, such that o, = ¢,f,,) and 9(K,) C Kj,, where K" means
the n-skeleton of K. For j < k, suppose that there exist triangulations
K, of P, and simplicial maps n;_;: K,~K, , such that '

-1
(3-6) My Ey) C K

aj-y "

Ni—r= gaj—1fa(a1—1): K"JJ’K"H and

By (3.3) there is a triangunlation K, of P, .~ and a simplicial map
Nyt Koy, =K, such that (3.6) holds for j= k41. Thus we have con-
structed triangulations K, and simplicial maps #; satisfying (3.6) for
each j =1,2,.. 8t M;= K and pi™ = | M;p,, j=1,2,... By (3.6)
we have ul*(M,;,,) C M,;. Hence {M,, ui™"} is an inverse gequence con-
sisting of simplicial complexes with dimension < #. Let ¥ = lim M.

Then Y is a 4-space with dim ¥ < n. To complete the proof, let us ghow
that Sh(X)= 8h(¥). Without loss of generality we may suppose that
ay =7 for j =1, 2, ... For each j, put ¢(j) = j and let is: M,——;I’j be the
inelusion map, and pub k(j) = j+1 and define hy: Pyyy—>M; by hy = 7.
We have to show that

(8.7) = {ish: {M}—>{Pj} and h = {hs}: {Ps}~{M;} are maps between
ANR sequences (see [9, p. 427]), :
(3.8) i~ ly and th~1x, where Y= {M;} and X = {P;} and 1x

and ly are the identity maps (see [9, p. 43]).
From the definition ‘
(3.9) B =yt
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By (3.6) and (8.5) ighy = ny = gsfyy = af"?, that is,

(3.10) +1,

Hence dyud™ = dyhyiyy = aftt and pfthy = byig by~ bt Thus
(3.7) holds. Also (3.9) and (3.10) show that (3.8) holds. This completes
the proof.

The following corollary is a consequence of Theorem 3.

OOROLLARY L. For every finite or infinite dimensional compactum X
there is a A-space ¥ such that Sh(X) = Sh(Y) and FA(X)= dim¥.

Tror the proof it is enough to note that if ¥ is a 4-gpace and {K, it}
is an inverse soquence of simplicial complexes such that ¥ = HmXK; and

dyhy n;

each bonding map it is simplicial and onto, then the equality dim ¥
= Max{dim Ky, ¢==1,2,..} holds.

Teot us define the fundamental dimension Fd(X, 4) for a pair of
compacta (X, A) as follows: Fd(X, 4) = Min{dim ¥: Y is a compactum
and $h(X, 4) < 8h(Y, B) for some closed set B of Y}. (For the defi-
nition of tho shape Sh(X, A) of a pair (X,.4), see [2] and [3].) It 4 is
an empty set, then FA(X,A)=Td(X). Since Sh(X, A) < 8h(Y, B)
implies Sh(X) = 8h(Y) and Sh(4) < Sh(B), we know that

Max {IFd(X), Fd (4)} < Pd(X, 4).
It is not known that Fd (X, A) is determined by Fd(X) and Fd(4). The

following problem. raiges:
®

. Prourum. For a pair of compacta (X, A), does it hold that Fd(X, A)
< Max {Fa(X), F'(A)+1}¥ .
The following corollary gives a partial answer to the problem.

COROITARY 2. Let X be o compact AR and A its closed set. Then the
relation. T (A) < FA(X, 4) < FA(4)+1 holds.

Proofl. Sinece Fd(X) == 0, it iy obvious that Pd(4) < Fd(X, A). To
prove the second relation, let us assume that Fd(4) < co. By Theorem 3
there i o compact 4-gpace B guch that dimB == Fd(4) and Sh(B)
== 8h(A). To complete the proof, it is enough to construet a compach AR
M (B) such that M (B) = dimB--1 and M (B) containg B as a closed set.
Beeause, from Sh(d) = Sh(B) follows Sh(X, )= Sh(M(B), B) and
henee B (X, A) = dim M (B) = dimA+1. To construct M (B), leb
{K, 2t} be an inverse sequence consisting of simplicial complexes such
that I, consists of only ome vertex, dimIK¢< dimB, mft: Ky~ K, 8
simplicial for ¢=1,2, ..., and lim{K} = B. By M (K., Ky with) de-
note the mapping eylinder constructed for the map mE M (K gy Ky 78
is a simplicial complex and a union of the sets Ky, x[0,1) and K.

2 — Fundamenta Mathematicae LXXXIX
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Congider a topological sum N = @ M(K,gy, Ky alth). Tor each i, by

identifying K, x {0} of M (K,,,, K,, Aty and K,y of M (K g, Kipy, nitd)
in N we obtain a metrizable space M. Put M(B) = M v B. Give M (B)
the following topology: M is open in M (B) and has its proper topology.
Take w e B. Fori= 1, 2,..., let ¥ be an open neighborhood of s(w) in Ky,
where z; is the projection of B to K;. For j >4, consider an open seb

(=)W x[0,1) of M(K;, K, ,,n}_,), where n’é-—: witt .. oy, The col-
lection of the sets of the form (n; (V) ~ B} u U (w) 7V x [0, 1) where V
Jmita

ranges over open mneighborhoods of my(#) in K, i==1,2,.., forms
a neighborhood base of # in M (B). Obviously M(B) is cox‘npact and
metrizable, and dim M (B) = dimB--1. Since M (B) is contractible and
locally contractible, M (B) is an AR. This completes the proof.
Remark. Theorem 3 is given in the relative form as follows:

(8.11)  For a pair of compacta (X, A), FA(X, 4) < n if and only if there

s a A-pair (Y, B) such that dimY < n and Sh(X, 4) = Sh(Y, B).

Here (Y, B) is called a 4-pair if there is an inverse sequence {(Py, 8y),
_ such that (¥, B) = hm(Pt, 81), (P, 8:) is a pair of simplicial complexes

1.

i+1}

and aitl: (P, S; +1)—>(1”1; , 81) is simplicial. To do it, the theorems of
‘Mardeélé and Segal ([9, Theorem 10] and [10, Theorem]) which we used
in the proof. of Theorem 3 have to be given in the form of sequences of
ANR pairs. This is done by modifying slightty the definition of sequences

of ANR pairs and maps between sequences of ANR pairs which were

given in [9, p. 42]. The original definition by Mardeiié and Segal is not
suitable to prove the equivalence with Borsuk’s shape theory for pairs
of compacta (see [10]). The example given by Borsuk [B, p. 479] shows
that their approach differs from Borsuk’s theory for a pair of compacta.

Let X be a compactum in the Hilbert cube §. By K. Borsuk
[4, p. 266], X is said to be approximatively %-connected if for every
neighborhood U of X in @ there is a neighborhood V contained in U such
that every map of a %-sphere 8§ into V is null homotopic in U. As proved
by Borsuk [4, Theorem (2.1)], the approximative %-connectedness of X
does not depend on imbeddings of X into @ and it is a shape invariant.
In [8] we proved the following theorem.

THEOREM 4. Let (X, A) and (¥, B) be pairs of metric spaces and, sub—
. sets and let f: (X, A)—~(Y, B) be a perfect map such that f(X— A4) = ¥—
and f(4)= B. If AimY <n and f~Yy) is approvimatively F- conneoted
for each y € ¥ and k= 0,1, ..., n, then Shy(X) = Shy(¥) and Pos (X, A)
= Pos(Y,B). In adohtw'n, @f Am X < n, then Shw(X)= Shy(Y) and
Pos(X, A)= Pos(Y, B).
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Here we mean I')y Pos(X, 4) and Shw(X) the position of (X, 4)
and the weak shape of X defined by Borsuk, On positions of seis in
spaces, Tund. Math. 79 (1973), pp. 141158, respectively. The relation
Pos(X, A) = Pos(¥, B) i8 defined by a similar way to the relation Shy(X)
= Bhy(Y). Sinco Sh(X)= Shy(X) for every compactum X, we know
the following- fact.

(8.12)  Let f be a map of a compactum X into an #-dimensional eom-
pactum Y such that f~(y) is approximatively k-connected for
each y ¢ ¥ and k== 0,1, .., n Then Sh(X) = Sh(¥) and Fd(X)
z PA(Y). In addition, if dimX <, then Sh(X)= Sh(Y) and
FAd(X) = Pd(X).

By (3.12) we know that if f: X— Y is a map satisfying the condition
of (3.12), then f does not raise the fundamental dimension. The following
theorem concerns a map which raises the fundamental dimension.

TurorEM 5. Let X be a finite dimensional compactum. Suppose that
one of the following conditions holds: (1) A is contractible in X. (2) dimA < n
and X is approwimatively k-connected for k= 0,1, ..,n4+1. Then the
relation BA(X) < Fd(X/A) holds, where X|A is the quotient space obtained
from X by contracting A to a point.

Proof. Let A be a cone over A and let X be. the compactum obtained
from the disjoint union of X and A by identifying points of X and 4
corresponding to a point of 4. We consider X and A as subsets of X.
We can prove that X is a fundamental retract of X (see [3, § 18]) if (1)

r (2) holds. This is obvious if 4 is contractible in X, because X is & re-
tract of X. In case (2) iy satisfied, we have to construct a fundamental
sequence = {hz}: XX such tha,t hix~ lx, where ix: XX iy the
fundamental sequence generated by the inclusion map of X into X and
lx: X->X is the fundamental identity sequence for X. To construct i we
use the same amgument a$ in the proof of Theorem 4 given in [8].

Wo consider & as a subset of the Hilbert cube @. Let d be a fixed
metric jn @. Since X is approximatively k-connected for &t = 0, ..., n-1,
by using the definition of the approximative k-connectedness repeatedly,
it is known that there exists a complete system {Wp: k= 1,2,..} of
open nmcrhborhoods of X in @ satisfying the following condltmns for

each k==1,2,
(3.13) and.

(3.14)

'W,M_l C Wy A(X, Q—Wr) < 275,

If K is an (n-2)- dimensional simplicial complex and f is a partial
realization of K into Wy, then f has an extension f: K—>Wjy.
Here by a pariial realization of K into W we mean a map from
a subcomplex of K containing the set of all vertices of K into W.
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(3.15) Let X be an (n-+1)-dimensional simplicial complex and L & sub-
’ complex of K, and let f and g be maps of X into Wi.,,. If there

is a homotopy H: Lx I—+Wj,, connecting flL and ¢|L, then

there is an extension h: K X I-—+W; of H connecting f and g.

Since dlmA n+1, we can find finite open collections Vg, & == 1, 2,
in @ satistying the following conditions:

(316) @ XcyU{:v ¢ Uy} and ¥V ~ X 5 @ for each V e V.
(i) Uz and Uy~ X = {V ~ X: Ve Ug} ave similar.
(iil) Vyy, is @ refinement of Ug.
(iv) mesh V< 3d(X, Q—Wp).
(v) The order of Uy~ .4 < n-+2.

Let {Ux} be a sequence of open neighborhoods of X in @ sueh that Uy
CU{V: V eV} and Uy, C Up for k=1,2, ... Denote by My the nerve
of U ~ Uy. Note that My is also the nerve of Uy by (3.16) (ii). We define
a map pr: Mp—W,_, as follows. Let N be the subcomplex of M) spanned
by vertices which correspond to elements V e Uy such that V ~ X =4 @,
For each vertex » of N, choose a point z, of ¥V ~ A where ¥ is the ele-
ment of A, corresponding to v. Define f: Ni— (C W) by f(v) = a,,

where N is the 0-skeleton of Ni. Extend f lmcamly to a map g: Np—Q, i

Then by (3.16) (iv) we know that ¢(N3)C Wi. For each vertex v of
My— N, choose an arbitrary point z, of X and define h: Npuw MWy
by BN =g and h(v) =z, for a vertex v of My— Ny, where MY is the
0-skeleton of My. By (3.14) extend & to a map yr: Mp—W,_,. (We see
by (3.16) (v) dim(Mp— Ng) < n-+1.) This completes the construction
of Py k= 2, 3,

Let gp: Up—~My be a canonical map and define hy: Ur—W,_, by
hx = yror, k= 2. From the constmctmn of yi, it is easy to know the
following.

(3.17) If By is a neighborhood of X in @ such that By C Uy~ (U {V:
VeV, VX £0Y}), then d(hk(m), )< (X, @—Wy) for each
& e Bg. »

Moreover the following assertion holds.

(3.18)  Foreachk == 3, hy ;| U~ ke in W,_,, that is, there is a homotopy
Hy: UpxI- »11 x—2 connecting h,_,|U, and h,.

To prove (3.18), let m: Mp—M,_, be a projection (ef. (3.16) (iii)). Since
for each x ¢ Uy bo‘oh the points @;_,(#) and ap(x) belong to some closed

simplex of M 51, We know that hy,_ Uy~ Yy px 0 W,_,. Consider
the maps y;_, v and yi of My to W,_,. For each point & ¢ Ny, we know
by (3.16) (iv) that dfy,_,7(x), yu(@)) < d(X,Q—W,_,). Hence there is
a homotopy H: Ny xI—W,_, connecting y,_,n| Ny and wr|Ng. Moreover,
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note that for each closed simplex o of My the set y,_,m(0) v ypi(o) is

"contained in W,_,. Hence, by (3.15), there is an extension H': My xI

~+W,_, of H connecting v,_,7 and y,. Therefore we know that there
is & homotopy Hy satisfying (3.18). Finally, for each & = 3, 4, ..., consider
the maps hy—y: Upey—>Wiy_g, bt Ur—>W;_o and the homotopy Hy: UpX I
~+ Wy in (3.18). Since W, _, is an ANR, there is & homotopy ", U,_, x
XI—>Wy_, such that Hy(w, 0) = hpa(®) for we Uy_y, HylUpxI = Hy
and Hi(z, ) = hy,_ (@) for (w,1) e (Uyy—Upy)XI. Detine A~ Uy,
W,y by R V@)= Hy@,1) for e U,_,. Then hi™* is an extension
of hy 'm(l /bk YOpoy— Ugpey = by Upey— Uy - Lot us define hp: Up—>Wy,
k=3,4,.., by hk()mhwl()for weU;~TU,,, and 1=2,3, ..., k—1.
For each k \ 3, extend %z to a map of @ into @ and denote it by hk mgain.
From the construction of hx, we know that for each ¢, 3 <i< T,

(8.19) 7| U= 7|0 in W,_,.

Consider a sequence h = {hx: k= 3,4, ..} of maps of @ into . From
(3.19) it follows that A is a fundamental sequence of X into X. Let us
prove that hig~ 1x. Let @ be a neighborhood of X in @. Since {Wx} is
a complete system of neighborhoods of X in @, there iz a- & = 3 such
that W% C @ Let B be a neighborhood of X -contained in Uz n

AUV VeV, VX 5 0Y}). From (8.17) it follows that hxBr =~ 1o|Bx
in Wg. This shows that hix =~ 1x. Thus we proved that X is a fundamental
retract of X and hence Sh(X ) = Sh(X) if the condition (1) or (2) in the
theorem holds.

To complete the proof, consider the quotient spaces X/A and X/4.
Since A iy contractible, 4 is apprommamvely k-connected for every
k=10,1, bV (4, (2.7)]. Since X is finite dimensional, (3.12) implies
Sh(X) = S]J (X/ ). Since X /A and X/A are homeomorphic, it holds that
Sh(X/4 )—Sh(X/A)~Sh( X) = Sh(X). Hence Fd(X/4)>=> Fda(X). This
completes the proof.

In Theorem B the equality does not hold genemlly If X is a finite
dimensional and contractible compactum and A is a cloged subset of X
such that Td(4) = n and HYA: &) # 0 for some abelian group &, then
Fd(X|A) >Fd(X)+n = n, because HY"YX: @) 5= 0 and hence Fd(X/4)
= Fd(X ) > n, where X is the compactum obtained from X and a cone
over 4 in the proof of Theorem b.
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Kurepa’s hypothesis and the continuum
by »
Keith J. Devlin (Oslo)

Abstract. Silver [5] proved that Con(ZFC -+ “there is an inaccessible cardinal”)
implies Con (ZFC+ CH4- “there are no Kurepa trees”). In order to obtain this resuls,
he generically collapses an inaccessible cardinal to w,. Hence CH necessarily -holds in
his final model. In this paper we sketch Silver’s proof, and then show how it can be
modified to obtain a model in which there are no Kurepa trees and the continuum is
anything we wigh.

Introduction. We work in ZFC and use the usual notation and con-
ventions. For details concerning the forcing theory we require, see Jech [3]
or Shoenfield [4]. A tree is a poset T = <T,<r) such that &
= {yeT| y<pwx} is well-ordered by <z for any »eT. The order-type
of # is the height of # in T, hi(x). The oth level of T is the set T,
= {weT| M(®)=oqa} T is an w,-tree if:

(i) (Va< o)(T, # 9) & (T, = 9);

(i) (Va<f<w)(Vae Tu)(ﬂynyz € Tp) (@ <z Y1, ¥ & Y2 # ¥a);
(it) (Vo< w)(Va,y ¢ T,)(lim(a)~>[o = y-& = §]);
(1v) (Vo< o) (|To] < @) & Ty = 1.

For further details of w,-trees, see Jech [2].

If T is an w,-tree, a branch of T is a maximal totally ordered sub-
get of T A branch b of T' is cofinal if (Va< o )(T, b +#0). T is Kurepa
if it has ab least Wy cofinal branches. If ¥ = L, then there is a Kurepa
tree. This result is due to Solovay. For a proof, see Devlin [1] or Jech [2].
More generally, if V = L[.4], where A C o, then there is a Kurepa tree,
from which it follows that if there are no Kurepa trees, then w, is inacces-
sible in L. (All of this is still due to Solovay, and is proved in [1] and [2].).
Henco, in order to establish Con(ZFC4-K), where K denotes the state-
ment “there are no Kurepa trees”, one must at least assnme Con(ZFCH-I),
where I denotes the statement “there is an inaccessible cardinal”.

Now, if M is any cardinal absolute extension of I, and if T' is a Ku-
repa tree in I, then T will clearly be a Kurepa tree in M. Hence, if » ig
any cardinal of cofinality greater than e, we can, by standard arguments,
find a generic extension of I, with the same cardinals as L, such: that,
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